
CamForensics: Understanding Visual Privacy Leaks
in the Wild

Animesh Srivastava
Duke University

animeshs@cs.duke.edu

Puneet Jain
Hewlett-Packard Labs
puneet.jain@hpe.com

Soteris Demetriou
UIUC

sdemetr2@illinois.edu

Landon P. Cox
Duke University

lpcox@cs.duke.edu

Kyu-Han Kim
Hewlett-Packard Labs
kyu-han.kim@hpe.com

KEYWORDS
Visual Privacy, Android, Camera.

ABSTRACT
Many mobile apps, including augmented-reality games, bar-code
readers, and document scanners, digitize information from the phys-
ical world by applying computer-vision algorithms to live camera
data. However, because camera permissions for existing mobile
operating systems are coarse (i.e., an app may access a camera’s
entire view or none of it), users are vulnerable to visual privacy
leaks. An app violates visual privacy if it extracts information from
camera data in unexpected ways. For example, a user might be sur-
prised to find that an augmented-reality makeup app extracts text
from the camera’s view in addition to detecting faces. This paper
presents results from the first large-scale study of visual privacy
leaks in the wild. We build CamForensics to identify the kind of
information that apps extract from camera data. Our extensive user
surveys determine what kind of information users expected an app
to extract. Finally, our results show that camera apps frequently
defy users’ expectations based on their descriptions.

1 INTRODUCTION
Cameras are as essential to modern mobile devices as touchscreens
and wireless networking. A device’s camera allows users to capture
and share important moments, and programmatic camera access
provides apps with a rich interface for digitizing information about
the physical world.

At the same time, cameras create new privacy challenges for
mobile operating systems. Apps can often access both essential (e.g.,
a QR code) and inessential (e.g., text) data within the same cam-
era view. This co-mingling of essential and inessential data could
lead to unexpected app behavior from the perspective of a user
as she was not aware of it because of the lack of app’s disclosure.
For example, a benign app whose ostensible purpose is scanning
QR codes (expected) could also extract text from the camera feed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SenSys ’17, Delft, Netherlands
© 2017 ACM. 978-1-4503-5459-2/17/11. . . $15.00
DOI: 10.1145/3131672.3131683

Figure 1: An augmented-reality app with access to essential
and inessential data in the same camera view.

using optical-character recognition (OCR) (unexpected) for app’s
developers to understand the app’s usage. Similarly, a more curious
camera app could perform a face recognition (unexpected) when-
ever the user takes a selfie (expected). Such unexpected behavior
could turn into “leaks” when the app’s intent is malicious. Existing
mobile platforms provide only coarse-grained access controls for
the camera (i.e., an app can access all of a camera’s view or none
of it), though numerous recent proposals have attempted to pro-
tect visual privacy through finer-grained control [1, 8, 13, 14, 24].
And yet despite this large body of work, we are unaware of any
large-scale empirical studies that characterize visual privacy in to-
day’s mobile apps. Without such a study, critical questions, such as
what information mobile apps extract from camera data, and users’
privacy expectations of camera apps, will remain unanswered.

To shed light on these and related questions, we collect over 230K
apps with access to camera data from the Google PlayStore and
develop an app analysis tool called CamForensics. CamForensics is a
custom Android environment and a suite of test inputs that feeds an
app simulated camera data containing specific types of information.
CamForensics monitors an app’s execution as it processes simulated
inputs and searches for evidence that the app performs certain
image analysis on the camera feed, such as faces and text. From
the original corpus of 230K apps, we use CamForensics to study
over 600 of the most popular apps that use well-known libraries for
augmented reality (AR), bar-code reading, face detection, and OCR.
The purpose of this tool is to collect evidence and inform the users
of any visual inference drawn from the camera feed, and users can

1

SenSys ’17, November 6–8, 2017, Delft, Netherlands Srivastava et al.

deem it as expected or unexpected. Some of these unexpected image
analysis could lead to users breach of visual privacy based on their
perspective of the app. Thus, in addition to using CamForensics to
study apps’ behavior, we distribute a large survey to characterize
users’ expectations. Our survey presents each participant with
information about a subset of 325 apps that CamForensics identified
as performing bar-code reading, face detection, OCR and AR, and
asks what classes of information the participant believes these apps
gather from the camera.

Through CamForensics and our survey, this paper is the first to
provide answers to the following questions: (1) how prevalent is
computer vision among smartphone apps with camera access, (2)
what information do apps extract from camera data, and (3) is the
information apps extract consistent with users’ expectations. The
primary results of our study are as follows:

• Most apps with camera-access use third-party li-
braries for image processing. Computer vision and
other image-processing algorithms are difficult to imple-
ment, and the vast majority of camera apps use well-known
third-party libraries rather than implementing their own.
This was critical for CamForensics, becausewe couldmodel
interactions with third-party libraries offline to better infer
an app’s intentions under testing.

• Apps routinely defy users’ expectations. In our sur-
veys on selected apps, for 61% of them, users are unable
to identify the type of image processing given the app de-
scription. Moreover, 19% of apps extract information from
camera data that users do not expect. We also find an app
whose behavior is suspicious. The majority of our surveys
indicate that app developers do a poor job of signaling to
users exactly how an app will use camera data.

• Offloading image processing is not uncommon and
presents a gray area for visual privacy. 10 Augmented
Reality apps in our study send camera data over the net-
work for getting the matching results from a remote server.
While we see the data sent in the captured network packets,
we are unable to confirm the exact nature of content – an
app may send original images or extract features without
informing the user about it.

2 DATASET
Our work aims to understand how mobile apps use visual informa-
tion. In particular, we are interested in detecting events when an
app’s execution does not conform to a user’s expectations [6, 23].
Some of these events can be visual privacy violations. To study
risks and implications of visual privacy violations in the wild, we
download and analyze 230K camera-based Android apps. Our data
collection focuses on Android apps [26], however, it is generalizable
to other platforms.

2.1 Data Collection Methodology
Android apps can be collected by crawling Google PlayStore using
a web crawler. However, it is a challenging task because PlayStore
thwarts such efforts. For example, it blocks the IPs connecting for
polling their service aggressively. The other option is to download
apps by visiting their homepage, possibly in an automated manner

App description details
Name Name of the app
AppId Package name
Category PlayStore category
IsFree If the app is free
Reviewers Total number of reviews
ScoreTotal Total number of ratings
ScoreCount Average rating of the app
Installations Number of downloads
Permissions Permissions required by the app
Description Description of the app

provided by app developer
Table 1: The relevant fields present in the app database.

2M app snapshot

Business

Social

Lifestyle

Filtered
camera apps

AWS servers

web_query

web_query

we
b_q

uer
y App mirror site

Figure 2: Data collection methodology.

by reverse engineering user interface. Unfortunately, this process
is tediously slow and would take months before a reasonable size
dataset is gathered. Furthermore, frequent changes in App store
APIs and homepage rendering make our attempts futile.

Previous work [29], and individual aficionados [12] have built
a PlayStore crawler. The latter periodically snapshots metadata of
the PlayStore. Table 1 lists some of the important fields present in a
snapshot. We leverage snapshot dated July 18, 2016 in this study. It
is important to note that snapshot database contains only metadata
and does not contain application binaries (apk files).

The snapshot contains metadata of 2.07M apps in PlayStore –
which roughly equates to the total number of apps at that time.
However, for an indepth study, metadata alone is not sufficient – a
copy of apps’ executables (apks) is required. Since PlayStore does
not allow aggressive downloading, we poll a PlayStore mirror site
(apkpure.com) to achieve our goal.

Figure 2 illustrates our data collection methodology. We filter
the snapshot of 2.07M apps and select apps that need the camera
permission (android.permission.CAMERA). These apps are identi-
fied by the permission description “TAKE PICTURES AND VIDEOS”.
Once identified, the apps are referred by package names (e.g.,
WhatsApp by com.whatsapp). For each package, we construct a
url in the following form: https://apkpure.com/whatsapp/<<p-
ackage_name>>/download?from=details. The url is posted on
apkpure.com and the response is a webpage that contains a direct
download link. To expedite the entire process, we parallelize over
16 AWS (Amazon Web Services) instances. We spent 10 days in
downloading 230K camera-based apps between July 19 − 29, 2016.

2

CamForensics SenSys ’17, November 6–8, 2017, Delft, Netherlands

 0 10000 20000 30000 40000 50000 60000

Number of apps

Business

LifeStyle

Education

Tools

Entertainment

Photo

Travel

Shopping

Health

Productivity
Apps Downloaded

Apps in Snapshot

Figure 3: Distribution of apps downloaded in the top-10 pop-
ular camera-based categories.

We were able to download 230K of 327K apps that had camera
permission in the snapshot. The downloaded apps belong to 20
different categories. Figure 3 depicts the count of camera-based
apps in the 10 most popular categories (the ones with most number
of apps). By nature, the snapshot database has non-uniform number
of apps per category. Moreover, at download time, several apps were
not available at the mirror site which led to non-uniform number
of apps downloaded per category. It is to be noted that our study
does not include paid apps since the mirror site only hosts free apps.

2.2 Use of Third-Party Libraries
We observe from the dataset that the camera apps which perform
some kind of image processing rely heavily on native libraries.
While some of these native libraries are private, others are freely
available for reuse. These libraries alleviate developers from the bur-
den of writing complex algorithms and save valuable development
time. Since libraries are written to be used in a black-box manner,
app developers typically include them on the basis of utility, with-
out comprehensive understanding. Therefore, a library mishandling
visual information can quickly affect a large population (all apps
using the library and all users that install those apps).

In studying violations of user expectations in visual information
handling, one could study the practices of each camera-based app
individually. This would be a cumbersome and tedious process.
Based on the observation of the broad use of third-party libraries,
we subselect the ones that help in performing image processing. We
then use them as common execution environments across a number
of apps – drawing insights regarding visual privacy violations.

We inspect all apps in the dataset to understand the general
use of third-party libraries. We first extract libraries from the
apk file using the apktool [28]. Every app that uses a third-
party native library contains a special designated folder (e.g.,
<app_package>/libs/armeabi). For each app, we inspect this
folder and prepare a list of the libraries found. The average number
of native libraries per app in our dataset is 3.8. Figure 4 shows an
empirical CDF of the number of native libraries per app. As evident
from the plot that distribution is long-tailed, implying that only a
handful of apps contain a very large number of third-party libraries.
The maximum number of 134 libraries is found in the PicsArt
Photo Studio app. PicsArt is a picture editor app and provides

3 10 20 40 60 80 100 120 140

Number of libraries

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Figure 4: CDF of the number of third-party libraries per app.

several image manipulation features. Overall, in our dataset, a sig-
nificant number of apps, 33.3% (76,598/230,000), have at least one
third-party library. This verifies that the use of third-party libraries
is indeed widespread.

Library labels and their description
Label Description
text character encoding
barcode QR or barcode reader
pdf pdf rendering
game gaming engines
sdk suport for app development
vision computer vision support
credit credit card reader
audio audio encoding/decoding
database database support
geolocation location services
image image processing support
ocr text recognition

Table 2: Labels assigned to the different libraries.

We find a total of 15267 unique libraries in the dataset. However,
the majority of these libraries are not used for image processing.
Therefore, we manually examine and label image processing li-
braries. Since the number of unique libraries is large, we focus on
the top-100 frequently used. Our labeling criteria are based on the
following sources: (1) the websites that maintain these libraries
such as Github; (2) online discussion forums such as Stack Over-
flow; and (3) technical experts at our institution. Table 2 shows the
set of labels assigned to the libraries.

The process of labelling helps us in identifying the libraries that
have access to camera data (online or offline). Essentially, libraries
that are assigned labels barcode, vision, credit, image, and ocr
perform some kind of image processing.

Table 3 shows the top-10 frequently used libraries among
the camera-based apps. Note that libraries capable to han-
dle visual information such as libzbarjni.so for barcode
scanning, libopencv_core.so for computer vision, and
libcardioDecider.so for credit card recognizers are among the

3

SenSys ’17, November 6–8, 2017, Delft, Netherlands Srivastava et al.

Library Description
libiconv.so Text encoder/decoder
libzbarjni.so Barcode detector
libvudroid.so PDF renderer
libstlport_shared.so C++ standard library
libunity.so Gaming engine
libmono.so .NET app support
libopencv_core.so Computer vision
libopencv_imgproc.so Computer vision
libcardioDecider.so Credit card recognizer
libcardioRecognizer.so Credit card recognizer
Table 3: Most frequently used libraries.

libzbarjni.so

libopencv_java.so

libtess.so

libCraftARSDK.so

Barcode (10K)

Face (500)

Text (800)

AR (3K)

200

240

200

25

100

100

100

25

2M
Apps

230K Apps
Downloaded

15K Lib
Extracted

34 Lib
Labeled

4 Image Processing Libraries
Impacting 14K Apps

665 Apps
Analyzed

325 Apps
Surveyed

Figure 5: Scope of measurement study.

top. This shows that camera-based apps do turn to third party
libraries for processing of visual data.

Given that the use of third-party libraries is common, it is natural
to ask what fraction of them are open-source vs closed. During
library labeling, we gathered information about the availability
of source code of third-party libraries. Among top-100 frequently
used libraries, ≈ 55% are open sourced. However, among libraries
that perform image processing, the number of open-sourced is
much higher, 75%. While code instrumentation of open-source
libraries is trivial, analysis of apps which use closed source libraries
is challenging. Later sections discuss this issue in detail.

2.3 Scope of Measurement Study
Our study starts with a metadata snapshot of PlayStore. The data
contains information of ≈ 2M apps. We identify 327K apps that use
the camera and download 230K of them. For the downloaded apps,
we extract their native libraries (total of 15K) and identify 34 most
popular image processing libraries. For better understanding, we
instrument four of them. These four libraries impact 10K barcode
scanning, 800 text recognition, 500 face detection, and 25 augmented
reality apps. However, we analyze only the most popular apps in
these categories (665). Further, we perform surveys on a handful of
the analyzed apps to understand users’ expectation. Figure 5 shows
the global picture of the scope of this study, in terms of the number
of apps and third-party library studied respectively.

2.4 Systems Aspect of Image Processing
The use of a vision-based third-party library merely indicates that
app might perform image processing. It neither confirms its pro-
cessing location (local or cloud) nor processing type (face detect,
text, or none). We answer these questions below:

What fraction of apps perform image processing on device?
The fraction of apps performing image processing locally can

be derived by identifying libraries which allow that. Therefore, we
looked at the libraries which were labeled as image processing
library (e.g., barcode) in the previous section. Among 100 most
frequently used libraries, we found that 34 libraries allow image
manipulation on the device. Further, we found that these 34 libraries
are present in 12.43% of camera-based apps. While alarming, this is
our conservative estimate since other apps using not-so-popular
image processing libraries are excluded.

What kind of image processing is performed?
To understand the kind of image processing performed, we study

34 libraries and the apps containing them. We found that these
libraries aremost commonly used for the following tasks: (1) barcode
reading, (2) computer vision operations, (3) credit card detection and
recognition, (4) augmented reality, and (5) text recognition. Then, we
compute the number of apps performing such type of processing.

0 2000 4000 6000 8000 10000

Number of apps

barcode

vision

credit

image

ocr

Figure 6: Number of apps using popular image processing
libraries.

Figure 6 shows that the number of apps using these libraries are
in the order of thousands. Specifically, we found that over 10, 000
apps use a barcode reader library. These numbers are a testimony
that on-device image processing is fairly common. Figure 6 also shows
that app developers typically do not implement image processing
algorithms, instead rely on readily available libraries. While this
practice encourages code reuse, it is worrisome in the sense that
a visual privacy leak in one could affect thousands of apps and
potentially millions of users.

3 USER STUDY
While it is evident that a visual privacy leak could pose serious
privacy risks, no consensus exists on its definition or solution. Vi-
sual privacy is of different importance to different people – widely
varying based on the utility of app in hand. Therefore, building a
solution which is agreeable to the majority is a hard problem. As a
first step, we conduct a user study to infer what would the majority
agree as visual privacy breach and use it to develop a more general-
ized definition of visual privacy. Our goal is to quantify awareness
and perception of general population towards visual privacy and
subsequently use findings as the basis of system design. We begin
with some simple surveys specifically designed to measure user
awareness on real-world camera apps. Next, we conduct a study

4

CamForensics SenSys ’17, November 6–8, 2017, Delft, Netherlands

to determine user’s perception of the app under certain scenarios.
Specifically, we sought answers to the following questions in our
user study:

1) Given real-world app descriptions, how informative are
they in making users aware of the kind of image processing
happening inside the app (See Section 3.1)?

2) Given real-world scenarios and apps performing certain
image processing task, how do users perceive the situation
(See Section 3.2)?

Study setup:We chose Amazon Mechanical Turk (AMT) for con-
ducting user studies1. AMT provides an easy-to-use platform to
support large scale user studies. The volunteers onAMT are referred
to as workers and questions are presented as Human Intelligence
Tasks (HITS). Each HIT typically has an associated monetary re-
ward and upon completion, the reward is automatically deposited
to a worker’s account. A HIT requester (i.e., the survey creator) may
select workers based on their qualifications, such as the worker’s
location or past review scores. Using the AMT platform we were
able to distribute surveys which consist in total 325 HITS.
Recruiting participants: We restricted our user study to English
speakers, and all questions and related apps’ descriptions were
in English. We further limited our HITs to workers from English-
speaking countries (e.g., the US, Canada, and the UK).We configured
the AMT surveys with our HIT worker’s eligibility requirements
and AMT recruited them. The reward associated with each HIT
varied between 1 and 10 cents based on its complexity.
Collecting responses: We put up the user study on AMT and set
its expiration period to be 10 days. However, in all the surveys that
we conducted, we were able to collect the responses within 7 days.
For each question, we collected 16 responses and we set the number
of votes to be at least 10 in order to make a consensus. Once the
HIT workers have responded, AMT provides a feature for the HIT
requester to review the responses and approve them. For stricter
vetting on HIT workers, we relied on AMT’s rating system where
workers were selected with higher ratings.

3.1 User Awareness of Image Processing

The only way for users to guess how an app might use camera data
are from the app’s description and any runtime cues the app might
provide. But even these hints do not provide any guarantees, and
an app that ostensibly looks for faces could also extract text. This
presents users with a dilemma: trust an app to handle camera data
appropriately by giving it full access, or deny camera access and
render the app unusable. In this section, we seek to understand
how well app descriptions inform users about what information an
app extracts from the camera.

We selected a set of 100 apps comprised of 25 each from the
following four categories: face detection, OCR, barcode scanning,
and apps that perform no image processing. The apps were selected
only after confirming logs that they indeed performed such tasks.
These apps were selected in the order of decreasing popularity on
PlayStore and they contain only English descriptions. A participat-
ing worker was presented with a HIT consisting of the app name,

1The procedures for the studies were vetted and approved in advance by our institu-
tion’s ethics and legal review board.

the description, and a multiple-choice, multiple-select question.
Based on the provided information, we asked whether the worker
could infer what kind of image processing the apps perform. AMT
workers indicated their response by selecting one or more of the
following choices: (1) face detection, (2) text extraction, (3) barcode
scanning, and (4) none. For each HIT, we collected 16 responses.

Face Text Barcode None
0

0.2

0.4

0.6

0.8

1
Precision

Recall

Figure 7: Precision and recall for app categories indicated by
AMT workers based on the provided description.

We measured how effectively AMT workers could infer apps’
type using precision and recall, as shown in Figure 7. We define
precision as among all apps that a volunteer believed performed a
certain type of image processing, what fraction actually did. The recall
is defined as among all apps that truly performed a certain type of
image processing, what fraction did the volunteer identify. Across all
app categories, workers achieved relatively high precision (> 70%),
meaning that when a worker believed that an app performed a
specific form of image processing it often did.

However, workers also achieved a relatively low recall (< 49%),
meaning that workers often failed to identify the kind of image
processing that apps performed. OCR was the easiest category to
recognize, achieving 49% recall. That is, 49% of the time, workers
correctly identified apps that extract text from camera data. This
is likely because developers of these apps often use “OCR" in their
descriptions. Workers had much more trouble identifying apps
in other categories. These results indicate that users often have
difficulty identifying what information an app will extract from
camera data using app descriptions alone. However, the OCR results
offer hope that explicit declarations can help users in correctly
understand an app’s behavior.

Figure 8 plots the confusion matrix of AMT workers’ responses.
A high value along the diagonal indicates that the AMT workers
correctly inferred how each app processes images. This provides
some insight into the sources of workers’ confusion. For face de-
tection and barcode scanning, most descriptions do not indicate
image processing, and as result users frequently categorized them
as ‘None.’ The results also show that workers often misclassified
OCR and barcode apps as each other.

After our initial survey, we studied whether users could identify
apps more effectively when given stronger hints about the apps.
We provided them with the correct app category, and asked how
strongly they believed that the app belonged in that category.

For this study, we prepared a survey with 100 apps containing an
OCR library. Each AMT worker was presented with a HIT consist-
ing of the app name, description, question, and five rating options.

5

SenSys ’17, November 6–8, 2017, Delft, Netherlands Srivastava et al.

Figure 8: Confusion matrix representation of AMT workers
response. The numbers inside each cell indicate the fraction
of votes for the corresponding category of image processing.

1 5 8 14 16 18 19 24 26 28 33 37 45 52 55 57 62 67
App Ids

1

2

3

4

5

R
at

in
gs

Figure 9: Apps for which the usual consensus is that they
are not performing any text detection or recognition. The
x-axis represents the app ids and the y-axis represents the
ratings. Ratings are on a scale of 1 to 5, where 1 represents
strong disagreement and 5 strong agreement. Note that all
apps had been observed performing text detection.

In each HIT, we ask how strongly the workers felt that the app per-
forms OCR on a Likert scale of 1 to 5 (strongly disagree to strongly
agree). For each HIT, we collected 16 responses. Figure 9 shows
that for 18 of the 100 apps, AMT workers frequently disagreed
that the app performed text processing (10 or more votes with rat-
ings ≤ 2). For example, ColorSnap Visualizer is one such app
which performs text recognition and all the 16 votes indicated that
the HIT workers did not consider it to perform any such activity.
ColorSnap Visualizer is an app which lets a user pick a color
from a picture and then finds the closest color manufactured by
Sherwin-Williams Paints. The app description has not mentioned
anything (as of today) related to the text recognition, however, upon
installation we find that it provides a feature to read a color number
from the camera feed.

We repeated this survey for 100 apps performing face detection.
The apps were selected after logging their use of Android’s native
OpenCV face detector. As with the OCR apps, based on the app
name and description, we asked workers if they thought that the
app performed face detection. Figure 10 shows the results. This
time, AMT workers mistakenly believed that 26 out of 100 apps
were not performing face detection.

Based on all of our surveys, it is clear that app descriptions rarely
allow users to understand what information the apps extract from
camera data. Although we did not observe any malicious behavior,

2 4 5 15 16 24 25 25 26 28 37 39 42 45 56 76 77 78 81 82 85 86 95 96 99 100
App Ids

1

2

3

4

5

R
at

in
gs

Figure 10: Apps that users mistakenly believed did not per-
form face detection. The x-axis represents app ids and the
y-axis represents the ratings. Ratings are on a scale of 1 to 5,
where 1 represents strong disagreement and 5 strong agree-
ment. Note that all these apps perform face detection.

Method# Description
M1 No image analysis
M2 Local image analysis

M3 Local image analysis and results shared with
app developers for improvements

M4 Image sent to cloud for analysis and results
shared with app developers for improvements

Table 4: Camera data handling methods introduced to the
workers in the questionnaire

an unscrupulous developer could easily prey on users’ confusion
without detection.

3.2 User Perception of Visual Privacy
The previous section demonstrates that there is discrepancy be-
tween the app descriptions and the apps’ handling of camera data.
This discrepancy makes users less aware of potential visual privacy
risks. An app, after performing an image analysis, can either keep
the analysis on the device or it can send it over the network. Once
the analysis leaves the device, the user has no control over it. We
designed some real-world scenarios which involved apps perform-
ing image analysis and sharing the results. We wanted to capture
user’s perception when they are more aware of the app’s handling
of image analysis. In each scenario, we introduce study participants
to methods in which an app might handle camera data and ask
to what extent they are acceptable to them. Finally, we provide
participants with several solutions in which apps could make them
more aware and ask how strongly they find solutions valuable.

Our user study is located at https://goo.gl/Y97OFI). We en-
vision two different cases: (1) Alice is interacting with a camera
app to take a picture of a receipt, and (2) Alice is taking a picture
with her friends at a bar. Both cases present scenarios where the
camera app perform image analysis (text recognition in case (1) or
face detection in case (2)) with some or no reliance on the remote
server. In each scenarios, the app provides some utility to Alice.

We asked 50 AMT workers to rate their concern on a Likert scale
of 1 to 5 (no concern to serious concern) based on the camera data
handling method used by the app. Methods are listed in Table 4.

Figure 11 shows that users are increasingly concerned when app
tends to move data out of the device. In case of M2 – local image

6

https://goo.gl/Y97OFI

CamForensics SenSys ’17, November 6–8, 2017, Delft, Netherlands

M1 M2 M3 M4
0

10

20

30

40

50

#
V

o
te

s

M1 M2 M3 M4
0

10

20

30

40

50

#
V

o
te

s

1(no concerns) 2 3 (some concerns) 4 5 (serious concerns)

(a) Text extraction (b) Face detection

Figure 11: On a scale from 1 to 5, participants’ level of con-
cern from different camera data handling methods.

App description Runtime
0

5

10

15

20

#
V

o
te

s

App description Runtime
0

5

10

15

20

#
V

o
te

s

1 (not valuable) 2 3 (moderately valuable) 4 5 (very valuable)

(a) Text extraction (b) Face detection

Figure 12: On a scale from 1 to 5, participants’ ratings on the
value of the disclosure of camera data handling.

analysis, we noticed different levels of concern for text extraction
and face detection. With local text extraction majority had little to
no issues, however with local face detection most raised some form
of concern (25% more). In both the cases, users showed high level
of concern when analysis result was shared with the app developer.
In case of M4, where the image was sent to a remote server, a vast
majority of 44% participants showed “serious concerns".

We further asked the participants whether they find it valuable
to have apps disclose their camera data handling. Specifically, we
asked them to rate the utility of the following on a Likert scale 1 to
5 (not valuable to very valuable): (a) Apps’ app store description
of how images are processed and where are they stored, and (b)
Run-time app notification describing how images are processed and
where they are stored. In both cases, the majority of participants
(> 82%) voted that it will be helpful (ratings ≥ 3) if apps disclose
the way they handle the camera data. Figure 12 also shows that
participants prefer run-time notifications over app store description.

In summary, our AMT based user study provides two valuable
takeaways. First, given current app store descriptions of the apps, it
is hard for users to judge the kind of information app extracts from
camera data. And second, given a choice, users would like to know
what kind of information apps extract from camera data, including
the location of image processing.

4 THREAT MODEL
We say that a mobile app violates a user’s visual privacy when
the app extracts more information from a device’s camera data
than a user expects without being upfront about it. Thus, to detect
apps that violate visual privacy, we need to both identify what
information an app extracts from camera data and understand what
behavior users expect of the app.

To identify what information apps extract from camera data, we
use CamForensics. CamForensics is integrated with Android, and
we trust the entire Android platform, including the operating sys-
tem kernel with all support libraries. We assume that an untrusted
app can only access camera data through platform-provided APIs,
and we assume that a studied app does not collude with other apps
installed on the device.

As we described in Section 2, many camera apps rely on third-
party libraries for computer vision. In order for CamForensics to
understand what information an app extracts from camera data,
we must understand how it uses these libraries. Thus, CamForen-
sics only draws conclusions about an app’s behavior if the app
uses a third-party library whose functionality is already known.
CamForensics uses the knowledge to interpret what runtime invo-
cations of the method calls to the third-party library tell us about
the app’s intentions. An app that is determined to avoid analysis
could change library method names to prevent CamForensics from
understanding its behavior. However, for the purposes of our study,
we assume that apps do not obfuscate their behavior in this way.

Some apps use remote processing to extract information from
camera data rather than invoking libraries on the device. Because
processing occurs off device, CamForensics cannot draw any con-
clusions about these apps’ behavior. However, remote processing
represents a gray area for visual privacy. Even if a user expects
an app to extract specific kinds of information from camera data,
they may not expect or be comfortable with camera data leaving
their device. We will return to the privacy implications of remote
processing in Section 7.3.

Since an app indicates its intentions at install time through its
description and at runtime through on-screen cues, users’ expec-
tations may change between the time that they install an app and
the time that they use it. If an app extracts information in a way
that is not indicated in either its description or at runtime, then it
clearly violates visual privacy. If an app clearly indicates through
its description what information it intends to extract, then it does
not violate visual privacy. However, as with remote processing, an
app that fails to clearly describe its behavior in its description but
provides runtime cues represents a visual-privacy gray area. We
will return to this issue in Section 7.3.

5 SYSTEM OVERVIEW
Before we delve into the design of CamForensics, we first provide
a high-level overview of the principles behind the design of Cam-
Forensics and then we provide implementation details.

5.1 Design Principles
CamForensics must be able to collect evidences of the image analy-
sis performed on the captured image without modifying the app and

7

SenSys ’17, November 6–8, 2017, Delft, Netherlands Srivastava et al.

CamForensic: Instrumented
Camera Service

Android OS

CamForensic: Instrumented
App Process

Application Framework func1, ts1

func2, ts2
…

-+++
-- -

CamForensic: Function
specific classifier

Figure 13: CamForensics has three major components: (1)
Dynamic binary instrumentation to capture function logs
during the run-time, (2) Instrumented camera service to trig-
ger image analysis, and (3) A classifier to detect image anal-
ysis performed by an app.

with least amount of intervention. The following design principles
guided our work.

Logs as an evidence of image analysis
The presence of an image processing library inside an app neither
confirms nor denies its malicious nature. For example, OpenCV
provides several image processing features such as color conversion
(e.g., RGB to gray) and face detection. An app using OpenCV library
for simple transformations may not pose a threat to user’s privacy
but the same performing face detection may.

CamForensics uses dynamic binary instrumentation technique
to detect function calls in real-time and logs them along with the
timestamps. Use of libraries such as OpenCV which provides one
API for face detection, can easily be confirmed by the existence of
those APIs in the logs. For other functionalities such as credit card
reader, there are several functions involved such as edge detection
and text extraction. In such cases, although, there are several dif-
ferent functions invoked, the sequence in which they are invoked
remains fixed. Therefore, presence of a sequence of a function in-
vocation becomes the evidence of a specific image analysis.

The order of function calls can become complex if the app uses
multiple threads accessing the same third-party library. To avoid
such a complication, CamForensics also records the thread id which
made those function calls which in turn simplifies the ordering of
the function calls.

Testing apps without pre-processing
One of the goals of CamForensics is to make the process of testing
an app easy with least amount of human intervention. We want
to avoid any pre-processing of the app package which involves
peeking inside the app package before we begin to test the app.

The dynamic instrumentation technique employed by CamForen-
sics helps us to run apps without pre-processing. Apps are run
directly on the device and CamForensics takes control during the
run-time as and when a third-party library functions are invoked.

Trigger image analysis
Often, for performance reasons, apps are designed to trigger image
analysis if the image meets certain criteria, such as text extraction
is triggered when the contrast is above a certain threshold and
eye detection is triggered if the image has faces present. The app
developer can create and embed such triggers in the apps. How-
ever, without access to the source code, it is difficult to know what
triggers a specific type of processing on the image.

CamForensics tackles this problem by instrumenting how the
images are delivered to the app from the camera sensor. In An-
droid, camera service is the central component responsible for
delivering images from camera sensor to the requesting app. Cam-
Forensics modifies the camera service to replay a pre-recorded
video stored on the device indefinitely. These videos are recorded
in a manner that every frame contains the object of interest such
as faces or text. This makes our testing less cumbersome and more
consistent. Using this technique an app to be tested can be invoked
without worrying about where the device camera is pointing. When
running, CamForensics collects function traces in the background.

Automate detection of image analysis
Inferring the kind of image processing from manual analysis of
traces is not a trivial task. This is especially true in the case of third-
party libraries whose source code is not available. CamForensics
uses a machine learning based technique to skim through arbitrarily
long function logs collected during an app’s run. Based on the
classifier output, the kind of image processing is labeled.

To train our machine learning technique, we first identify a few
trusted apps which perform certain types of image analysis (e.g.,
face detect) using a given image processing library (e.g., opencv).
We run these trusted apps and use the generated logs for training.
For each app under the investigation, we collect run-time logs and
apply the trained classifier. CamForensics uses several of such pre-
trained classifiers to test the existence of different types of image
processing in the wild.

6 IMPLEMENTATION
CamForensics is built in three parts: (1) Module to instrument the
app process, (2) Module to instrument camera service, and (3)
Module to detect the image analysis at app’s run-time. We imple-
mented the first two modules by modifying Android Open Source
Project (AOSP) version of Android 6.0.1. The third module runs on
a server where traces of function calls from the device are uploaded
in offline manner. Subsequent sections describe the implementation
of these three modules.

6.1 Instrumenting the app process
Intel’s Pin [19] is one of the most powerful, robust, and efficient
platform for run-time process instrumentation. It provides APIs
that are easy-to-use and portable across multiple CPU architectures.
A running instance of the app is a process, which when loaded in
memory is has four segments: stack, heap, data, and code. Pin can be
used to instrument arbitrary memory location of the code segment
of the process. Pin instruments app in such a way that it is trans-
parent to the process at run-time. That is to the running instance of
a Pin instrumented app, all memory locations and register values
appear the same as they would without the instrumentation. This
guarantees consistent run-time behavior of the app before and after
the instrumentation. To improve the performance of instrumented
process and amortize its overhead, Pin uses a code cache to store
previously instrumented copies of the app. We used Pin framework
for it’s simplicity and performance reasons. Further, we developed
our own Pintool to log function calls to the native libraries for all
android apps.

8

CamForensics SenSys ’17, November 6–8, 2017, Delft, Netherlands

Emulator

Operating System

JIT compiler

D
is

pa
tc

he
rVirtual Machine

Code
Cache

PintoolApp

Pin APIs
Pi

n
Fr

am
ew

or
k

Figure 14: CamForensics’s software architecture for instru-
menting the app process.

Figure 14 shows overall software architecture for instrumenting
app’s process. Pintool is implemented in the form of a script written
in C/C++. It contains the instrumentation code that we intend
to insert in the process at run-time. When an app is invoked, the
operating system makes a calls to Android run-time (ART) to start a
new process. ART performs all housekeeping associated to starting
a new process and returns assigned process-id to the operating
system. We changed Android source code to make a callback to
Pintool whenever the operating system finishes loading a process.
At this point, Pintool automatically attaches itself to the process id
supplied by the callback.

Next, Pintool attempts to identify the third-party native libraries
used by the process. To accomplish that, it pauses the running
process using the Unix Ptrace API and reads the symbol table using
the API PIN_Init(). The read symbols identify third-party libraries
used by the process. Based on the identified library names, Pintool
decides whether a recognizable image processing library is present
in the app. If present, Pintool continues further analysis of the app.

For each recognizable image processing library present in the
app, two cases exist: (a) library is open-sourced (e.g, opencv) in
which case Pintool monitors calls to a specific set of functions
(e.g, detectMultiScale), and (b) the library is closed-sourced,
hence all function calls are monitored. For functions we intend
to monitor, their addresses are registered with Pintool using the
API RTN_AddInstrumentFunction().

For each registered function, Pin framework acts as a just-in-
time compiler. It adds the instrumentation code only when those
functions are invoked. Pin framework uses the code cache to store
the instrumented code which is executed every time the function
is executed. Finally, the Pintool uses the API PIN_StartProgram()
to start the paused app process.

Pintool collects the following information every time a function
from a third-party native library is invoked: (1) thread id, (2) func-
tion name, (3) name of the library containing the function, and (4)
timestamp at which the function was invoked. Pintool is designed
to spew the recorded events periodically on the device. When the
app process is killed Pintool detaches itself. We would like to note
that hijacking another process using a Pintool is not a security flaw.
In order to get such an access, the device has to be rooted and the
default selinux policy enforcements have to be disabled.

6.2 Camera Service - Record and Replay
Testing camera based apps is a tedious process. This is because
of manual effort involved in running the camera and pointing it
at a meaningful subject such as face or text. Several apps require
running camera for few hours to detect transient malicious behavior
(invocation of vulnerable functions). Moreover, an ideal experiment
should be repeatable to confirm the vulnerability. In such a case, it
is implausible to hold the camera and keep pointing to a particular
subject. While one may use a camera mount, we take an alternate
approach.

Preview
android.
graphics.
SurfaceTexture

Image capture
android.
media.
ImageReader

Video
android.
media.
MediaRecorder

android.
hardware.
camera2

BufferQueues

Hardware Abstraction Layer

Camera Device Driver

Stream1 Stream2 Stream3

App

Application

Framework

Hardware

Independent

Hardware

Dependent

Image capture formats

CamForensics instrumented Camera Service

stream
configuration

Figure 15: Android’s camera subsystem. The colored mod-
ule represents that CamForensics intercepts the image data
coming from the camera sensor and replaces it with it’s own
data before delivering it to the app.

In Android, all the image based transactions between the camera
sensor and any app are mediated by a specialized system service,
camera service (Figure 15). Camera service is a trusted service
which reads data from the sensor and supplies it to the layers above.
This provides us an opportunity to populate any app with specific
images or scenes without modifying its code. At a high-level, we
modify camera service in a way that it starts reading from a
video file instead of the camera sensor. Camera service then sup-
plies fabricated frame buffer to the requesting app. We feed data
of our choice to make app trigger specific operations – considered
sensitive in nature. Moreover, this method also provides us consis-
tency across app testing. We create a configuration file accessible
to system service. The configuration file has two information: mode
and filename. We modify the camera service to read the con-
figuration file when an app requests camera access. Based on the
mode in the configuration file, camera service does either of the
following: (1) When mode is 0 (record): deliver the camera frames
to the app, record the frames, and store them in a file pointed by
filename, and (2) When mode is 1 (replay): read frames from the
file pointed by filename and deliver them to the app (instead of
frames from the sensor).

In this paper, we focus on detecting visual leaks containing text
or human faces. Therefore, the frames that we used to replay for
testing contained either text or human faces only.

9

SenSys ’17, November 6–8, 2017, Delft, Netherlands Srivastava et al.

6.3 Classifying the logs
Traces generated by CamForensics are neither easy nor feasible for
a human to analyze. We want to have a system that can look at a
log and determine the category of image analysis it belongs to. For
this purpose, we use a very simple machine learning technique and
implement it using the open-source framework, TensorFlow.

We look at the problem of mapping a trace to a functionality
(such as text extraction) as the problem of determing a topic for
a given sentence or a document. First, we convert the function
trace from a series of string input to a set of learning vectors using
word2vec, an unsupervised model by Mikolov et al [21]. Such rep-
resentations of words in a vector space help learning algorithms
to achieve better performance in classifying similar words. Note,
here a word represents a function call to a native library. Next, we
use these word vectors and train a shallow convolutional neural
network (CNN) for classification [15].

The combination of word2vec and CNN forms an easy to setup
classification unit which can be run on simple desktop to perform
classification in the order of seconds.

7 EVALUATION
To evaluate CamForensics, we first measure its accuracy of the pre-
diction in classifying an image processing task. Next, we measure
the overhead introduced by CamForensics. Finally, we analyze the
function and logcat trace for apps performing image analysis and
present our findings. We specifically look for the apps which use
third-party native libraries for: (a) barcode reader, (b) text extraction,
(c) face detection, and (d) augmented reality.

7.1 Accuracy of classification
Developers may design their apps in such a way that can lead to a
different sequence of functions to perform the same operation. For
example, some apps choose to improve the contrast of the image
and threshold the image before they perform text extraction, while
others tend to detect paragraph before they perform text extraction.
This heterogeneity of function call sequences makes the problem
non-trivial. Therefore, to automatically detect the presence of a
known image analysis we employ topic modeling technique. The
aim is to provide a document containing function names, thread
ids and timestamps, and determine the image analysis (topic of the
document) performed on the camera data.

We set up our machine learning based classifier on a laptop
with a 2.6 GHz Intel Core i5 processor with 8 GB RAM. We run
an app performing text extraction (apps that use libtess.so) and
collect function call traces. We use these traces to perform the
training. Next, we run other apps which use the same library for
text extraction and collect traces for testing. In total, testing logs
contain 1000 instances of camera data on which text extraction is
performed. We also provide 1000 frames in which no text extraction
was performed.

We randomly split the dataset into 80-20 partition for training
and evaluation corresponding to 1600 function logs for training
and 400 logs for evaluation. We repeat the training and evaluation
of the classifier across 10 different splits each of which are selected
randomly. Our choice of the CNN training parameters leads to a
very quick training period (≈ 20 minutes). Our measurement shows

that the median precision and recall for the classification is 0.96
and 0.966 respectively.

7.2 Overhead of using Pin
CamForensics does put additional performance overhead on the
app. The performance drop comes from two components: (1) Pin
Framework that resides between the app process and the OS, and
(2) Pintool which injects instrumentation code and traces function
calls. To measure the drop in performance, we perform matrix mul-
tiplication of size 200×200 on the device for 50 times. We measured
total time taken in performing this task with Pin framework un-
der the following scenarios: (1) without any instrumentation, (2)
with instrumented function calls to one library, and (3) with instru-
mented all function calls to all libraries (including function calls to
system libraries such as linker). We compare the time taken for the
aforementioned scenarios with respect to the baseline where the
task was run without the Pin framework.

Pin 1 library All libraries
101

102

103

104

In
cr

e
a
se

 in
 t
im

e
 (

%
)

59.57 62.68

2551.04

Figure 16: Increase in time-taken to perform 50matrix mul-
tiplications of size 200 × 200. The y-axis is in the log scale
and the value on top of the bar represents increased time in
percentage.

Figure 16 shows that running image multiplication on Pin frame-
work without instrumenting any functions increases total task
completion time by 59.57%. With more libraries instrumented, the
overhead depends upon the number of functions instrumented.
When only one library is instrumented, the increased overhead is
62.68% and when all, it is 2551%.

7.3 Categorized Findings
Barcode reader:We analyzed top-200 apps out of 10K apps which
contain Zbar (libzbarjni.so). Interestingly, onmanual inspection,
we find that 45 of them do not provide any camera-based function-
ality. Similarly, another 15 apps do not use barcode scanning and
CamForensics correctly identified them. Needless to say that all 60
of these apps request camera permission in their Manifest file and
include Zbar in the package binary. We also find that 9 apps bundle
multiple barcode libraries, namely, Zbar, Zxing and Google native
barcode scanner. This might be due to a common malpractice of
app developers to start a new app development by copying from an
older repository or let unused libraries reside despite discontinuing
or enhancing a feature.

Since most barcode scanning apps are benign, an adversary can
build on that trust to get side channel access of camera data. Later,

10

CamForensics SenSys ’17, November 6–8, 2017, Delft, Netherlands

it may process data locally or transmit without informing the user
which is considered as breach of visual privacy as per our definition
in user study (Section 3.2). We observe similar behavior in Alive
OneScan Pro app. This app during scanning a QR code recognizes
that the user is wearing brown colored boots and therefore shows
advertisements of similar products. We are surprised by such level
of recognition. Our deeper inspection reveals that the app uses a
cloud-based recognition service CraftAR to achieve that. In our
case, users intention of scanning the barcode is misused to send
colored images to the cloud. Further, we check the app’s description
where it mentions AR as an additional feature. However, it does
not mention about images being transmitted to the cloud.

Another very popular app (number of installations 1−5M) called
Tesco Lotus uses Qualcomm developed AR SDK, Vuforia. However,
it does not mention AR in the app store description. At the start
of app’s activity, it sends device’s identity to a server https://t.
appsflyer.com/with identifiers in plain text. It also sends tracking
information periodically to the same server. From the trace logs,
we also find that a file on remote AWS server is updated based on
the user’s activity(http://tesco2015.s3.amazonaws.com/game/
57ff5cea1b571.zip).

Similarly, popular brand MANGO app uses Vuforia Augmented
Reality SDK for interactive shopping experiment on the website.
MANGO allows its users to scan fashion model pictures in the web
catalog and purchase product worn by them. MANGO periodically
accesses https://www.mango.com/ to show results based on the
content of the viewfinder. Again, the app description of MANGO
does not mention of AR toolkit or transmitting data out of the
device. In total, we find a total of 87 such instances of co-existences
of a barcode reader and Vuforia SDK in our dataset.

OCR: We instrumented over 200 apps which use tesseract library
(libtess.so) for OCR. A majority of these apps use tesseract for
document scanning, language translation, and dictionary. Tesseract
library is the most popular library for converting one language
words to another via camera. Tesseract is also used in assistive
apps, where documents or objects follow a fixed template. For
example, Power Meter app uses it to automatically extract usage
reading, passport scanner for flight reservation, or driver license
scanner for car rental. Lastly, several apps perform text recognition
on live camera preview, such as to translate navigation signs from
a foreign language.

As we inspect these apps, we find that dictionary-based apps
state the use of OCR library clearly in their description. Unfortu-
nately, this is not the case with others as they do not mention text
recognition in their description, instead highlight other features.
However, during usage, they provide some indication of ongoing
text processing.

An interesting finding of our study is how OCR library is used
in practice. While some attempt to directly extract the underlying
words, some try to detect paragraphs before that. Moreover, from
the system log it appears that OCR library uses best effort approach.
Which means it recurses on the image and tries to optimize various
thresholds, scales, quality, etc. until a result is found (or the timer
runs out). For example, in the case when enough lines of text are
not detected, it tries to increase the contrast of the image. Such

approach results in a different series of function calls for different
images. This behavior is unlike others, for example in the case of
barcode scanning every image follows the same code path.

OpenCV and Face Detection: We instrument 240 apps using
OpenCV library (libopencv_java.so) and analyze their traces.
We find 10 them to use face detection functionality (function call
instances of detectMultiScale). The face detection functionality
is used in two categories of apps: face-based screen unlocking and
fashion makeup.

The screen unlocking apps train a classifier from multiple pho-
tographs of users face. Later, they use this classifier to recognize
the device owner, hence enabling the unlocking functionality. Since
these apps explain the entire process up front, they run face detec-
tion only after users approval. Considering these apps seek explicit
approval, they do not violate users visual privacy. On contrary, the
fashion app (com.modiface.lakme.makeuppro) runs the face de-
tection right after launching, therefore violates users visual privacy.

OpenCV is mostly used for functionalities other than face de-
tection. The color conversions (cvtColor), image I/O (imwrite),
and edge detection (canny) are amongst most frequently used func-
tions. On several instances, we find that apps use other third-party
libraries such as a closed source library libprocessing.so to per-
form face detection despite loading OpenCV.

Moreover, a large number of apps access face data directly
through the camera drivers. Since face detection is a popular fea-
ture needed by a large number of apps, many devices build it in the
hardware. Android also provides native APIs for detecting faces
in software. In our analysis, 120 apps use native camera driver for
active face detection.

Augmented Reality: In our dataset, we find two popular AR SDKs,
namely Vuforia by Qualcomm and CraftAR. Although, Vuforia
(3092 apps) is more popular than CraftAR (25 apps), we find CraftAR
(libCraftARSDK.so) more interesting and relevant because it em-
phasizes object recognition both ways: on-device and in the cloud.

Apart from running apps through CamForensics, we also capture
network packets to detect events where a large chunk of data is sent
(an indication of possible image transmission). We find that a ma-
jority of the apps are marker-based, where the apps first download
a database and later match visual features locally, on the device.
This is expected because image transmission requires a high upload
bandwidth which may not be ubiquitously available.

However, we find 10 apps that send data over the network. In
all these apps, the packet send timestamps are tightly correlated to
camera trigger event. While we can not comment with full certainty
– it is a strong indication that an information related to the camera
may be transmitted. Also, we see several log messages such as
CraftARSDK (3.0): Searching image in the server. Among
these 10 apps, only two ‘Alive One’ and ‘Alive One Pro’ explicitly
display that they send images over the network (on the camera
preview). For all such apps, we see a continuous stream of 590 bytes
packets. However, combined packet size of transmission does not
match the image size. This could be because compressed image size
differs significantly from the raw image based on the algorithm used.
Moreover, compressed image size also varies with the content in the

11

https://t.appsflyer.com/
https://t.appsflyer.com/
http://tesco2015.s3.amazonaws.com/game/57ff5cea1b571.zip
http://tesco2015.s3.amazonaws.com/game/57ff5cea1b571.zip
https://www.mango.com/

SenSys ’17, November 6–8, 2017, Delft, Netherlands Srivastava et al.

scene, hence unpredictable. While this analysis is inconclusive in
saying whether the apps send images, features, or something else;
it does present a gray area. Such widespread information hiding
does raise privacy concerns important for end users.

8 FUTUREWORK
Though CamForensics has proved to be a useful tool for studying
visual privacy, its limitations point to several directions for future
work. In this section, we highlight the limitations and discuss pos-
sible future directions.

The user study described in Section 3.1 was very simple which
used only the app’s name and its description. In reality app stores,
usually, contain several screenshots for an app. Such visual depic-
tions may help the user to understand the kind of image processing
involved. Also, some apps provide runtime cues such as point the
camera to your face to unlock the device. A user study based on
users’ experience of using the apps can provide a better estimate of
the discrepancy between user’s awareness and apps’ descriptions.

CamForensics requires some manual effort to gather and ana-
lyze app logs. In particular, a researcher must manually explore an
app’s UI to trigger camera access. Second, while a simple classifier
can categorize the kind of image processing is performed, manual
effort is needed to infer details such as where the image data or
the analysis is being sent. These limitations are reasonable for a
study such as ours, but developing a visual-privacy service will
require taking humans completely out of the loop. Thankfully, UI
exploration could be automated using platform accessibility APIs,
and advanced machine learning techniques may prove useful for
inferring behavior from log data.

In addition, due to the way the tool relies on the sequence of
native method calls, CamForensics can detect access to a version
of the native library on which it was trained. In a different version
of the same native library, its developer may change the name of
the functions, add or remove certain functions. This will change
the function call signature to perform the same image processing
task. However, this issue can be tackled by providing more and
more training samples gathered from the apps which use a different
version of the same native library.

CamForensics incurs performance overhead due to the use of
dynamic binary instrumentation platform. Dynamic monitoring
for visual privacy is a very appealing alternative because it has
the potential to recognize violations at the moment they occur.
Improving CamForensics to reduce the overhead and integrating
runtime visual-privacy checks into mobile platforms is an exciting
direction for future work.

9 RELATEDWORK

Third-party native library studies:To the best of our knowledge,
this paper presents the first study which investigates the third-party
native library usage by camera-based apps. There are numerous
studies which estimate the trend and growth of native libraries
in Android for other purposes [2, 27, 34]. Sun et al. [27] in 2014
investigate top apps from Google PlayStore and find that an average
app contains 4 native libraries. Zhou et al. [34] analyze 204K apps
from various online stores and report that only 4.52% of the apps
contain native libraries, a significantly smaller number.

Violating user expectation: Several apps request more permis-
sions than required by the underlying feature against user’s ex-
pectations. Studies suggest that the users aware of the nuances of
the app do not tend to allow the resource access as often [9, 32].
Researchers have developed Whyper [23] – a tool to estimate the
excess permissions requested by an app based on its description.

Untrusted code isolation: Klinkoff et al. [16] focus on native code
isolation in .Net application framework [30]. Similarly, Siefers et
al. [25] present Robusta, a system for native code isolation of Java
applications. However, Robusta requires non-trivial modifications
to Java Virtual Machine (JVM). NativeGuard [27] is an orthogonal
system which uses a similar mechanism for native code isolation
but in Android OS. Comparatively, CamForensics is a much sim-
pler approach which does not require complex modification to the
Android OS.

Application behavior analysis: CamForensics can be envisioned
as a tool to analyze app behavior. Recent work on analyzing app
behavior can be categorized in two categories: (a) static, and (b)
dynamic. ScanDroid [10] and FlowDroid [3] perform static analysis
and may not be sufficient when an app uses third-party libraries.
In such cases, dynamic analysis is required. TaintDroid [7] and
DroidBox [17] are two popular tools which support taint analysis
of Dalvik instructions across API calls to catch privacy leaks. Both
of these systems rely on extensive instrumentation of operating
system, penalizing the run-time performance.

Using machine learning: In recent times, machine learning (ML)
based approaches have shown to outperform traditional whitelist-
ing approaches such as Centroid [4] and AdRisk [11] in detecting
advertising libraries. Narayanan et al. develop AdDetect [22] for au-
tomatic semantic detection of in-app ad libraries. AdDetect applies
hierarchical app package clustering, an ML technique, to detect
advertising libraries. Similarly, PEDAL [18] detects advertising li-
braries by training a classifier based on package relationship and
testing them against the code-features from library SDKs. Droid-
Sec [33] is a recent system that uses deep learning model for mal-
ware detection – achieving 96% accuracy on the real-world Android
apps. AnDarwin [5], WuKong [31] and LibRadar [20] detect app
clones by filtering library code using clustering techniques. The
underlying assumption is that the library source code does not
change and, hence, can be bypassed easily.

10 CONCLUSION
This paper presents the results of a large-scale study of visual
privacy in the wild. An app violates visual privacy if it extracts
information from camera data in ways that a user does not expect.
To study visual privacy leaks, we develop CamForensics that moni-
tors how camera data is handled by third-party libraries at runtime.
Using CamForensics, we characterize how over 600 Android apps
extract information such as text, faces, and QR codes from devices’
camera. In addition, we perform several surveys to characterize
what information users expected these apps to extract based on
their app store descriptions and to gauge their attitudes toward
visual privacy. Our results show that apps frequently defy users’
expectations, based on their descriptions, and that users care about
how apps process their camera data.

12

CamForensics SenSys ’17, November 6–8, 2017, Delft, Netherlands

REFERENCES
[1] Paarijaat Aditya, Rijurekha Sen, Seong Joon Oh, Rodrigo Benenson, Bobby Bhat-

tacharjee, Peter Druschel, Tong Tong Wu, Mario Fritz, and Bernt Schiele. 2016.
I-Pic: A Platform for Privacy-Compliant Image Capture (MobiSys).

[2] Vitor Afonso, Antonio Bianchi, Yanick Fratantonio, Adam Doupé, Mario Polino,
Paulo de Geus, Christopher Kruegel, and Giovanni Vigna. 2016. Going Native:
Using a Large-Scale Analysis of Android Apps to Create a Practical Native-Code
Sandboxing Policy. In Proceedings of the Annual Symposium on Network and
Distributed System Security (NDSS).

[3] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. ACM SIGPLAN Notices 49, 6 (2014), 259–269.

[4] Kai Chen, Peng Liu, and Yingjun Zhang. 2014. Achieving accuracy and scalability
simultaneously in detecting application clones on androidmarkets. In Proceedings
of the 36th International Conference on Software Engineering. ACM, 175–186.

[5] Jonathan Crussell, Clint Gibler, and Hao Chen. 2013. Andarwin: Scalable de-
tection of semantically similar android applications. In European Symposium on
Research in Computer Security. Springer, 182–199.

[6] Soteris Demetriou, Whitney Merrill, Wei Yang, Aston Zhang, and Carl A Gunter.
2016. Free for all! assessing user data exposure to advertising libraries on android.
In NDSS.

[7] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. 2014.
TaintDroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. ACM Transactions on Computer Systems (TOCS) 32, 2 (2014), 5.

[8] Miro Enev, Jaeyeon Jung, Liefeng Bo, Xiaofeng Ren, and Tadayoshi Kohno.
2012. SensorSift: Balancing Sensor Data Privacy and Utility in Automated Face
Understanding (ACSAC).

[9] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
2011. Android permissions demystified. In Proceedings of the 18th ACM conference
on Computer and communications security. ACM, 627–638.

[10] Adam P Fuchs, Avik Chaudhuri, and Jeffrey S Foster. 2009. Scandroid: Automated
security certification of android. (2009).

[11] Michael C Grace,Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi. 2012. Unsafe
exposure analysis of mobile in-app advertisements. In Proceedings of the fifth
ACM conference on Security and Privacy in Wireless and Mobile Networks. ACM,
101–112.

[12] Google Play Store in Numbers. 2016. https://techflow.me/2014/03/05/
my-project-google-play-store-in-numbers/. (2016). [Online; accessed
3-Dec-2016].

[13] Suman Jana, David Molnar, Alexander Moshchuk, Alan Dunn, Benjamin Livshits,
Helen J. Wang, and Eyal Ofek. 2013. Enabling Fine-Grained Permissions for
Augmented Reality Applications With Recognizers. In USENIX Security.

[14] Suman Jana, Arvind Narayanan, and Vitaly Shmatikov. 2013. A Scanner Darkly:
Protecting User Privacy from Perceptual Applications. In S & P.

[15] Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882 (2014).

[16] Patrick Klinkoff, Engin Kirda, Christopher Kruegel, and Giovanni Vigna. 2007.
Extending. NET security to unmanaged code. International Journal of Information
Security 6, 6 (2007), 417–428.

[17] P Lantz, A Desnos, and K Yang. 2016. DroidBox: Android application sandbox.
https://github.com/pjlantz/droidbox. (2016). [Online; accessed 4-Dec-
2016].

[18] Bin Liu, Bin Liu, Hongxia Jin, and Ramesh Govindan. 2015. Efficient privilege
de-escalation for ad libraries in mobile apps. In Proceedings of the 13th Annual
International Conference on Mobile Systems, Applications, and Services. ACM,
89–103.

[19] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation. In
Acm sigplan notices, Vol. 40. ACM, 190–200.

[20] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. 2016. LibRadar: fast
and accurate detection of third-party libraries in Android apps. In Proceedings
of the 38th International Conference on Software Engineering Companion. ACM,
653–656.

[21] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[22] Annamalai Narayanan, Lihui Chen, and Chee Keong Chan. 2014. AdDetect:
Automated detection of Android ad libraries using semantic analysis. In Intelligent
Sensors, Sensor Networks and Information Processing (ISSNIP), 2014 IEEE Ninth
International Conference on. IEEE, 1–6.

[23] Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. 2013. Why-
per: Towards automating risk assessment of mobile applications. In Presented as
part of the 22nd USENIX Security Symposium (USENIX Security 13). 527–542.

[24] Nisarg Raval, Animesh Srivastava, Ali Razeen, Kiron Lebeck, AshwinMachanava-
jjhala, and Lanodn P. Cox. 2016. What You Mark is What Apps See (MobiSys).

[25] Joseph Siefers, Gang Tan, and Greg Morrisett. 2010. Robusta: Taming the native
beast of the JVM. In Proceedings of the 17th ACM conference on Computer and
communications security. ACM, 201–211.

[26] 2016 Q2 Smartphone OS Market Share. 2016. http://www.idc.com/prodserv/
smartphone-os-market-share.jsp. (2016). [Online; accessed 3-Dec-2016].

[27] Mengtao Sun and Gang Tan. 2014. NativeGuard: Protecting android applications
from third-party native libraries. In Proceedings of the 2014 ACM conference on
Security and privacy in wireless & mobile networks. ACM, 165–176.

[28] A tool for reverse engineering Android apk files. 2016. https://ibotpeaches.
github.io/Apktool/. (2016). [Online; accessed 3-Dec-2016].

[29] Nicolas Viennot, Edward Garcia, and Jason Nieh. 2014. A measurement study of
google play. In ACM SIGMETRICS Performance Evaluation Review, Vol. 42. ACM,
221–233.

[30] Robert Wahbe, Steven Lucco, Thomas E Anderson, and Susan L Graham. 1994.
Efficient software-based fault isolation. InACM SIGOPS Operating Systems Review,
Vol. 27. ACM, 203–216.

[31] HaoyuWang, Yao Guo, Ziang Ma, and Xiangqun Chen. 2015. Wukong: A scalable
and accurate two-phase approach to android app clone detection. In Proceedings
of the 2015 International Symposium on Software Testing and Analysis. ACM,
71–82.

[32] Primal Wijesekera, Arjun Baokar, Ashkan Hosseini, Serge Egelman, David Wag-
ner, and Konstantin Beznosov. 2015. Android permissions remystified: A field
study on contextual integrity. In 24th USENIX Security Symposium (USENIX
Security 15). 499–514.

[33] Zhenlong Yuan, Yongqiang Lu, Zhaoguo Wang, and Yibo Xue. 2014. Droid-
sec: Deep learning in android malware detection. In ACM SIGCOMM Computer
Communication Review, Vol. 44. ACM, 371–372.

[34] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. 2012. Hey, You, Get Off
of My Market: Detecting Malicious Apps in Official and Alternative Android
Markets.. In NDSS, Vol. 25. 50–52.

13

https://techflow.me/2014/03/05/my-project-google-play-store-in-numbers/
https://techflow.me/2014/03/05/my-project-google-play-store-in-numbers/
https://github.com/pjlantz/droidbox
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/

	1 Introduction
	2 Dataset
	2.1 Data Collection Methodology
	2.2 Use of Third-Party Libraries
	2.3 Scope of Measurement Study
	2.4 Systems Aspect of Image Processing

	3 User Study
	3.1 User Awareness of Image Processing
	3.2 User Perception of Visual Privacy

	4 Threat Model
	5 System Overview
	5.1 Design Principles

	6 Implementation
	6.1 Instrumenting the app process
	6.2 Camera Service - Record and Replay
	6.3 Classifying the logs

	7 Evaluation
	7.1 Accuracy of classification
	7.2 Overhead of using Pin
	7.3 Categorized Findings

	8 Future Work
	9 Related Work
	10 Conclusion
	References

