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ABSTRACT

We propose two approaches for speaker adaptation in end-to-end
(E2E) automatic speech recognition systems. One is Kullback-
Leibler divergence (KLD) regularization and the other is multi-task
learning (MTL). Both approaches aim to address the data sparsity
especially output target sparsity issue of speaker adaptation in E2E
systems. The KLD regularization adapts a model by forcing the out-
put distribution from the adapted model to be close to the unadapted
one. The MTL utilizes a jointly trained auxiliary task to improve the
performance of the main task. We investigated our approaches on
E2E connectionist temporal classification (CTC) models with three
different types of output units. Experiments on the Microsoft short
message dictation task demonstrated that MTL outperforms KLD
regularization. In particular, the MTL adaptation obtained 8.8% and
4.0% relative word error rate reductions (WERRs) for supervised
and unsupervised adaptations for the word CTC model, and 9.6%
and 3.8% relative WERRs for the mix-unit CTC model, respectively.

Index Terms— speaker adaptation, end-to-end, CTC, KLD reg-
ularization, multi-task learning

1. INTRODUCTION

End-to-end (E2E) systems are an emerging field in automatic speech
recognition (ASR) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. An E2E sys-
tem directly transduces an input sequence of acoustic features to an
output sequence of tokens; it works effectively since ASR is inher-
ently a sequence-to-sequence task, mapping an input waveform to an
output token sequence. Prominent E2E approaches include: (a) con-
nectionist temporal classification (CTC) [12, 13], (b) attention based
encoder-decoder networks [14, 15, 16, 17], and (c) recurrent neural
network (RNN) transducer [18]. The above approaches have been
successfully applied to large scale ASR tasks [1, 2, 3, 4, 5, 7, 9, 19,
20, 10, 21, 22, 23, 24].

The E2E systems are typically trained on large scale data from
millions of users, and have shown comparable performance with the
state-of-the-art deep network based hybrid systems [3, 7, 9]. Given
the fast development of E2E systems, it is worthwhile to investigate
how to adapt E2E systems to new speakers with limited adaptation
utterances. In this study, we use E2E CTC systems as the platform
to study general speaker adaptation technologies, which should be
able to generalize to other types of E2E systems.

Various approaches have been proposed for speaker adaptation
in hybrid systems. These methods can be classified into three cat-
egories. First approach is inherently fine-tuning. Certain layers
or the whole speaker-independent (SI) model are updated [25, 26].
To avoid overfitting, L2 regularization using weight decay [25] and
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Kullback-Leibler divergence (KLD) regularization [26] were pro-
posed. The second category of approaches is transformation based.
The basic assumption is that there exists a linear transformation that
can convert a SI model to a speaker-dependent (SD) model. This ap-
proach inserts a SD linear transformation layer into the SI model [27,
28, 29, 30, 31, 32, 33, 34]. Third, speaker aware training with i-
vectors [35, 36], speaker code [37], and speaker embedding [38]
were proposed to facilitate the system to normalize the speaker vari-
ations. Besides, a linear least square method is utilized for unsuper-
vised adaptation for deep neural networks (DNNs) [39].

The aforementioned adaptation methods are mainly investigated
in the traditional hybrid systems. Though these methods can be ap-
plied regardless of the underlying SI models, it’s effectiveness for
adapting E2E systems is uncertain. There are three challenges of the
speaker adaptation in E2E CTC systems. First, E2E CTC models
with word targets have been shown to significantly outperform those
with subword or letter units [3, 9]. However the speaker adaptation
of such word CTC systems confronts with severe output target spar-
sity issue because the number of the output units is typically tens
of thousands. Thus most word units do not appear in the limited
adaptation data, and it’s hard to guarantee the adaptation towards
the speakers, instead of overfitting the limited word targets. Sec-
ond, when the acoustic modeling technology evolves from DNNs to
RNNs with long short-term memory (LSTM) units widely used in
both hybrid and E2E systems, the difficulty in improving the adap-
tation performance of LSTMs has increased [40, 41]. For example,
[40] reported only around 4% relative word error rate (WER) reduc-
tion, partially because the recurrent topology of the LSTMs makes
it more effective to capture and normalize long-range speaker char-
acteristics than the DNNs. Moreover, compared to the traditional
DNN and LSTM acoustic models in hybrid systems, the adaptation
of CTC models is expected to mitigate the mismatch in both acoustic
and linguistic conditions, making it more challenging than adapting
hybrid systems.

There have been few efforts in the literature on the adaptation
of the E2E systems. Recently, [42] investigated domain adapta-
tion for CTC models by inserting a linear transformation layer after
the first hidden layer and learning it on 10 hours transcribed adap-
tation data with the standard CTC criterion for adaptation. Given
enough adaptation data, data sparsity is not an issue for such do-
main adaptation. [43] proposed a multi-path adaptation scheme to
improve ASR performance in the attention based encoder-decoder
system and observed that adapting the encoder network is more ef-
fective than adapting other components.

In this work, we address the data sparsity issue by formulating
KLD regularization and multi-task learning (MTL) approaches for
speaker adaptation of E2E CTC models. We apply them on three
E2E CTC models with different output targets: letters, words, and
mix-units [21, 9]. The KLD regularization constrains the SD model
to be close to the SI model, and potentially avoids overfitting to lim-



ited speaker adaptation data. This is especially critical for unsuper-
vised adaptation where we use decoded hypotheses as references.
However, the KLD regularization cannot address the target sparsity
issue in the limited adaptation data when the networks have tens of
thousands of output units. As a solution, we propose MTL adapta-
tion that uses an auxiliary task with fewer output units to improve
the performance of major task with large output units in E2E CTC
models. We jointly optimize the CTC losses of both tasks by adjust-
ing the shared hidden layers on adaptation data. Almost all units in
the auxiliary task can be observed in very limited adaptation data.
Thus the auxiliary task addresses the output sparsity issue and likely
guides adaptation towards target speakers. The rest of the paper is
organized as follows. In Sec. 2, we propose and discuss KLD and
MTL-based speaker adaptations for E2E CTC models. We evaluate
the proposed adaptation techniques in Sec. 3, and present conclu-
sions in Sec. 4.

2. SPEAKER ADAPTATION FOR E2E CTC SYSTEMS

2.1. E2E CTC Models

We use LSTM-RNNs as model architectures and CTC loss as ob-
jective function [12, 13] to optimize the prediction of a transcription
sequence. The ASR output symbols in an utterance are usually fewer
than the input speech frames. Hence CTC paths are used to force the
output to have the same length as the input speech frames by adding
blank as an additional label and allowing repetition of labels. Let us
denote x as the speech input sequence, Θ as the network parameters,
π as the CTC path, l as the original label sequence, and B−1(l) as
all possible CTC paths expanded from l.

The CTC loss function is defined as the sum of negative log
probabilities of correct labels as:

LCTC = − lnPΘ(l|x) = − ln
∑

π∈B−1(l)

PΘ(π|x) (1)

Based on the conditional independence assumption for output units,
P (π|x) can be decomposed to a product of posteriors from each
time step t as below:

PΘ(π|x) =

T∏
t=1

PΘ(πt|xt), (2)

where xt is the input speech frame at time t, πt is the output unit at
time t, and T is the sequence length in frames.

CTC outputs are usually dominated by blank labels. The outputs
corresponding to the non-blank labels usually occur with spikes in
their posteriors. Thus, an easy way to generate ASR outputs us-
ing CTC is to concatenate the non-blank labels corresponding to
the posterior spikes and collapse those labels into word outputs if
needed [3, 12]. This is known as greedy decoding; it is a very attrac-
tive feature for E2E modeling as it doesn’t require language model
(LM) or complex decoding. We too use greedy decoding in this
study.

The output labels of E2E CTC systems can be either letters or
words. As the goal of ASR is to generate a word sequence from the
speech waveform, word units are the most natural output units. As
shown in [3, 9], E2E CTC models with word targets significantly
outperform those with letter units. A big challenge in the word CTC
model, however, is the out-of-vocabulary (OOV) issue since it is in-
feasible to model all words in the network’s output layer. Only the
most frequent words in the training set are used as output targets

whereas remaining words are tagged as OOVs. In [9], a solution was
proposed by decomposing a word sequence with OOVs into a mix-
unit sequence of frequent words and characters. Using mix-units as
output targets not only solves the OOV issue but also improves the
recognition accuracy.

In this paper, we will investigate the speaker adaptation tech-
nologies for E2E CTC models with three types of output units: let-
ters, words, and mix-units. The output target sequences for super-
vised and unsupervised adaptations are ground-truth transcriptions
and decoding hypotheses, respectively. The simplest way of speaker
adaptation is to fine tuning the SI model with speaker adaptation
data using Eq. (1). Compared to letter units, the number of words or
mix-units is orders of magnitude larger. This makes the data sparsity
issue increasingly challenging.

2.2. Kullback-Leibler divergence (KLD) Adaptation

To avoid overfitting, we first propose to regularize the CTC objective
with a KLD metric between the posterior distributions of the adapted
and unadapted models, which constrains the SD model Θs to not
deviate far from that of the SI model Θ. The KLD metric is:

DKL =

T∑
t=1

∑
u∈U

PΘ(πt = u|xt) ln

(
PΘ(πt = u|xt)
PΘs(πt = u|xt)

)
, (3)

where u is an output unit of the CTC model, and U is the corre-
sponding token list of output units. We add the KLD regularization
into Eq. (1) and obtain a regularized objective function:

LKL CTC =(1− α)LCTC + αDKL

=− (1− α) ln
∑

π∈B−1(l)

T∏
t=1

PΘs(πt|xt)

+ α

T∑
t=1

∑
u∈U

PΘ(πt = u|xt) ln

(
PΘ(πt = u|xt)
PΘs(πt = u|xt)

)
,

(4)

where α is the KLD regularization coefficient and its range is [0,1].
α = 0 reduces the objective to the default CTC criterion without
regularization. Because PΘ(πt = u|xt) lnPΘ(πt = u|xt) does not
affect the optimization of the SD model, we rewrite the objective
function as:

LKL CTC =− (1− α) ln
∑

π∈B−1(l)

T∏
t=1

PΘs(πt|xt)

− α
T∑
t=1

∑
u∈U

PΘ(πt = u|xt) lnPΘs(πt = u|xt).

(5)

In this study, we investigate KLD adaptation for CTC models by
updating: 1) all layers (All), 2) all hidden layers with the top softmax
layer fixed (Hidden), and 3) only the top softmax layer (Top).

2.3. Multi-task Learning (MTL) Adaptation

The KLD CTC adaptation prevents the adapted SD model from de-
viating far from the SI model. However, the regularization does not
eliminate the output target sparsity issue when the E2E CTC models
use a large number of words or mix-units as output targets, where



only a very small portion of which can be observed during adapta-
tion. The learning procedure tends to improve the criterion by sim-
ply increasing the probabilities of observed targets and pushing the
probabilities of unseen targets towards zero, which is not optimal.
This issue is exacerbated in unsupervised adaptation, where the tar-
get output sequence may inevitably contain errors.

Inspired by the MTL adaption work in [31] that adapts senone-
based hybrid models with an auxiliary monophone target, we pro-
pose MTL adaptation of CTC models to better address the data spar-
sity issue. In addition to the word (or mix-unit) classification as the
primary task, an auxiliary task is introduced to conduct letter classi-
fication. This yields an MTL network that predicts both words (or
mix-units) and letters with shared hidden layers. The number of let-
ters is typically around 30, and the letter units are usually efficiently
covered in the limited adaptation data. The CTC criterion for the
letter classification task is:

LCTC−l = − ln
∑

φ∈B−1(m)

T∏
t=1

PΘ(φt|xt), (6)

where m is the letter sequence, and B−1(m) denotes all possible
CTC paths expanded from m.

Finally, we create the MTL CTC adaptation criterion as a linear
combination of the CTC losses from word (or mix-unit) and letter
targets:

LMTL CTC =(1− β)LCTC + βLCTC−l

=− (1− β) ln
∑

π∈B−1(l)

T∏
t=1

PΘs(πt|xt)

− β ln
∑

φ∈B−1(m)

T∏
t=1

PΘs(φt|xt), (7)

where β is the weight for the letter CTC model. l in Eq. (7) indicates
either word or mix-unit sequence.

The procedure of the MTL adaptation for word (or mix-unit)
CTC models is as follows:
• Insert a softmax layer with the letter targets on top of the SI

model’s last hidden layer.
• Train the letter softmax layer with all training data to predict

the letters using Eq. (6), keeping the parameters of the origi-
nal E2E CTC model fixed.

• For each speaker, update the shared hidden layers on adapta-
tion data using Eq. (7), keeping both softmax layers fixed.

• During decoding of the adapted speaker model, we just eval-
uate word (or mix-unit) outputs and ignore evaluating letter
outputs.

The interpolation weight β ranges from 0 to 1. When β = 0, we
update the hidden layers with the default word (or mix-unit) based
CTC criterion. When β = 1, the hidden layers are updated with
purely the letter CTC criterion although the model later will be used
to generate word (or mix-unit) output sequences. The difference be-
tween word and mix-unit models for unsupervised MTL adaptation
are the letter targets. For the word model, the letter targets are from
decoding the adaptation data with the letter branch. The decoded re-
sults from the word branch can not be decomposed into letter targets
since it contains OOVs. While for the mix-unit model, considering it
generates more accurate hypotheses than the letter branch and does
not have the OOV issue, the letter targets in MTL are generated by
decomposing the decoding hypotheses of the adaptation data from
the mix-unit branch.

3. EXPERIMENTS AND RESULTS

We evaluate our proposed speaker adaptation methods for the E2E
CTC systems on a Microsoft short message diction (SMD) task.

3.1. Speaker Independent Model Setup

Using around 3400 hours Microsoft US-English Cortana utterances,
we trained three E2E CTC SI models with letters, words, and mix-
units as output targets, respectively. Above SI models are a 6-layer
bi-directional LSTM, with 512 memory units per layer in each di-
rection. We derived 80-dimensional log Mel filterbank energies
at 10-ms intervals and stacked 3 contiguous frames to form 240-
dimensional features for CTC [19]. For the letter CTC model, the
size of output is 30 including 26 English characters [a-z], ’, *, $,
and a blank symbol. $ denotes space which means the boundary of
two words. For the word CTC model, the output contains about 27k
frequent words (occurred at least 10 times in the training data) and
the rest words are mapped to an OOV token. The vocabulary size of
the mix-unit CTC model is about 33k, consisting of both frequent
words and letter ngrams [9]. Units between two $ form one word.
We use greedy decoding by simply selecting non-blank units with
the highest posteriors and collapse them into word sequences.

We have two test sets. One contains 7 speakers with 200 ut-
terances per speaker and a total of 20k words. The other is a 50-
speaker set with 182k words. We first study speaker adaptation
for the E2E CTC models on the 7-speaker dataset for a quick as-
sessment, and then pick the best setup to evaluate the adaptation
performance on the 50-speaker test set. The E2E CTC SI models
with letters, words, and mix-units targets have respectively 28.44%,
17.24%, and 16.76% WERs on the 7-speaker test set, and respec-
tively 23.14%, 13.88%, and 13.63% WERs on the 50-speaker test
set. The performance gap between the 7 and 50-speaker set is due
to a speaker with significantly higher WER in the 7-speaker set. We
evaluate the performance under both supervised and unsupervised
conditions with 10, 50, and 200 utterances per speaker. The adapta-
tion and test sets are separated.

3.2. Speaker Adaptation for CTC with Letter Outputs

For the letter CTC model, we simply apply the KLD adaptation as
it has only 30 output targets and thus does not have the adaptation
target sparsity issue. The results of supervised KLD adaptation with
three parameter updating setups on the 7-speaker test set are in Ta-
ble 1. All three updating setups obtain minor improvements using
the smallest adaptation set with 10 utterances per speaker. For adapt-
ing with 50 and 200 utterances scenarios, both adapting all layers and
all hidden layers improve the baseline letter CTC model and perform
better than adapting only the top softmax layer. Among the three se-
tups, adapting only hidden layers gives the best WER 24.89% and
relative word error rate reduction (WERR) 12.5% with 200 adap-
tation utterances and α = 0.0. We consistently observe the least
improvements from adapting only top layer in the following exper-
iments, thus we do not report any results with such setup to save
space.

We present results of unsupervised KLD adaptation with the
same 7-speaker test dataset in Table 2. The observations for unsu-
pervised scenario are consistent with the supervised case except for
smaller relative WERRs. The best WERR is 2.25% by adapting all
hidden layers on 200 adaptation utterances with α = 0.2.

Based on the best settings of the KLD adaptation on the 7-
speaker dataset, namely tuning hidden layers with α = 0.0 for



Table 1. WERs (%) on the 7-speaker set for supervised KLD regu-
larization adaptation for the letter CTC model.

Adapt. type # of utt. α=0 α=0.2 α=0.5 α=0.8

Baseline - 28.44

10 28.79 28.36 28.18 28.17
All 50 27.47 27.53 27.60 28.03

200 25.15 26.09 26.85 27.65
10 28.32 28.26 28.19 28.20

Hidden 50 27.06 27.50 27.66 28.09
200 24.89 25.99 26.87 27.64
10 29.40 28.63 28.26 28.41

Top 50 29.58 28.51 28.25 28.36
200 28.69 28.11 28.08 28.25

Table 2. WERs (%) on the 7-speaker set for unsupervised KLD
regularization adaptation for the letter CTC model.

Adapt. type # of utt. α=0 α=0.2 α=0.5 α=0.8

Baseline - 28.44

10 28.50 28.29 28.38 28.32
All 50 28.30 28.10 28.20 28.22

200 28.05 27.91 28.06 27.98
10 28.18 28.22 28.38 28.22

Hidden 50 28.01 28.11 28.07 28.24
200 27.83 27.80 28.01 27.99

supervised case and α = 0.2 for the unsupervised case, we eval-
uate the performances on a 50 speaker dataset. We can see from
Table 3 that the supervised adaptation on 200 utterances provides
up to 12.3% relative WERR while the unsupervised adaptation on
the same data obtains at most 1.6%. The results on the 50-speaker
dataset are consistent with those on the 7-speaker dataset and in-
dicate that unsupervised adaptation is more challenging than the
supervised case.

3.3. Speaker Adaptation for CTC with Word Outputs

For the word CTC model, we apply both the KLD and MTL adap-
tations. The WERs of the SI word CTC model are 17.24%, and
13.88% on the 7-speaker and the 50-speaker datasets, respectively.

3.3.1. KLD Adaptation

We show results of supervised KLD adaptation on the 7-speaker
dataset in Fig. 1. The left sub-figure shows results by adapting all
layers. Adapting with 10 utterances per speaker does not show obvi-
ous improvements regardless of values of α. There is a WER regres-
sion without regularization, i. e. α = 0, indicating that adaptation
with only CTC criterion is likely overfitted. For 50 utterances per
speaker scenario, we see a strong relevance for regularization and
obtain the best WER with α = 0.2. Furthermore, with 200 utter-
ances we achieve the best WER (15.87%) with α = 0, consistent
with the result of the letter model. We report very similar observa-
tions when adapting all hidden layers in the right sub-figure in Fig. 1.

We report results of unsupervised KLD adaptation in Table 4.
We obtain decoded hypotheses from the SI word CTC model on
adaptation data, and use them as targets in adaptation. The hypothe-

Table 3. WERs and relative WERR of supervised and unsupervised
KLD adaptation on the 50-speakers set for the letter CTC model.

# of utt. WER (%) relative WERR (%)

Baseline - 23.14 -
10 22.91 1.0

Supervised 50 21.85 5.6
200 20.30 12.3
10 23.14 0.0

Unsupervised 50 23.00 0.6
200 22.77 1.6

10 50 200

16

17

18

19

All

# Adaptation uttereances

W
E

R
 (

%
)

 

 

α=0

α=0.2

α=0.5

α=0.8

10 50 200

16

17

18

19

Hidden

# Adaptation uttereances

W
E

R
 (

%
)

 

 

α=0

α=0.2

α=0.5

α=0.8

Fig. 1. WERs(%) for the supervised KLD adaptation of the word
CTC model on the 7-speaker dataset. The left and right sub-figures
respectively present the results for adapting all network layers and
all hidden layers.

ses inevitably have errors, requiring better regularization to prevent
overfitting towards incorrect targets. Adaptation without regulariza-
tion on 10 utterances regresses. The unsupervised KLD adaptation
shows modest improvements compared with supervised scenario.
The best WER is 16.92%, or 1.9% relative WERR over the baseline
SI word CTC model, by adapting all the layers on 200 utterances
with α = 0.2.

3.3.2. MTL Adaptation

Although KLD adaptation obtains modest improvements, it does not
fully resolve the output target sparsity issue. For example, the av-
erage number of words per utterance is around 15. Even with 200
adaptation utterances, we can only observe 3k word targets, much
smaller than the 27k vocabulary in the word CTC model. This tar-
get sparsity issue can be addressed by the proposed MTL adaptation
with the auxiliary letter branch where the letter targets can be fully
observed in adaptation data.

Table 4. WERs (%) of unsupervised KLD regularization adaptation
for the word CTC model on the 7-speaker set..

Adapt. type # of utt. α=0 α=0.2 α=0.5 α=0.8

Baseline - 17.24

10 17.53 17.38 17.30 17.22
All 50 17.56 17.38 17.31 17.26

200 17.05 16.92 17.09 17.17
10 17.32 17.24 17.21 17.24

Hidden 50 17.29 17.30 17.32 17.28
200 17.04 17.01 17.18 17.19
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Fig. 2. WERs (%) for the MTL adaptation of the word CTC model
on the 7-speaker dataset. The left and right sub-figures present su-
pervised and unsupervised adaptations, respectively.

Table 5. Comparison of WERs (%) for various adaptation schemes
using the word CTC mode on the 7-speaker set.

Adapt. type # of utt. Supervised Unsupervised
KLD MLT KLD MLT

Baseline - 17.24

10 18.04 17.83 17.60 17.99
Scalar 50 17.34 17.06 17.22 17.23

200 16.05 15.94 17.09 16.51
10 17.17 17.08 17.27 17.08

Linear 50 16.52 16.58 17.38 16.88
200 15.99 15.65 17.23 16.19
10 17.18 16.98 17.24 16.96

Hidden 50 17.02 16.26 17.30 16.58
200 15.86 15.38 17.01 16.17

The results of supervised MTL adaptation on the 7-speaker
dataset are in the left sub-figure of Fig. 2, with different interpola-
tion weights β for letter targets. We find that β = 0.8 gives WERs
16.98%, 16.26%, and 15.38% for adaptation sets with 10, 50, and
200 utterances per speaker, respectively. The corresponding relative
WERRs are 1.5%, 5.7%, and 10.8% over the SI model. Above MTL
results outperform those from KLD adaptation in Fig. 1. In general,
we obtain WER improvements with β > 0.

We then investigate unsupervised MTL adaptation for the word
CTC model in the right sub-figure of Fig. 2. Following our de-
scription in Sec. 2.3, we use the decoded hypothesis from the letter
branch as the letter targets. Similar to our findings in supervised set-
tings, β = 0.8 also shows the best WER for unsupervised scenario.
We obtain respectively 16.96%, 16.58%, and 16.17% WERs when
adapting with 10, 50, and 200 utterances, and correspondingly 1.6%,
3.8%, and 6.2% relative WERRs over the SI model. Overall, MTL
adaptation outperforms KLD regularization for both supervised and
unsupervised scenarios. It is also interesting that the β = 1, which
completely relies on the letter targets to improve the word model, ob-
tains similar WER as β = 0.8. This indicates that the auxiliary letter
task helps to adapt the CTC model towards the target speakers and
addresses the output target sparsity issue with better generalization
on unseen data.

3.3.3. Performance with Transformation-Based Adaptation

Another widely-used approach to address the data sparsity issue is
to insert SD linear transformation layers above certain layers of the
SI model and optionally constrain the transformation in a structured

Table 6. WERs and relative WERRs of supervised and unsupervised
MTL adaptations for the word CTC model on the 50-speaker set with
β = 0.8.

# of utt. WER (%) relative WERR (%)

Baseline - 13.88 -
10 13.59 2.1

Supervised 50 13.14 5.3
200 12.66 8.8
10 13.68 1.4

Unsupervised 50 13.44 3.2
200 13.33 4.0

form. Thus, the limited number of free parameters prevents adapta-
tion from overfitting. It is interesting to examine the impact of the
transformation-based adaptation to the proposed conservative adap-
tation criteria. In this section, we evaluate two transformation-based
adaptation schemes. First, we insert a linear layer above the second-
to-last layer to transform the SI model. The linear adaptation re-
duces the SD footprint to around 1M parameters. Second, we apply
element-wise linear transformation to the outputs of all the hidden
layers (denoted as scalar), similar to learning hidden unit contribu-
tion (LHUC) [29] and sigmoid adaptation [30]. The scalar adapta-
tion requires only 12K adaptation parameters. We set α = 0 and
α = 0.2 for supervised and unsupervised KLD adaptation, respec-
tively, and β = 0.8 for both supervised and unsupervised MLT adap-
tation. These settings are also found to produce good results for the
transformation-based adaptation.

The performance of these systems in various scenarios on the
7-speaker set is shown in Table 5. In general, both scalar and lin-
ear adaptations exhibit similar WER patterns to directly adapting the
hidden layers in all of the operating conditions. For supervised adap-
tation, all three adaptation schemes produce significant improve-
ments over the SI model by 7-8% on 200 development utterances
(per speaker), even without regularization. The MTL adaptation fur-
ther improves results by 2-3% relative WER. For unsupervised adap-
tation, the KLD regularization barely improves the results, even for
low footprint adaptation models. This indicates that simply restrict-
ing the amount of model parameters could not alleviate the target
sparsity issue. When the MTL criterion is employed, all three adap-
tation schemes yield 4-6% relative gain over the SI model on 200
development utterances. Both the linear adaptation and direct hid-
den layer adaptation benefit more from the MTL criterion than the
scalar adaptation. In the following experiments, we will report re-
sults by directly updating the model parameters instead of inserting
linear or scalar layers.

Finally we extend our work to a larger 50-speaker dataset. We
apply MTL adaptation with β = 0.8, the best setting for the 7-
speaker dataset for both supervised and unsupervised adaptations.
We list the corresponding results in Table 6. The MTL adaptation
obtains 8.8% and 4.0% relative WERRs for the supervised and un-
supervised scenarios, respectively.

3.4. Speaker Adaptation for CTC with Mix-unit Outputs

We also apply both the KLD and MTL adaptations for the mix-
unit CTC model. The baseline WERs of SI mix-unit CTC model
are 16.76% on the 7-speaker dataset and 13.63% on the 50-speaker
dataset, respectively.



Table 7. WERs (%) for supervised KLD regularization adaptation
for the mix-unit CTC model on the 7-speaker set.

Adapt. type # of utt. α=0 α=0.2 α=0.5 α=0.8

Baseline - 16.76

10 17.48 17.07 16.98 16.91
All 50 17.34 16.90 16.76 16.76

200 16.63 15.73 16.02 16.49
10 16.89 16.80 16.80 16.76

Hidden 50 16.43 16.43 16.59 16.69
200 15.48 15.83 16.15 16.78

Table 8. WERs (%) for unsupervised KLD regularization adaptation
for the mix-unit CTC model on the 7-speaker set.

Adapt. type # of utt. α=0 α=0.2 α=0.5 α=0.8

Baseline - 16.76

10 17.09 16.87 16.80 16.83
All 50 16.99 16.70 16.78 16.84

200 16.51 16.40 16.53 16.83
10 16.71 16.73 16.76 16.83

Hidden 50 16.45 16.60 16.68 16.75
200 16.14 16.24 16.61 16.67

3.4.1. KLD Adaptation

We first evaluate the KLD adaptation for the mix-unit CTC model on
the 7-speaker dataset. The results from the supervised KLD adapta-
tion are in Table 7. Similar to the word CTC model, we observe
consistent WER improvements with increasing number of adapta-
tion utterances per speaker as expected. The best WER (15.48%)
is obtained from adapting all hidden layers with α = 0.0 on 200
utterances per speaker, providing a relative WERR 7.63% over the
baseline SI mix-unit CTC model. We also observe the diminishing
benefit of larger regularization for larger dataset (200 utterances) for
adapting hidden layers.

Table 8 shows the results of unsupervised KLD adaptation for
the mix-unit model. Consistent with the supervised scenario, adapt-
ing hidden layers provides the best WER (16.14%) and the relative
WERR is 3.70% on 200 utterance with α = 0.0. In general, adapt-
ing all hidden layers performs the best.
3.4.2. MTL Adaptation

In Table 9, we report the results of supervised and unsupervised
MTL adaptations for the mix-unit CTC model on the 7-speaker
dataset. For the supervised MTL adaptation, the best WERs are
16.60%, 15.88%, and 14.96% for adapting with 10, 50, 200 utter-
ances, respectively. The corresponding relative WERRs are 0.97%,
5.25%, and 10.75% over the baseline SI model. For the unsupervised
MTL adaptation, we observe best WERs as 16.53%, 15.92%, and
15.63% with 10, 50, 200 adaptation utterances, respectively. The
corresponding relative WERRs are 1.37%, 5.04%, and 6.79% over
the baseline SI model. Both the best relative WERRs for supervised
and unsupervised scenarios by MTL adaptations are larger than the
best WERRs by KLD adaptations. This indicate MTL adaptation is
more effective than KLD adaptation for the mix-unit CTC model.

Finally, we present the results of supervised and unsupervised
MTL adaptations on the 50-speaker dataset in Table 10 by using the
best setting for the 7-speaker dataset: β = 0.5 and β = 0.8 for
supervised and unsupervised MTL adaptations. We obtain the best

Table 9. WERs (%) for supervised and unsupervised MTL adapta-
tions for the mix-unit CTC model on the 7-speaker set.

Adapt. type # of utt. β=1 β=0.8 β=0.5 β=0.2

Baseline - 16.76

10 16.81 16.60 16.67 16.63
Supervised 50 16.17 16.10 15.97 15.88

200 15.08 14.96 15.13 15.28
10 16.62 16.53 16.64 16.61

Unsupervised 50 16.16 16.06 15.94 15.92
200 15.82 15.67 15.63 15.66

Table 10. WERs and relative WERRs of supervised and unsuper-
vised MTL adaptations for a mix-unit CTC model on the 50-speaker
set with β = 0.5 and β = 0.8, respectively.

# of utt. WER (%) relative WERR (%)

Baseline - 13.63 -
10 13.40 1.7

Supervised 50 12.95 5.0
200 12.32 9.6
10 13.54 0.7

Unsupervised 50 13.31 2.3
200 13.11 3.8

relative WERRs as respectively 9.6% and 3.8% for supervised and
unsupervised adaptations over the baseline SI mix-unit CTC model.

4. CONCLUSIONS

In this study, we propose KLD regularization and MTL for speaker
adaptation of three types of E2E CTC models using letters, words,
and mix-units as output targets respectively. The KLD adaptation
constrains the adapted model to be close to the SI model to mitigate
overfitting the adaptation set. To better address the output target
sparsity issue when the CTC models have tens of thousands of output
targets, we developed MTL adaptation which has an auxiliary task
of predicting letter targets that can be fully observed despite limited
adaptation data.

We evaluated the two proposed methods on the Microsoft SMD
task in both supervised and unsupervised settings. Our experiments
demonstrate that the KLD regularization is useful for the three CTC
models. The large number of word and mix-unit CTC outputs, most
of which are unseen in limited speaker adaptation data, adds addi-
tional challenge to adaptation. Including an auxiliary task of pre-
dicting letters in MTL adaptation better addresses the output target
sparsity issue and further improves the adaptation performance. The
MTL adaptation improves the baseline SI word CTC model by up
to 8.8% and 4.0% relative WERRs for supervised and unsupervised
adaptation, and obtains up to 9.6% and 3.8% WERRs over the base-
line SI mix-unit CTC model, respectively. Results show that the
MTL adaptation performs better than KLD adaptation for both word
and mix-unit CTC models. This study presents our first investiga-
tion of speaker adaptation for E2E CTC models. In future work, we
expect to apply the proposed methods to adapt other E2E models,
including the attention based encoder-decoder models and the RNN
transducers.
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[20] Kanishka Rao and Haşim and Prabhavalkar, Rohit Sak, “Ex-
ploring architectures, data and units for streaming end-to-end
speech recognition with RNN-transducer,” in Proc. ASRU,
2017.

[21] J. Li, G. Ye, R. Zhao, J. Droppo, and Y. Gong, “Acoustic-to-
word model without OOV,” in Proc. ASRU, 2017.

[22] A. Das, J. Li, R. Zhao, and Y. Gong, “Advancing connection-
ist temporal classification with attention modeling,” in Proc.
ICASSP, 2018.

[23] Zhehuai Chen, Wei Deng, Tao Xu, and Kai Yu, “Phone syn-
chronous decoding with ctc lattice.,” in Interspeech, 2016, pp.
1923–1927.

[24] Zhehuai Chen, Yimeng Zhuang, and Kai Yu, “Confidence mea-
sures for ctc-based phone synchronous decoding,” in Acous-
tics, Speech and Signal Processing (ICASSP), 2017 IEEE In-
ternational Conference on. IEEE, 2017, pp. 4850–4854.

[25] Hank Liao, “Speaker adaptation of context dependent deep
neural networks,” in Proc. ICASSP, 2013, pp. 7947–7951.

[26] Dong Yu, Kaisheng Yao, Hang Su, Gang Li, and Frank Seide,
“KL-divergence regularized deep neural network adaptation
for improved large vocabulary speech recognition,” in Proc.
ICASSP, 2013, pp. 7893–7897.

[27] F. Seide, G. Li, X. Chen, and D. Yu, “Feature engineering
in context-dependent deep neural networks for conversational
speech transcription,” in Proc. ASRU, 2011, pp. 24–29.

[28] J. Xue, J. Li, D. Yu, M. Seltzer, and Y. Gong, “Singular value
decomposition based low-footprint speaker adaptation and per-
sonalization for deep neural network,” in Proc. ICASSP, 2014,
pp. 6359 – 6363.

[29] Pawel Swietojanski, Jinyu Li, and Steve Renals, “Learn-
ing hidden unit contributions for unsupervised acoustic model
adaptation,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 24, no. 8, pp. 1450–1463, 2016.

[30] Y. Zhao, J. Li, J. Xue, and Y. Gong, “Investigating online
low-footprint speaker adaptation using generalized linear re-
gression and click-through data,” in Proc. ICASSP, 2015, pp.
4310–4314.

[31] Zhen Huang, Jinyu Li, Sabato Marco Siniscalchi, I-Fan Chen,
Ji Wu, and Chin-Hui Lee, “Rapid adaptation for deep neu-
ral networks through multi-task learning.,” in Proc. INTER-
SPEECH, 2015, pp. 3625–3629.

[32] Marc Delcroix, Keisuke Kinoshita, Takaaki Hori, and Tomo-
hiro Nakatani, “Context adaptive deep neural networks for fast
acoustic model adaptation,” in Proc. ICASSP, 2015, pp. 4535–
4539.

[33] Chunyang Wu and Mark JF Gales, “Multi-basis adaptive neu-
ral network for rapid adaptation in speech recognition,” in
Proc. ICASSP, 2015, pp. 4315–4319.

[34] Lahiru Samarakoon, Khe Chai Sim, and Brian Mak, “An in-
vestigation into learning effective speaker subspaces for robust
unsupervised DNN adaptation,” in Proc. ICASSP, 2017.



[35] G. Saon, H. Soltau, D. Nahamoo, and M. Picheny, “Speaker
adaptation of neural network acoustic models using i-vectors,”
in Proc. ASRU, 2013, pp. 55–59.

[36] Yajie Miao, Hao Zhang, and Florian Metze, “Towards speaker
adaptive training of deep neural network acoustic models,” in
Proc. Interspeech, 2014.

[37] O. Abdel-Hamid and H. Jiang, “Fast speaker adaptation of
hybrid NN/HMM model for speech recognition based on dis-
criminative learning of speaker code,” in Proc. ICASSP, 2013,
pp. 7942–7946.

[38] Xiaodong Cui, Vaibhava Goel, and George Saon, “Embedding-
based speaker adaptive training of deep neural networks,”
arXiv preprint arXiv:1710.06937, 2017.

[39] Roger Hsiao, Tim Ng, Stavros Tsakalidis, Long Nguyen, and
Richard Schwartz, “Unsupervised adaptation for deep neural
network using linear least square method,” in Sixteenth An-
nual Conference of the International Speech Communication
Association, 2015.

[40] Y. Miao and F. Metze, “On speaker adaptation of long short-
term memory recurrent neural networks,” in Proc. Interspeech,
2015.

[41] Y. Zhao, J. Li, K. Kumar, and Y. Gong, “Extended low-rank
plus diagonal adaptation for deep and recurrent neural net-
works,” in Proc. ICASSP, 2017.

[42] Seyedmahdad Mirsamadi and John HL Hansen, “On multi-
domain training and adaptation of end-to-end RNN acoustic
models for distant speech recognition,” in Proc. Interspeech,
2017, pp. 404–408.

[43] T Ochiai, S Watanabe, S Katagiri, T Hori, and JR Hershey,
“Speaker adaptation for multichannel end-to-end speech recog-
nition,” 2018.


