
Recognizing F-Formations in the Open World
Hooman Hedayati*

University of Colorado Boulder
hooman.hedayati@colorado.edu

Daniel Szafir
University of Colorado Boulder

daniel.szafir@colorado.edu

Sean Andrist
Microsoft Research, Redmond

sandrist@microsoft.com

Abstract—A key skill for social robots in the wild will be
to understand the structure and dynamics of conversational
groups in order to fluidly participate in them. Social scientists
have long studied the rich complexity underlying such focused
encounters, or F-formations. However, current state-of-the-art
algorithms that robots might use to recognize F-formations are
highly heuristic and quite brittle. In this report, we explore a
data-driven approach to detect F-formations from sets of tracked
human positions and orientations, trained and evaluated on two
openly available human-only datasets and a small human-robot
dataset that we collected. We also discuss the potential for further
computational characterization of F-formations beyond simply
detecting their occurrence.

I. INTRODUCTION

In order for social robots to fluidly participate in sponta-
neous multi-party conversational interactions that may arise in
the open world environment in which they are deployed, they
will need to learn how such conversational groups are formed,
how they are shaped, and how they evolve. Such encounters
were operationalized by Kendon as F-formations and social
scientists have long explored the intricate nuances of their
structure and dynamics [2]. For a robot to comfortably take
part in such groups, it must first be able to detect when they
occur among the humans in its environment and with itself.

Previous approaches to F-formation detection are gener-
ally heuristic, optimization-based algorithms with hand-tuned
parameters [1], [4]. Researchers have shown great promise
in applying such techniques to human-computer and human-
robot interaction, often by jointly reasoning about human head
and body orientations [3], [5]. However, these algorithms are
difficult to generalize and tune across different environments
and population mixtures of humans and robots. In this report,
we seek to address this limitation by exploring an array of
machine learning classification models on an openly available
dataset of human-human labeled F-formations [1]. We also
apply these models to a small amount of acted human-robot
data collected from a deployed system in order to assess feasi-
bility (Figure 1). Finally, we propose ways to computationally
characterize F-formations as a means to make comparisons
across datasets, which we believe will be important for robots
to act appropriately in different social and physical contexts.

II. APPROACH

One of the challenges towards using machine learning
models for detecting F-formations is the lack of labeled data to
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train models. Moreover, the problem of detecting F-formations
directly is not conducive to standard classification techniques
due to their variable size. To address both these issues, this
report suggests inspecting F-formations at the pairwise level
by deconstructing the annotated frames into all possible pairs
of people. Given a scene of n people with measured positions
and orientations, our algorithm involves the following steps:

Dataset Deconstruction: In the first step, the algorithm
deconstructs the n individuals’ data and create n(n − 1)/2
pairwise data points. For every two people in the scene, the
algorithm creates a data point with two new features: Distance
and Effort Angle. Distance is defined as Euclidean distance
between two individuals, which is an intuitive feature because
people tend to have a conversation with others at a comfortable
distance. Effort Angle defines how much body rotation would
be required for the two people to both be pointed directly at
each other. The range is between 0 and 2π: 0 means the two
people are already facing each other, while 2π means they are
facing in opposite directions from each other.

Pairwise Classification: The pairwise data are then used to
train a binary classifier with labels indicating whether the two
people are inside or outside of an f-formation in that frame
(labels of 1 or -1). This binary classification model can then be
applied to new data that has also been deconstructed into pairs
using the previous step. Model predictions on the pairwise data
are used to create a Relation Matrix MR. With n people in the
scene, MR is an n × n symmetric matrix in which for each
two people Pi and Pj , aij and aji are equal to the predicted
label and the diagonal entries are all 1.

Reconstruction: The final step is to reconstruct the pairwise
data into full F-formation sets. Because the classifier will not
be perfect, there might be inconsistencies across the pairwise
predictions. For example, in a frame with three individuals P1,
P2, and P3, the pairwise classifications might indicate that P1-
P2 and P2-P3 are in F-formations, but not P1-P3. To resolve
this problem, we developed a voting algorithm. The high-level
idea is that we accumulate evidence into a larger F-formation
when it involves believing more pairwise evidence than would
be disbelieved were the formations left separated.

Let row i of MR indicate Pi’s belief about their F-formation
status with all others in the scene, which we refer to as Bi.
The voting scheme algorithm finds Bi and Bj which have
the maximum number of elements in their intersection (Bi ∩
Bj). Then Bi ∪ Bj will be the first F-formation detected by
the algorithm, and Bi and Bj are deleted from the rows and
columns associated with Pi and Pj . This process repeats till



there is no B left in the MR. As an example, if B1=P1,P2,P3,
B2 = P1,P2,P3,P4, and B3=P1,P2,P3, it is more likely that
B3 is incorrect rather than both B1 and B2, i.e., it is more
likely that the classifier made one mistake rather than two.

III. EVALUATION

To evaluate our proposed approach, we first trained a set
of ML classification models on the SALSA dataset [1]. We
randomly divided into train and test sets of 80% and 20%
respectively. SALSA was chosen from the set of currently
openly available datasets because it has a relatively large
amount of annotated frames and includes large scenes of peo-
ple (18 per frame). We report the pairwise training accuracy
with 5-fold cross-validation for three ML models: Weighted
KNN, Bagged Trees, and Logistic Regression (Table I).

After reconstructing the pairwise results into F-formations
on both the train and test sets, we compared to a majority
class baseline and our implementation of the existing state-
of-the-art algorithm, Graph-Cuts [4]. We used parameters of
mdl = 30000 and stride = 0.7 for the latter as provided
in the open-source code. Precision, recall, and F1 scores for
the resulting F-formation results are shown in Table I with
parameter T = 2/3 as described by Setti et al. [4] (F-
formations with 2/3 match to ground truth are counted as
correct). All three models perform better than Graph-Cuts
on this dataset, although parameter tuning per dataset could
potentially increase Graph-Cuts’ performance. Bagged trees
perform the best on the test set, although logistic regression
exhibits the least amount of overfitting.

We also applied our models to a small amount of data
collected by acting out a few different spatial configurations
on an existing in-the-wild robot system (see Figure 1) and
found that they hold promise for recognizing when there
is no active F-formation (e.g., people just walking past), F-
formations involving only humans (e.g., two people chatting
away from the robot), and F-formations involving the robot
(e.g., two people intending to interact with the robot).

IV. DISCUSSION & FUTURE WORK

This evaluation indicates great promise in accuracy and
generalizability for our data-driven approach to detecting F-
formations. But beyond simply detecting them as they occur,
we also propose that robots will need access to a finer-grained
characterization of F-formations in order to fully understand
and participate. We introduce Tightness and Symmetry as
two such characterizations. Tightness is the average distance
between participants and the F-formation’s center. Symmetry
is the difference in average angular difference between people
in the F-formation to what would be a completely symmetric
configuration. Large values might indicate that there is an
obstacle or situational attractor in the scene, e.g. a table or a
poster. We are currently exploring how these measures signifi-
cantly differ across group sizes and in different environments.

Going forward, we first plan to train and test models on
larger datasets. We will then integrate these models into a
larger pipeline including more sophisticated techniques for

Fig. 1. Top: The robot set up, Middle: 3D visualization of human poses
perceived by the robot using Kinect, Bottom: Visualization of classified F-
formations indicated by actors sharing the same color.

tracking human poses in 3D, incorporating uncertainty and
active sensing into the reasoning. We will explore a richer
set of features such as velocity, head orientation, eye gaze,
dialog context, social status, historical features, etc., alongside
more sophisticated temporal and online modeling techniques,
such as the tightness and symmetry features described above.
Through this work, we hope to imbue robots with new methods
to reason about complex social dynamics to improve the
fluidity and naturalness of human-robot interactions.

TABLE I
RESULTS ON TRAIN/TEST SPLIT OF SALSA DATASET COMPARED WITH

BASELINE AND AN EXISTING STATE-OF-THE-ART ALGORITHM

Pairwise
Accuracy

Precision
(Train/Test)

Recall
(Train/Test)

F1
(Train/Test)

Majority Baseline 85.3 100/100 0/0 0/0
Graph-Cuts N/A 66.2/63.8 64.2/64.2 65.2/64.2
Weighted KNN 92.1 86.5/78.1 99.9/82.7 92.7/80.3
Bagged Tree 93.3 86.3/78.3 99.4/84.3 92.4/81.2
Logistic Regression 92.2 73.9/71.3 78.9/78.6 76.3/74.8
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