
Dynamic Resource Allocation in the Cloud

with Near-Optimal Efficiency

Sebastian Perez-Salazar∗ Ishai Menache† Mohit Singh‡ Alejandro Toriello§

August 15, 2019

Abstract

Cloud computing has motivated renewed interest in resource allocation problems with new
consumption models. A common goal is to share a resource, such as CPU or I/O bandwidth,
among distinct users with different demand patterns as well as different quality of service re-
quirements. To ensure these service requirements, cloud offerings often come with a service
level agreement (SLA) between the provider and the users. An SLA specifies the amount of a
resource a user is entitled to utilize. In many cloud settings, providers would like to operate
resources at high utilization while simultaneously respecting individual SLAs. There is typically
a tradeoff between these two objectives; for example, utilization can be increased by shifting
away resources from idle users to “scavenger” workload, but with the risk of the former then
becoming active again. We study this fundamental tradeoff by formulating a resource alloca-
tion model that captures basic properties of cloud computing systems, including SLAs, highly
limited feedback about the state of the system, and variable and unpredictable input sequences.
Our main result is a simple and practical algorithm that achieves near-optimal performance on
the above two objectives. First, we guarantee nearly optimal utilization of the resource even
if compared to the omniscient offline dynamic optimum. Second, we simultaneously satisfy all
individual SLAs up to a small error. The main algorithmic tool is a multiplicative weight update
algorithm, and a duality argument to obtain its guarantees. Experiments on both synthetic and
real production traces demonstrate the merits of our algorithm in practical settings.
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1 Introduction

Cloud computing has motivated renewed interest in resource allocation, manifested in new con-

sumption models (e.g., AWS spot pricing), as well as the design of resource-sharing platforms

[1, 2]. These platforms need to support a heterogenous set of users, also called tenants, that share

the same physical computing resource, e.g., CPU, memory, I/O bandwidth. Providers such as

Amazon, Microsoft and Google offer cloud services with the goal of benefiting from economies of

scale. However, the inefficient use of resources – over-provisioning on the one hand or congestion on

the other – could result in a low return on investment or in loss of customer goodwill, respectively.

Hence, resource allocation algorithms are key for efficiently utilizing cloud resources.

To ensure quality of service, cloud offerings often come with a service level agreement (SLA) between

the provider and the users. An SLA specifies the amount of resource the user is entitled to consume.

Perhaps the most common example is renting a virtual machine (VM) that guarantees an explicit

amount of CPU, memory, etc. Naturally, VMs that guarantee more resources are more expensive.

In this context, a simple allocation policy is to assign each user the resources specified by their

SLAs. However, such an allocation can be wasteful, as users may not need the resource at all

times. In principle, a dynamic allocation of resources can increase the total efficiency of the system.

However, allocating resources dynamically without carefully accounting for SLAs can lead to user

dissatisfaction.

Recent scheduling proposals address these challenges through work-maximizing yet fair schedulers

[3, 4]. However, such schedulers do not have explicit SLA guarantees. On the other hand, other

works focus on enforcing SLAs [5–7], but do not explicitly optimize the use of extra resources.

Our goal in this work is to understand the fundamental tradeoff between high utilization of resources

and SLA satisfaction of individual users. In particular, we design algorithms that guarantee both

near optimal utilization as well as the satisfaction of individual SLAs, simultaneously. To that end,

we formulate a basic model for online dynamic resource allocation. We focus on a single divisible

resource, such as CPU or I/O bandwidth, that has to be shared among multiple users. Each user

also has an SLA that specifies the fraction of the resource it expects to obtain. The actual demand

of the user is in general time-varying, and may exceed the fraction specified in the SLA. As in

2



many real systems, the demand is not known in advance, but rather arrives in an online manner.

Arriving demand is either processed or queued up, depending on the resource availability. In many

real-world scenarios, it is difficult to measure the actual demand size (see, e.g., [8]). Accordingly,

we assume that the system (and the underlying algorithm) receives only a simple binary feedback

per user at any given time: whether the user queue is empty (the user’s work arriving so far has

been completed), or not. This is a plausible assumption in many systems, because one can observe

workload activity, yet anticipating how much of the resource a job will require is more difficult.

Additionally, it also models settings where demands are not known in advance.

While online dynamic resource allocation problems have been studied in different contexts and

communities (see Section 1.3 for an overview), our work aims to address the novel aspects arising

in the cloud computing paradigm, particularly the presence of SLAs, the highly limited feedback

about the state of the system, and a desired robustness over arbitrary input sequences. For the

algorithm design itself, we pay close attention to practicality; our approach involves fairly simple

computations that can be implemented with minimal overhead of space or time. Our algorithm

achieves nearly optimal utilization of the resource, as well as approximately satisfying the SLA of

each individual user. We see two main use-cases for the algorithm:

• In enterprise settings (“private cloud”), different applications or organizations share the same

infrastructure. These often have SLAs, but providers would still like to maximize the ROI by

maximizing utilization [9].

• In public clouds, users buy VMs, which are offered at different “sizes” (which is practically

the SLA). In addition, the service providers offer “best-effort” alternatives, such as Azure

Batch (MS) or Spot instances (AWS). In our model, these services can be modeled by giving

an SLA of zero. Here, not only satisfying the SLA for the VMs is important but achieving

high utilization is also important. Indeed, the provider is paid for the latter workloads only if

work is done for these services. Our work can be viewed as a principled way to accommodate

such services, and even give VMs better service than expected, an important consideration

as public cloud offerings gradually become commoditized.
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1.1 The Model

We consider the problem of having multiple tenants or users sharing a single resource, such as

CPU, I/O or networking bandwidth. For simplicity, we assume that the total resource capacity is

normalized to 1. We have N users sharing the resource, a finite but possibly unknown discrete time

horizon indexed t = 1, . . . , T , and an underlying queuing system. For each user i, we are also given

an expected share of resource β(i) ≥ 0 satisfying
∑N

i=1 β(i) ≤ 1. The input is an online sequence

of workloads L1, . . . , LT ∈ RN
+ , where Lt(i) ≥ 0 corresponds to i’s workload arising at time t. The

system maintains a queue Qt(i), denoting i’s remaining work at time t. In our model, the decision

maker does not have direct access to the values of the queues or the workloads. This allows us to

consider settings where the job sizes are not known in advance and minimal information is available

about the underlying system, a regular occurrence in many cloud settings. At time t, the following

happens:

1. Feedback: The decision maker observes which queues are non-empty (the set of users i with

Qt(i) > 0, the active users), and which are empty (Qt(i) = 0, the inactive users).

2. Decision: The decision maker updates user resource allocations ht(i), satisfying
∑

i ht(i) ≤ 1.

3. Update: The load Lt(i) for each i arrives and each user processes as much of the work from

the queue plus the arriving workload as possible. The work completed by user i in step t is

wt(i) := min{ht(i), Lt(i) +Qt(i)}.

The queues at the end of the time step are updated accordingly,

Qt+1(i) = max{0, Lt(i) +Qt(i)− ht(i)}.

We assess the performance of any algorithm based on two measures.

1. Work Maximization. The algorithm should maximize the total work completed over all

users, and thus utilize the resource as much as possible.
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2. SLA Satisfaction. The algorithm should (approximately) satisfy the SLAs in the following

manner. The work completed by user i up to any time 1 ≤ t ≤ T should be no less than the

work completed for this user up to t if it were given a constant fraction β(i) of the resource

over the whole horizon.

Achieving either of the criteria on their own is straightforward. A greedy strategy that takes away

resources from an idle user and gives them to any user whose queue is non-empty is approximately

work-maximizing (see Appendix C for details). On the other hand, to satisfy the SLAs, we give

each user a static assignment of ht(i) := β(i) for all t. Naturally, the two criteria compete with

each other; the following examples illustrate why these simple algorithms do not satisfy both

simultaneously.

Figure 1: Example of loads and work for 3 users. The blue dashed lines show each user’s workload.
The green areas represent the work done by the users. The red dashed lines depict SLAs.

Example 1.1 We have a shared system with three users and corresponding SLAs β(1) = 0.5, β(2) =

0.2 and β(3) = 0.3. Loads are defined by

Lt(1) =


1 t = 1, . . . , T/3, 2T/3 + 1, . . . , T

0 t = T/3 + 1, . . . , 2T/3

, and Lt(2) = Lt(3) = 1− Lt(1).

We assume that T is divisible by 3. In Figure 1 we show the three users’ loads in blue dashed

lines and the corresponding SLAs in dotted red lines. The static solution given by the SLAs, i.e.

ht(i) = β(i) for all t, ensures a total of 5T/6 work done. However, the dynamic policy shown in

the green line, given by
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t [0, T/3] [T/3 + 1, 2T/3] [2T/3 + 1, T ]

ht(1) 1 0 0.5

ht(2) 0 0.4 0.2

ht(3) 0 0.6 0.3

ensures T work is done (the green area). Moreover, it also ensures SLA satisfaction at all times.

An alternative policy is

t [0, T/3] [T/3 + 1, 2T/3] [2T/3 + 1, T ]

ht(1) 1 0 0

ht(2) 0 1 0

ht(3) 0 0 1

which is also work maximizing. However, it does not ensure SLA satisfaction. Indeed, this policy

does not satisfy user 3’s SLA at any time in (T/3, 2T/3].

1.2 Our Results and Contributions

We design a simple and efficient online algorithm that achieves approximate work maximization

as well as approximate SLA satisfaction even in the limited feedback model that we consider. For

work maximization, we analyze the performance by comparing our algorithm to the optimal offline

dynamic allocation that knows all the data up front. In contrast, our online algorithm receives

limited feedback even in an online setting. Thus, our aim is to minimize the quantity

workh∗1,...,h
∗
T
−workalg =

T∑
t=1

∑
i

w∗t (i)−
T∑
t=1

∑
i

wt(i),

where workh∗1,...,h
∗
T

is the optimal offline work done by dynamic allocations h∗1, . . . ,h
∗
T , w∗t =

(w∗t (1), . . . , w∗t (N)) is the work done at time t by these allocations, and workalg is the work done

by the algorithm with allocations h1, . . . ,hT and work wt = (wt(1), . . . , wt(N)) at time t. The

objective of the decision maker is to minimize this quantity by constructing a sequence of good

allocations that approach the best allocations in hindsight. Note that our benchmark is dynamic,

rather than the more common static offline optimum usually considered in regret minimization

[10–12]. Similarly, for SLA satisfaction, our benchmark is the total work done for a user if they
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were given β(i) resources for each time 1 ≤ t ≤ T . We give a bi-criteria online algorithm that

achieves nearly the same performance as the benchmarks if the resources for the latter are slightly

more constrained than that of the algorithm. Algorithm 1, which we formally describe in Section

2, follows a multiplicative weight approach. The idea is to boost the allocations of active users

by a factor greater than 1, with more emphasis on users with current allocation below their SLA.

This intuition translates into a simple update that ensures high utilization of the resource and SLA

satisfaction; formally:

Theorem 1 For any 0 < ε ≤ 1
10 , SLAs β = (β(1), . . . , β(N)) satisfying β(i) ≥ 2 ε

N , and online

loads L1, . . . , LT ∈ RN
≥0, Algorithm 1 achieves the following guarantees:

1. Approximate Work Maximization. Let h∗1, . . . ,h
∗
T ∈ [0, 1]N be the optimal offline se-

quence of allocations such that
∑

i h
∗
t (i) = 1 for all 1 ≤ t ≤ T . Then

workalg ≥ (1− ε) workh∗1,...,h
∗
T
−O

(
Nε−2 log(N/ε)

)
.

2. Approximate SLA Satisfaction. There exists s̃ = s̃(N, ε, β) = O
(
N2ε−3 log(N/ε)

)
such

that for any user i and time t, if we take h′1, . . . ,h
′
T ∈ [0, 1]N to be any sequence of allocations

with h′t(i) ≤ β(i), then
t∑

τ=1

wτ (i) ≥ (1− 2ε)
t∑

τ=1

w′τ (i)− β(i)s̃,

where w′t is the work performed by the allocations h′1, . . . ,h
′
T .

The first part of Theorem 1 asserts that if T is known for the system, then we can achieve

workoffline−workalg ≤ O(T 2/3 log T ) with ε = Θ
(

1
T 1/3

)
. Yet this choice of ε is suboptimal for

SLA satisfaction. We can achieve an improved bound for SLA satisfaction (when t = T ) by pick-

ing ε = Θ
(

1
T 1/4

)
. If T is unknown, we can use a standard doubling trick, see for example [12].

Summarizing, we obtain the following result.

Corollary 1 For ε = Θ
(

1
T 1/4

)
, Algorithm 1 guarantees

workh∗1,...,h
∗
T
−workalg ≤ O(T 3/4),
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where h∗1, . . . ,h
∗
T are the optimal offline dynamic allocations.

As a consequence of Corollary 1 we obtain that, as T grows, the rate of work done by our algorithm

workalg

T approaches the rate of work done by the optimal dynamic solution
workh∗1,...,h

∗
T

T . We emphasize

again that this is a stronger guarantee using the much powerful optimal dynamic solution as a

benchmark rather than the typical static allocation used in regret analysis of online algorithms.

Such a stronger guarantee can be obtained in our model because the incomplete work remains

stored in the queues until we are able to finish it. This allows the algorithm to catch up with the

incomplete work. In Theorem 2, we give a general lower bound showing our result is nearly optimal.

The second result in Theorem 1 states that the work done by any individual user will be comparable

to the work done by their promised SLA. Rephrased, this says that the delay or latency, measured as

queue length, will not be much larger than the delay when the user receives their SLA continuously.

By using ε = Θ
(

1
T 1/4

)
we obtain the following result.

Corollary 2 For a user i, QT (i) ≤ Q′T (i) + O(T 1/2 log T ), where Qt is the queue given by Algo-

rithm 1 and Q′t is the queue induced by any dynamic policy h′1, . . . ,h
′
T with h′t(i) ≤ β(i).

Corollary 1’s guarantee is near-optimal in terms of work maximization, as the following result

shows. The proof of this result appears in Appendix D.

Theorem 2 For any online deterministic algorithm A for our model, there is a sequence of on-

line loads L1, . . . , LT such that workh∗1,...,h
∗
T
−workA = Ω

(√
T
)

, where h∗1, . . . ,h
∗
T are the optimal

offline dynamic allocations.

Our algorithm follows a mirror descent approach [11, 13]. Unable to see the lengths of the queues,

a (naive) approach is to pretend that active users have gigantic queues. From this approach we

extract a simple update rule that multiplicatively boosts active users; however, active users who

are under their SLA are boosted slightly more than other active users. If inactive users are assigned

more than ε of the resource, where ε is an algorithm parameter, active users ramp up their allocation

in few iterations. In the opposite case, at least 1− ε of the resource is assigned to active users, and

the slight boost to users below their SLA ensures a healthy re-balancing of the resource. We show

that this efficient heuristic strategy is enough to achieve approximate work maximization and SLA
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satisfaction. We remark that the mirror descent interpretation is only used to provide intuition for

the algorithm, and our proofs follow a different path than the usual mirror descent analysis. Later,

we detail a slight modification that enjoys the same theoretical guarantees as Algorithm 1 but in

practice exhibits more desirable behavior (see Algorithm 2). Intuitively, among active users, the

modified algorithm tries to keep allocations proportional to their SLAs. This behavior is appealing;

for example, a user A with twice the SLA of another user B would expect in practice to perform

at least twice as much work. Similarly, user B would expect to receive no less than half of user A’s

allocation.

The analysis of the algorithm relies on a primal-dual fitting approach. For work maximization,

we can write the offline dynamic optimal allocation as a solution to a linear program and then

construct feasible dual solutions with objective value close to the algorithm’s resource utilization.

A crucial ingredient of the algorithm is the use of entropic projection on the truncated simplex,

which ensures every user gets at least a fraction ε/N of the resource at all times. Intuitively, this

means any user with a non-empty queue will recover their SLA requirement in a few steps.

We do an extensive analysis of our algorithm on synthetic data as well as real data obtained from

CPU traces of a production service in Microsoft’s cloud. We aim to quantify the performance

of the algorithm on three objectives, (i) work maximization, (ii) SLA guarantee and (iii) queue

behaviour. While our theoretical results give guarantees for these objectives, we show experimen-

tally that the algorithm exceeds these guarantees. We benchmark the algorithm against natural

online algorithms, such as a static allocation as given by the SLA guarantee, or the algorithm

that aims to proportionally distribute the resource among active clients (according to their SLA).

We also benchmark against offline algorithms that know all input data up front; our algorithm’s

performance on various measures is comparable to the offline algorithms.

This work is organized as follows. In Section 2, we present the preliminaries and the basic version

of the multiplicative weight algorithm. Section 3 contains the proof of Theorem 1 in the bi-criteria

form. We split the proof into two parts: work maximization in Section 3.2 and SLA satisfaction

in Section 3.3. In subsection 3.4, we present the extension of our algorithm and its guarantees.

Finally, in Section 4 we present numerical experiments that empirically validate our results, and

conclude in Section 5.
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1.3 Related Work

There has been significant work in resource allocation problems arising from cloud computing

applications, both from a practical as well as a theoretical standpoint [1, 2, 5–9, 14, 15]. A focus

of many of these works has been to understand the trade-offs between efficiency and ensuring

guarantees to individual users. Also, a large literature has been dedicated to stochastic arrival

with unknown but random demands [16–18]. More broadly, online resource allocation is a classical

problem and has been studied for networking in adversarial as well as stochastic settings; we refer

the reader to the books [19–21] on the topic.

Our work differs from the aforementioned lines of work by combining the three following elements

already in the literature. First, we digress from the stochastic arrival model to a more adversarial

scenario and we do a worst-case analysis. This makes our algorithm robust against unpredictable

users’ demands. For instance, demands in the morning could be totally different from demands in

the afternoon or the morning of the next day. We are able to provide a single strategy that adapts

easily to any scenario. Second, and in addition to the previous point, we provide simple online

algorithms that perform well even under limited feedback, a typical situation in cloud systems in

which we can only read afterwards the utilization of a resource. Finally, we consider SLA satisfaction

as a measure of user contentment and we seek to satisfy it up to a small error.

There is now an extensive literature devoted to the pricing of cloud computing services. In [22] the

authors study a genetic model for generating a suitable pricing function in the cloud market. In [23],

pricing is studied via a revenue management formulation to address resource provisioning decisions.

See also [24, 25] for more pricing models. A closely related topic is fairness in resource allocation

[3, 4]. Although we do not directly consider pricing, work maximization could be interpreted as a

way to obtain extra revenue by allocating unused resources to active users.

More recently, there has been work considering over-commitment in the cloud [26–28], that is,

selling resources beyond server capacity. One of the objectives of over-commitment is to reduce

the number of servers opened in order to minimize energy consumption. In our work, we do not

assume over-commitment, yet our algorithm can still be applied to this setting (see Algorithm 2).

Besides work maximization, no other strong guarantees can be ensured under this regime.
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A fundamental tool in our design is mirror descent algorithms [13]. These first-order iterative

algorithms have been widely used in optimization [13], online optimization and machine learning

[11, 12, 29] to generate update policies under limited feedback. Similarly, multiplicative weights

algorithms have been widely studied in optimization [10, 30], online convex optimization [11], online

competitive analysis [31] and learning theory [12, 32]. Our results bear some resemblance to regret

analysis [11, 33], where the benchmark is the optimal offline static policy.

2 Algorithm

2.1 Preliminaries

For N ≥ 1, we identify the set of users with the set [N ] = {1, . . . , N}. For 0 < ε < 1, we call an

allocation h = (h(1), . . . , h(N)) ∈ [0, 1]N a (1 − ε)-allocation if
∑

i h(i) ≤ 1 − ε. In what follows,

we will assume that N ≥ 2, that is, the system consists of at least two users.

For any t, we define the set of active users at that time as the set of users with non-empty queue,

and denote this set by At. Observe that ht(i) = wt(i) for all active users. Let Bt = [N ] \ At be

the sets of users with empty queues at time t; we call these users inactive. At and Bt correspond

to the feedback given to the decision maker. Also, let A1
t = {i ∈ At : ht(i) < β(i)} be the set of

active users with allocation below their SLA and A2
t = At \ A1

t be the set of active users receiving

at least their SLAs.

We assume without loss of generality that the allocations set by the decision maker always add up

to 1. We propose an algorithm that uses a multiplicative weight strategy to boost a subset of users

by multiplying their allocation by factor greater than one. Because the allocations do not sum

to one after applying the update, we then project them onto the simplex using the KL-divergence

metric. Furthermore, to ensure no user gets an allocation arbitrarily close to zero, we in fact project

onto the truncated simplex,

∆ε = {x = (x(1), . . . , x(N)) : ‖x‖1 = 1, x(i) ≥ ε/N,∀i}.

To fix notation, let π∆ε(·) be the projection function onto ∆ε using Kullback–Leibler divergence
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(KL-divergence for short), i.e., π∆ε(y) := argminx∈∆ε

∑
i x(i) log(x(i)/y(i)), where y = (y(1), . . . , y(N)) ∈

RN
≥0. In Appendix A, we show how to efficiently compute this projection. The following proposition

states some basic facts that are useful in our analysis. The proof appears in Appendix A.

Proposition 1 Let y ∈ RN
+ , x = π∆ε(y), and S = {i : x(i) = ε

N }. Then:

(a) If y(1) ≤ y(2) ≤ · · · ≤ y(N), then S = {1, . . . , k} for some k ≥ 0.

(b) x(i) = y(i)eµiC, where C =
(

1− ε
N
|S|∑

j 6∈S y(j)

)
, µi ≥ 0 for all i and µi = 0 for i /∈ S.

(c) x can be computed in O(N logN) time.

2.2 The Multiplicative Weight Algorithm

We propose an algorithm that follows a multiplicative weight strategy (see Algorithm 1). We

describe here the basic approach given by the mirror descent algorithm. In Section 3.4 we present

an extension of the algorithm that in practice shows a better relation between the allocations and

the ratios between the SLAs.

Algorithm 1: Multiplicative Weight Update Algorithm

Input: Parameters 0 < ε ≤ 1
10 , 0 < η < 1

3 .

1 Initialization: h1 any allocation over ∆ε and λ = ε2

8N .

2 for t = 1, . . . , T do

3 Set allocation ht.

4 Read active and inactive users At and Bt. A
1
t = {i ∈ At : ht(i) < β(i)}, A2

t = At \A1
t .

5 Set gain function gt(i) =


1 + λ i ∈ A1

t

1 i ∈ A2
t

0 i ∈ Bt

.

6 Update allocation:

ĥt+1(i) = ht(i)e
ηgt(i).

ht+1 = π∆ε(ĥt+1).
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Intuitively, the algorithm boosts active users at the expense of inactive ones, and boosts users

slightly more if they are currently under their SLA. The algorithm update rule comes from a

mirror descent approach applied to a Lagrangian relaxation of a work-maximization linear function

at time t. More formally, under the assumption that active users have a huge queue, we aim to

maximize the objective
∑

i∈At
wt(i) subject to wt(i) ≥ β(i) for i ∈ At. The update rule is obtained

after applying a mirror descent with a KL-divergence distance generating function over the simplex

to the Lagrangian relaxation of the previous problem (see [13, 34]). We restrict the projection to

the truncated simplex so no user gets an allocation too close to 0. We use this update rule solely

to guide the algorithm’s decisions; however, the proof of work maximization and SLA satisfaction

do not follow from the standard analysis of mirror descent.

3 Analysis

To give the analysis of the algorithm and prove Theorem 1, we prove the following stronger guar-

antees about Algorithm 1. We compare its performance to the optimal offline dynamic strategy

that uses at most 1− 4ε fraction of the resources at each time step.

Theorem 3 Given loads L1, . . . , LT , for any ε > 0 and η > 0 such that ε ≤ 1/10, Algorithm 1

guarantees

workh∗1,...,h
∗
T
−workalg ≤ 8

N

ε2η
ln(N/ε),

where h∗1, . . . ,h
∗
T is the optimal offline sequence of (1− 4ε)-allocations.

The first guarantee of Theorem 1 regarding work maximization now follows simply from Theorem 3.

Given any offline dynamic policy h1, . . . ,hT such that
∑

i ht(i) = 1, we define h̄t := (1−ε)ht which

satisfies the assumption of Theorem 3. Now we have

workalg ≥ workh̄1,...,h̄T
−8

N

(ε/4)2η
ln(4N/ε)

≥ (1− ε) · workh1,...,hT
−2000

N

ε2η
ln(N/ε),

where the first inequality follows from Theorem 3 and the second inequality follows since the work
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(Pε) max

N∑
i=1

T∑
t=1

wt(i) (Dε) min

N∑
i=1

T∑
t=1

Lt(i)γt(i) + (1− ε)
T∑

t=1

βt

s.t.

∀t, i ∑t
s=1 ws(i) ≤

∑t
s=1 Ls(i) (1)

∀t ∑N
i=1 wt(i) ≤ 1− ε (2)

∀t wt ≥ 0 (3)

s.t.

∀t, i γt(i) + βt ≥ 1 (4)

∀t γt ≥ γt+1 (5)

∀t βt, γt ≥ 0 (6)

Figure 2: The primal and dual LP formulation for the maximum work problem.

done by the dynamic policy h1, . . . ,hT , say w1, . . . ,wT , induces a feasible work w1, . . . ,wT under

the dynamic policy h1, . . . ,hT . However, the real work done by policy h1, . . . ,h1 is at least the

work done by w1, . . . ,wT , which is (1− ε) workh1,...,hT
.

Similarly, for SLA satisfaction, we prove a stronger bi-criteria result that implies the SLA guarantee

in Theorem 1.

Theorem 4 Let 0 < ε ≤ 1/10 and 0 < η ≤ 1/3. Take any SLAs β(1), . . . , β(N) such that

β(i) ≥ 2 ε
N and let s̃ = 32N

2

ε3η
ln(N/ε). Then, for any user i and time t, if we take h′1, . . . ,h

′
T to be

allocations such that h′t(i) = (1− 2ε)β(i), the work done by Algorithm 1 for user i satisfies

t+s̃∑
τ=1

wτ (i) ≥
t∑

τ=1

w′τ (i),

where w′t is the work done by the allocations h′1, . . . ,h
′
T . Moreover,

∑t
τ=1wτ (i) ≥ ∑t

τ=1w
′
τ (i) −

β(i)s̃.

3.1 The Offline Formulation

Before presenting the proof of Theorem 3, we state the offline LP formulation of the maximum

work problem for (1−ε)-allocations. We denote by wt = (wt(1), . . . , wt(N)) the work done for each

user at time t. Given loads L1, . . . , LT , the offline formulation and its dual LP are given in Figure

2. As written, the dual LP includes a change of variable; see Appendix B for details. Constraints

(1) state that the work done by the allocation for any user cannot be greater than the loads at all

time. Constraints (2) limit the work performed at time t to at most 1− ε of the resource. The LP
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(Dε) will be of special importance in the analysis. Using our algorithm, we will construct a dual

feasible solution.

Observe that (Pε) is feasible and bounded since the feasible region is a non-empty polytope. Let

vPε be the optimal value of (Pε). The following proposition gives a simple characterization of vPε ;

the proof appears in Appendix B. One way to prove this result is using the Max-Flow/Min-Cut

theorem (see [35]) over a time-indexed network.

Proposition 2 vPε = min0≤t≤T
(∑t

s=1

∑
i Ls(i) + (1− ε)(T − t)

)
.

3.2 Work Maximization

In this section we prove Theorem 3. Our first Lemma characterizes the implications of the update

rule. The proof follows from a careful analysis of the dynamics using the KL-divergence and appears

in Appendix B.

The first result of the lemma shows the behavior of active users’ allocations when the system is

under-utilized (≤ 1 − ε). In this case, all the active users receive a multiplicative boost in their

allocation. The second result shows a more general behavior (see also Lemma 2). In this case, active

users with allocation below their SLA do not decrease their allocations while the other active users

might decrease their allocation, but in this case, the multiplicative penalization will be less severe.

Lemma 1 Let c = εη
4N . Then Algorithm 1 satisfies the following:

1. Suppose
∑

i∈At
ht(i) ≤ 1− ε. If i ∈ At, then ht+1(i) ≥ ht(i)(1 + c).

2. In general, Algorithm 1 satisfies ht+1(i) ≥ ht(i) for i ∈ A1
t and ht+1(i) ≥ ht(i)(1 − εc) for

i ∈ A2
t .

Proof of Theorem 3 Given loads L1, . . . , LT ∈ RN
+ , consider the following {0, 1}-matrix M of

dimension N × T that encodes the information about the status of queues obtained while running

Algorithm 1

Mi,t =


0 i’s queue is empty at t, Qt(i) = 0,

1 i’s queue is not empty at t, Qt(i) > 0.
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Let s̃ = ln(N/ε)
εc , where c is defined in Lemma 1. Now, pick s? to be the maximum non-negative

integer s (including 0) such that

s∑
t=1

∑
i

Lt(i) ≤
s+s̃∑
t=1

∑
i

wt(i) (7)

Claim 3.1 Consider any block of time [r, r + s̃] where r > s?; then there exists a user i such that

Mi,r′ = 1 for all r′ ∈ [r, r + s̃].

Proof Suppose not. Then we claim that r satisfies condition (7). Consider any user i and let

r′i ∈ [r, r + s̃] be such that Mi,r′i
= 0. Then work done by the user i up to time [r + s̃] is at least

r+s̃∑
t=1

wt(i) ≥
r′i∑
t=1

wt(i) =

r′i∑
t=1

Lt(i) ≥
r∑
t=1

Lt(i).

Now summing over all i, we get the desired contradiction. �

We now prove the following claim that shows that the algorithm ensures that, on average, the total

resource utilization after s? is close to 1 − 4ε. The proof of the Claim relies on Lemma 1 and

appears in Appendix B.

Claim 3.2 Let B = [r, r + s̃) where r > s? be a consecutive block of s̃ timesteps and let B′ = {t ∈

B :
∑

j∈At
ht(j) ≤ 1−ε} be the time steps in L with low utilization. Then |B′| ≤ 4εs̃ and therefore,∑T

t=s?+1

∑
iwt(i) ≥ (1− 4ε)(T − s?)− s̃.

Now, consider the following feasible dual solution of (D4ε): γt(i) = 1, βt = 0 for all users i and t =

1, . . . , s?, and γt(i) = 0, βt = 1 for all users i and t = s? + 1, . . . , T . Observe that
∑T

t=1 βt = T − s?.
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For optimal (1− 4ε)-allocations h∗1 . . . ,h
∗
T we obtain

workh∗1,...,h
∗
T
≤ vdual(γ1, . . . , γT , β1, . . . βT ) (weak duality)

=
s?∑
t=1

∑
i

Lt(i) + (1− 4ε)(T − s?)

≤
s?+s̃∑
t=1

∑
i

wt(i) + (1− 4ε)(T − s?) (s? choice)

≤
s?∑
t=1

∑
i

wt(i) + s̃+
T∑

t=s?+1

∑
i

wt(i) + s̃ (Claim 3.2)

= workalg +8
N

ε2η
ln(N/ε).

where we have used
∑s?+s̃

t=s?+1wt(i) ≤ s̃ and the definition of s̃. �

3.3 SLA Satisfaction

In this section, we prove Theorem 4. Recall that λ = ε2

8N and A1
t = {i ∈ At : ht(i) < β(i)} is the

set of active users receiving less than their SLAs and A2
t = At \A1

t is the set of active user receiving

at least their SLA. Analogous to Lemma 1, we have the following lemma, whose proof appears in

Appendix B.

Lemma 2 Assume ε ≤ 1
10 , η ≤ 1

3 and β(i) ≥ 2 ε
N for all users. Then for any i ∈ A1

t , Algorithm 1

guarantees ht+1(i) ≥ ht(i)(1 + c′), where c′ = εηλ
2N .

Proof of Theorem 4 Let s̃ =
⌈

ln(N/ε)
ln(1+c′)

⌉
, where c′ is defined in Lemma 2. Now, we proceed

by induction on t to prove that
∑t+s̃

τ=1wτ (i) ≥ ∑t
τ=1w

′
τ (i), where w′t is the work done by the

allocations h′1, . . . ,h
′
T . Clearly, the case t = 0 is direct.

Take t ≥ 1 and suppose the result true for t−1. If there exists r ∈ [t, t+ s̃] such that user i’s queue

is empty, then
t+s̃∑
τ=1

wτ (i) ≥
r∑

τ=1

wτ (i) =

r∑
τ=1

Lτ (i) ≥
t∑

τ=1

w′τ (i).

Therefore, assume that for all τ ∈ [t, t+ s̃] we have that user i’s queue is non-empty. By induction
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hypothesis
t−1+s̃∑
τ=1

wt(i) ≥
t−1∑
τ=1

w′τ (i).

In order to complete the proof, we need to prove that wt+s̃(i) ≥ w′t(i). We proceed as follows.

Suppose that for all τ ≥ t we have wτ (i) < (1 − ε)β(i). By Lemma 2, in each time τ ∈ [t, t + s̃],

user’s i allocation increases multiplicatively by a rate (1 + c′). Therefore,

wt+s̃(i) ≥
ε

N
(1 + c′)s̃ ≥ 1 ≥ β(i),

a contradiction. From the previous analysis we obtain the existence of τ? ∈ [t, t + s̃] such that

wτ?(i) ≥ (1−ε)β(i). By using Lemmas 1 and 2, we can show that the allocation hτ (i) will never go

below (1− εc)(1− ε)β(i) for all τ ≥ τ?. In particular wt+s̃(i) ≥ (1− εc)(1− ε)β(i) ≥ (1− 2ε)β(i) ≥

w′t(i). �

3.4 Extension to Proportionality

In the previous subsections, we have introduced the first version of the multiplicative weights

algorithm. We explained how we deduced our algorithm using mirror descent and proved its

theoretical guarantees. Even though Algorithm 1 guarantees individual SLA satisfaction, this

simple policy can lead to undesirable results that do not respect the ratio between allocations. If

one user has an SLA twice the size of another, it would be reasonable for the former to expect

allocations at least twice as big as the latter’s if both are consistently busy. Likewise, the second

user would expect allocations no less than half of the first user’s. In other words, both users should

expect shares that respect the ratio between their SLAs.

To illustrate this unsatisfactory behavior in Algorithm 1, we run it with three users having SLAs

β(1) = 0.5, β(2) = 0.3 and β(3) = 0.2. We set η ≤ 1/3 and ε ≤ 1/10. For simplicity, the initial

allocation will be uniform. In our example, user 1 is always idle. User 2 consistently demands 1

unit of resource. User 3 begins idle and remains so until user 2’s allocation reaches 1−ε. This takes

roughly 1
ηε time steps; call this time t0. Starting at time t0, user 3 demands unit loads every time

step for the rest of the horizon. Initially, the allocations are uniformly 1/3 for everyone. Between
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time 1 and t0, user 2’s allocation increases until it hits 1 − ε, since they are the only active user.

After t0, user 3 becomes active, and has an allocation below their SLA. Therefore, the algorithm

redistributes allocation from user 2 to 3 until user 3’s allocation hits 0.2. After this, allocations

remain stable at approximately ht(1) = ε
3 , ht(2) = 0.8− ε

3 and ht(3) = 0.2. User 2 receives about 4

times the allocation of user 3 if ε is small enough. However, a better allocation for user 2 and 3 is

β(2)
β(2)+β(3) = 3

5 and β(3)
β(2)+β(3) = 2

5 respectively. These allocations reflect the ratio β(2)
β(3) between active

users.

Given this, we propose a slight modification of Algorithm 1, shown in Algorithm 2. As before,

the plan is always to benefit active users. However, this time, we boost active users slightly more

if they fall behind their “proportional SLA” among active users. Intuitively, if there are n < N

active users for a long period of time, the allocation of these active users should converge to their

proportional share.

Algorithm 2: Extended Multiplicative Weight Update Algorithm

Input: Parameters 0 < ε ≤ 1
10 , 0 < η < 1

3 .

1 Initialization: h1 any allocation over ∆ε and λ = ε2

8N .

2 for t = 1, . . . , T do

3 Set allocation ht.

4 Read active and inactive users At and Bt. A
1
t =

{
i ∈ At : ht(i) < (1− ε) β(i)∑

j∈At
β(j)

}
,

A2
t = At \A1

t .

5 Set gain function gt(i) =


1 + λ i ∈ A1

t

1 i ∈ A2
t

0 i ∈ Bt

.

6 Update allocation: ĥt+1(i) = ht(i)e
ηgt(i),∀i and ht+1 = π∆ε(ĥt+1)

For technical reasons, the set A1
t , the active users with allocation below their proportional share

among active users at time t, has to be defined as
{
i ∈ At : ht(i) < (1− ε) β(i)∑

j∈At
β(j)

}
. The rea-

son behind this choice is to ensure that if A1
t 6= ∅ and the resource is nearly fully utilized, i.e.,∑

i∈At
ht(i) ≥ 1− ε, then there is a different active user j 6= i from which we can move allocation

to i. This is fundamental in the proof of Theorem 6 below.

19



In terms of work maximization and SLA satisfaction, Algorithm 2 provides exactly the same guar-

antees as Algorithm 1.

Theorem 5 Given loads L1, . . . , LT , for any ε > 0 and η > 0 such that ε ≤ 1/10, Algorithm 2

guarantees

workh∗1,...,h
∗
T
−workalg ≤ 8

N

ε2η
ln(N/ε),

where h∗1, . . . ,h
∗
T is the optimal offline sequence of (1− 4ε)-allocations.

The proof of Theorem 5 is exactly the same as the proof of Theorem 3. To see this, observe that the

proof of Theorem 3 only uses the fact that the allocations of every active users get a multiplicative

boost whenever the usage is below 1 − ε. The last statement is true since Lemma 1 also holds in

this case.

Theorem 6 Let 0 < ε ≤ 1/10 and 0 < η ≤ 1/3. Take any SLAs β(1), . . . , β(N) such that

β(i) ≥ 2 ε
N and let s̃ = 32N

2

ε3η
ln(N/ε). Then, for any user i and time t, if we take h′1, . . . ,h

′
T to be

any allocations such that h′t(i) = (1− 2ε)β(i), the work done by Algorithm 1 for user i satisfies

t+s̃∑
τ=1

wτ (i) ≥
t∑

τ=1

w′τ (i),

where w′t is the work done by the allocations h′1, . . . ,h
′
T . Moreover

∑t
τ=1wτ (i) ≥ ∑t

τ=1w
′
τ (i) −

β(i)s̃.

The proof of this result is similar to the proof of Theorem 4. A subtle difference is that the analogue

of Lemma 2 holds if we add the hypothesis
∑

i∈At
ht(i) > 1− ε. We skip the proof for brevity.

Lemma 3 Assume ε ≤ 1
10 , η ≤ 1

3 and β(i) ≥ 2 ε
N for all users. In Algorithm 2, if

∑
k∈At

ht(k) >

1− ε then for any i ∈ A1
t we have ht+1(i) ≥ (1 + c′)ht(i), where c′ = εηλ

2N .

Lemma 1 and 3 ensure that any active user gets a multiplicative boost of at least (1+c′). Therefore,

any user that is active s̃ consecutive times will have an allocation of at least (1 − 2ε)β(i). Then,

by following the same inductive proof of Theorem 4, we obtain Theorem 6.
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4 Experiments

In this section, we empirically test Algorithm 2 against a family of offline and online algorithms. We

aim to measure the performance on both synthetic data as well as real CPU traces from a production

service in Microsoft’s cloud. We quantify the performance on the following three criteria.

• Work maximization. We compare the overall work done by Algorithm 2 against various

benchmark algorithms.

• SLA guarantee. We examine the extent to which our algorithm achieves the cumulative

work of the static SLA policy for each user. We do so by measuring the cumulative work over

plausible time windows.

• Queue length. We compare the 2-norm of the individual queues over time. We use this

metric as a proxy for the system latency, which is not captured by our theoretical results.

We consider the following online algorithms, against which we benchmark our algorithm.

• Static SLA Policy (Static). Each user gets their SLA as a constant, static allocation. We

call this algorithm Static.

• Proportional Online (PO). In each iteration, every active user will get their SLA normal-

ized by the sum of SLAs of active users (just their SLA if there are no active users). This

simple algorithm seems suitable for a practical implementation; however, its performance

can be arbitrarily bad in terms of work maximization. The formal description appears in

Algorithm 4 in Appendix E. We call this Algorithm PO.

• Online Work Maximizing (OWM). This algorithm divides users into three categories:

A,B and I (active users with allocation, actives users without allocation and inactive users).

At each iteration, the resource is divided uniformly among users in A. If a user in A becomes

inactive, they are moved to I. If a user in I becomes active, they are moved to B. When A

becomes empty, we move all users from B to A. In Appendix C we prove that this method is

work maximizing. However, this greedy strategy is not guaranteed to satisfy SLA constraints

for general input loads. We call this algorithm OWM.
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We also consider the following offline algorithms, against which we benchmark our algorithm.

* Optimal 1-allocations (PG). The optimal offline solution to the work maximization prob-

lem. This solution is computed using Algorithm 3, which we call Proportional Greedy (PG).

This algorithm can be considered as the offline counterpart of Proportional Online.

* Optimal (1− ε)-allocation (restPG). Offline solution to the work maximization problem

with resource restricted to 1− ε, where ε is the parameter of Algorithm 2.

4.1 Synthetic Experiment

4.1.1 Description of the Experiment

In this experiment, we consider a synthetically generated input sequence, which we use to examine

how online algorithms adapt to different conditions. Specifically, our system consists of three users

with SLAs of β(1) = 0.2, β(2) = 0.3 and β(3) = 0.5. We consider a time horizon of T = 3,000,000.

The load input sequence is divided into six periods: Pi =
[

(i−1)T
6 , iT6

)
for i = 1, . . . , 6. In each

period, only two users demand new resources. During the first 3 periods, the random demand has

a mean proportional to the users’ SLA. In the following 3 periods, the random demand changes to

a distribution with uniform mean among users demanding resources. Specifically:

• During P1, only users 2 and 3 demand the following loads. At the beginning of P1, i.e., t = 1,

user 2 demands a large load of L1(2) ∼ T
6 · Gamma

(
2000, 1

2000 ·
β(2)

β(2)+β(3)

)
and L1(3) = 0.

During the rest of period P1, Lt(2) = 0 and Lt(3) ∼ Gamma
(

2000, 1
2000 ·

β(3)
β(2)+β(3)

)
. User 1

demands nothing during this entire period. Similar loads are set for period P2 and P3.

• Similarly, during P4 users 2 and 3 demand Lt(i) ∼ Gamma
(
2000, 1

2000 · 1
2

)
for i = 2, 3. During

P5 users 1 and 2 demand Lt(i) ∼ Gamma
(
2000, 1

2000 · 1
2

)
for i = 1, 2. During P6 users 1 and

3 demand Lt(i) ∼ Gamma
(
2000, 1

2000 · 1
2

)
for i = 1, 3.

The expectation of a Gamma(k, θ) random variable is given by kθ and the variance is given by

kθ2 (see e.g. [36]). For example, in period P1 user 2’s expected load is T
6

β(2)
β(2)+β(3) , with variance

1
2000

(
β(2)

β(2)+β(3)

)2
. Similarly, user 3’s expected total load is T

6
β(3)

β(2)+β(3) . Thus, the expected overall
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load is T/6, exactly the length of the period. A brief summary of Gamma distribution’s properties

is given in Appendix F.

We instantiate Algorithm 2 with η = 1
3 , ε = 0.02 and T = 3,000,000.

4.1.2 Results

Work maximization. In Figure 3 we present the cumulative work difference between PG and

Algorithm 2 (solid blue line with star), restPG and Algorithm 2 (red dashed line with triangle), PO

and Algorithm 2 (solid magenta line), Static and Algorithm 2 (solid green line with small circle)

and OWM and Algorithm 2 (solid cyan line with large circle). Intuitively, one positive unit of

difference implies the corresponding algorithm is ahead of Algorithm 2 by one unit of time.

First, we consider the comparison to online algorithms Static, PO and OWM. Algorithm 2 outper-

forms Static significantly, by roughly 700,000 units of time. During the first half of the experiment

PO shows good performance, but in the second half of the experiment (when the load distribution

changes), Algorithm 2 outperforms PO. This shows that Algorithm 2 can adapt to changing in-

put sequences that PO cannot adapt to. Finally, OWM surpasses Algorithm 2 during the whole

experiment, with a performance similar to PG; this is an expected result since OWM is work

maximizing.

With respect to offline algorithms, PG outperforms Algorithm 2 by roughly 10,000 time units. On

the other hand, Algorithm 2 surpasses restPG by approximately 20,000 units. This shows that

Algorithm 2 indeed performs better than the offline optimum with a slightly reduced amount of

resources, as guaranteed by the theoretical results.

SLA satisfaction. Among online algorithms, Static and PO satisfy SLA restrictions by design, but

as seen earlier they are not competitive in terms of work maximization. We focus on the comparison

between OWM and Algorithm 2 as far as SLA satisfaction is concerned. Although OWM performs

extremely well in work maximization, this comes at a significant price in SLA satisfaction. In

Figure 4 we depict empirically this behavior by plotting the instantaneous work done by users

2 and 3 by OWM and Algorithm 2 during period P1. We empirically observe that Algorithm 2

approximately satisfies user 3’s SLA, but OWM does not allocate the user any resources. Such
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Figure 3: Difference between algorithms’ work. Alg is short for Algorithm 2. Observe that the
differences “OPT - Alg” “and “OWM - Alg” slightly overlap.

an extreme behavior arises because OWM is geared towards work maximization rather than SLA

satisfaction.

Figure 4: Instantaneous work for user 2 and 3 during period P1. User 3 does not receive any
allocation in OWM until user 2 finishes all of their work.
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Queue lengths. In Figure 5 we present the 2-norm of queues induced by Algorithm 2 (solid blue),

Static (solid magenta with star), PO (solid cyan with large circle) and OWM (solid black with

triangle). Once again, we can interpret one unit of norm as one unit of latency. Experimentally, we

observe that Static shows the worst performance with a final 2-norm of 524,000 units. Algorithm 2

ends with a 2-norm of 10,000 units, PO with 26,970 units, and OWM with 381 units. As remarked

above, even though OWM induces very small queues, this comes at the cost of not satisfying SLA

requirements.

Figure 5: 2-norm of queues.

Summary. Among all online algorithms, Algorithm 2 is able to best balance work maximization

and SLA satisfaction. In particular, Algorithm 2 is only slightly worse in terms of work maxi-

mization compared to OWM; this is expected since Algorithm 2 always reserves a small fraction

of the resource for each user, regardless of activity. Furthermore, our results show that the actual

total work done by Algorithm 2 is much better than the theoretical guarantee of Theorem 5, as it

substantially outperforms (1 − ε)OPT (restPG). Finally, we observe small queues throughout the

entire horizon, which is key for maintaining reasonable latencies.

4.2 Experiment with Real Data

We next describe the results of our computational study using real world data. For these exper-

iments, we obtained CPU traces of a production service on Azure, Microsoft’s public cloud. The

data consists of demand traces of six different users over a time window of approximately ten days.
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To show Algorithm 2’s robustness with respect to (short-term) real data, we also consider the

following measurement:

• Instantaneous SLA. We focus on a modified SLA satisfaction criterion because of the

relatively short horizon (about 14, 000 minutes); we assess Algorithm 2’s performance in the

following way. For a user i and any time t, we compare the cumulative work done by user i in

Algorithm 2 during a time window [t, t+τ) versus the cumulative work done by the same user

i under a Static SLA Policy during the time window [t, t+ τ). In order to have a meaningful

comparison, at time t, we run the Static SLA Policy with the queues of Algorithm 2 at time

t. The motivating question is, what happens if at time t and the next τ time steps we run the

static policy instead of Algorithm 2? For this experiment, we used τ = 500 minutes.

The data set consists of demand traces of six users of exactly 14,628 minutes (approximately ten

days). Each user is assigned their normalized average workload as SLA. (Since the data is propri-

etary, we cannot disclose actual SLAs.) For the purpose of the experiment, we run Algorithm 2

with parameters ε = 0.01 and η = 1
3 .

4.2.1 Results

Work maximization. We depict in Figure 6 the following differences: cumulative work done until

time t by optimal 1-allocations (PG) and Algorithm 2, (1−ε)-allocations (restPG) and Algorithm 2,

PO and Algorithm 2, Static and Algorithm 2, and OWM and Algorithm 2. In a similar fashion

to the previous experiment, one positive unit can be interpreted as Algorithm 2 being one unit

(minute) of work behind, and one negative unit means Algorithm 2 is ahead by a minute.

We observe that Algorithm 2 outperforms all online benchmarks. Against Static, the final difference

is 105 units, with a maximum difference of 167 units. Against PO the final difference is 25 units

with a maximum difference of 37. Finally, against OWM, the final difference is 20 with a maximum

difference of 21. Surprisingly, for this data set Algorithm 2 is able to surpass even OWM.

Regarding the offline algorithms, PG surpasses Algorithm 2 during the whole experiment as ex-

pected, with a final difference of 14 units. On the other hand, Algorithm 2 outperforms restPG by

26 units by the end of the experiment.
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Figure 6: Difference of cumulative works.

Instantaneous SLA. In Table 1 we report statistics on the differences between the cumulative

work done in time windows [t, t+ τ) by Static and Algorithm 2 for each user. For each t and each

user i, the exact formula is ri(t) =
∑t+τ−1

r=t w′r(i)−
∑t+τ−1

r=t wr(i), where wr(i) is the work done by

user i under Algorithm 2 and w′r(i) is the work done by user i with Static (with queues at t given

by Algorithm 2). The table shows the min, max, average and standard deviation of {ri(t)}t when

τ = 500 minutes. A positive unit means Algorithm 2 is outperformed by Static during [t, t + τ)

under the same initial conditions by one unit of time. In general, we observe that all users show

negative empirical average difference. This result empirically suggests that Algorithm 2 ensures

approximate SLA satisfaction, even for small time windows. For instance, user 3 occasionally has

a high difference (46.4 units), mostly due to times t where Algorithm 2 allocates the user a small

amount of resource but a huge load is incoming during the window [t, t + τ). The experiment

tells us that averaging out these “bad” times ensures good performance under the SLA criterion.

Furthermore, we tested values of τ = 60, 500 and 1000 minutes; larger windows improve the results,

with lower maximum and average values.

Queue lengths. In Figure 7 we present the 2-norms of queues given by the online benchmark

algorithms and Algorithm 2. As usual, we can interpret one unit as the respective algorithm’s

latency, that is, lateness with respect to the overall users’ demand. Compared against the online

algorithms, we empirically observe the superiority of Algorithm 2, as it has the smallest latency

most of the time. Algorithm 2 ends with a 2-norm of roughly 44 units, average length of 22 and

a maximum length of 92. PO ends with a 2-norm of approximately 68, average length of 32 and
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Table 1: Statistics for the difference between the cumulative works of our algorithm and static over
time windows [t, t+ τ). For each user i we present the min, max, average, and standard deviation
over the sequence of differences {ri(t)}t.

User min max mean std

User 1 -31.1 21.7 -4.6 13.8
User 2 -122.3 46.9 -31.2 49.2
User 3 -90.8 46.4 -7.2 29.5
User 4 -49.7 18.5 -0.8 12.9
User 5 -42.6 22.6 -5.85 14.0
User 6 -21.9 14.9 -0.6 6.4

a maximum length of 126. OWM ends with a 2-norm of 68, average of 32 and maximum of 113.

Finally, Static shows the worst behavior, with a final 2-norm of 103, average of 91 and maximum

of 231. For this data set, Algorithm 2 shows a remarkable performance, considering particularly

that Algorithm 2 always reserves ε/N resource for each user.

Figure 7: 2-norm of queues.

Summary. Algorithm 2 performs very well in terms of work maximization compared to all other

online algorithms, and exceeds the theoretical guarantees. Furthermore, SLA requirements are

typically satisfied, even when measured over relatively short time windows. Finally, as in the

previous experiment, the algorithm maintains small queues compared to other online algorithms.
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5 Conclusion

We have proposed a new online model for dynamic resource allocation of a single divisible resource

in a shared system. Our framework captures basic properties of cloud systems, including SLAs,

limited system feedback and unpredictable (even adversarial) input sequences. We designed an

algorithm that is near-optimal in terms of both work maximization and SLA satisfaction (The-

orems 1, 5 and 6). We derived a simple expression for the offline work maximization problem

that allowed us to reinterpret the algorithm’s dynamics as an approximate solution of the optimal

(offline) work maximization LP. Numerical experiments show that our algorithm is indeed able to

achieve a desirable trade-off between work maximization and SLA satisfaction. In particular, com-

parisons with offline algorithms (PG and restPG) indicate that our algorithm is empirically work

maximizing. Further, unlike other plausible online algorithms, our algorithm is able to quickly

adapt to unexpected changes in demand and still approximately satisfy the underlying user SLAs.

Our model and results may be extended in various directions of interest to the operations research

and cloud computing communities. Some potential future directions include exploiting predictions

about future workloads (as in [37]), and simultaneously allocating multiple resources.
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A Projecting on ∆ε

Proof Proof of Proposition 1 Let y ∈ RN
+ . The projection of y on ∆ε corresponds to the

solution of the convex problem

(Q)

min
∑

i x(i) ln
(
x(i)
y(i)

)
∑

i x(i) = 1

x(i) ≥ ε/N

Its lagrangian (see [34]) is

L(x, λ, µ) =
∑
i

x(i) ln

(
x(i)

y(i)

)
− λ

(∑
i

x(i)− 1

)
−
∑
i

µi

(
x(i)− ε

N

)
.

Using the FO conditions:

∀i : x(i) = y(i)eµi+λ−1 = y(i)eµiC.

and the SO conditions:

µi ≥ 0, ∀i, and x(i) >
ε

N
=⇒ µi = 0.

Let S = {i : x(i) = ε/N} and T = [N ] \ S. Then, using
∑

i x(i) = 1 we obtain

eλ−1 =
1− ε

N |S|∑
i∈T y(i)

.

This proves part (b). Now, suppose we have y(1) ≤ · · · ≤ y(N). If i, j ∈ T , then x(i) = y(i)eλ−1

and x(j) = y(j)eλ−1 and then

x(i) ≤ x(j) ⇐⇒ y(i) ≤ y(j).

That is, in T the variables preserve their ordering.

If i ∈ S and j ∈ T , then y(i)eλ−1+µi = x(i) = ε
N < x(j) = y(j)eλ−1, which implies y(i) < y(j)

using that µi ≥ 0. Now, let k = min{i ∈ T} which is a well-defined number using constraint
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∑N
i=1 x(i) = 1. We claim that for any j ≥ k, j ∈ T , that is, T corresponds to the interval [k,N ].

By contradiction, suppose that j > k does not belong to T , then y(j) < y(k) by previous calculus.

However y(j) ≥ y(k) by the ordering of y. A contradiction. With this, the algorithm to project is

clear, we sort y and then we test increasingly the possible set S = {1, . . . , k − 1} for k = 1, . . . , N

and select the best candidate. This proves (a).

We say that S is feasible if there is a feasible solution x such that S = {i : x(i) = ε/N}. In the

following paragraphs we prove that the first feasible solution found in this process is the right one.

Observe that once S = {1, . . . , k} is feasible, then S′ = {1, . . . , j} remains feasible for all j ≥ k.

Indeed, if S = {1, . . . , k} is feasible, then

1 =
ε

N
k +

∑
i∈T

x(i).

Now, increasing S to S′ = {1, . . . , k+ 1} means that we pick x(k+ 1) > ε
N and we decrease it to ε

N .

Therefore, x(k + 2), . . . , x(N) must increase. Therefore, S′ remains feasible. The proof for general

case j ≥ k follows by induction.

Now, we claim that if S = {1, . . . , k} is feasible, then S′ = {1, . . . , k+1} cannot have better optimal

value. Indeed, the difference between the objective S′ and S is

k+1∑
i=1

ε

N
ln

ε

Ny(i)
+
(

1− ε

N
(k + 1)

)
ln

1− ε
N (k + 1)∑

i≥k+2 y(i)
−

k∑
i=1

ε

N
ln

ε

Ny(i)
−
(

1− ε

N
k
)

ln
1− ε

N k∑
i≥k+1 y(i)

=
ε

N
ln

ε

Ny(k + 1)
+
(

1− ε

N
(k + 1)

)
ln

1− ε
N (k + 1)∑

i≥k+2 y(i)
−
(

1− ε

N
k
)

ln
1− ε

N k∑
i≥k+1 y(i)

The function f(x) = x lnx is convex for x > 0. Now, pick x = ε
Ny(k+1) , y =

1− ε
N

(k+1)∑
i≥k+2 y(i) and

λ = y(k+1)∑
i≥k+1 y(i) . Then

λx+ (1− λ)y =
y(k + 1)∑
i≥k+1 y(i)

(
ε

Ny(k + 1)

)
+

∑
i≥k+2 y(i)∑
i≥k+1 y(i)

(
1− ε

N (k + 1)∑
i≥k+2 y(i)

)
=

1− ε
N k∑

i≥k+1 y(i).

Then, using the convexity of f we obtain the result. This implies that the first feasible prefix S

that we find is the optimal one. Therefore, by ordering y in O(N logN) time and then running

binary search we can find S in O(N logN) time. This finishes the proof of (c). �
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B Omitted Proofs

B.1 Proofs of Section 3.1

Here we present dual stated in the offline formulation of the maximum work problem. We have the

LP

(Pε)

max
∑N

i=1

∑T
t=1wt(i)∑t

s=1ws(i) ≤
∑t

s=1 Ls(i) ∀t, i (1)∑N
i=1wt(i) ≤ 1− ε ∀t (2)

wt ≥ 0 ∀t

Using the variables αt(i) for constraint (1) and βt for constraint (2) we obtain the dual

(Dε)

min
∑N

i=1

∑T
t=1 αt(i)

∑t
s=1 Ls(i) + (1− ε)∑T

t=1 βt∑T
s=t αs(i) + βt ≥ 1 ∀t, i (1′)

α, β ≥ 0

Using the change of variable γt(i) =
∑T

s=t αs(i) we obtain the stated dual

(Dε)

min
∑N

i=1

∑T
t=1 Lt(i)γt(i) + (1− ε)∑T

t=1 βt

γt(i) + βt ≥ 1 ∀t, i (1′)

γt ≥ γt+1 ∀t (2′)

β, γ ≥ 0

Proof Proof of Proposition 2

We prove each inequality separately. Let 0 ≤ t? ≤ T be such that
∑t?

s=1

∑
i Ls(i)+(1−ε)(T − t?) =

min0≤t≤T
∑t

s=1

∑
i Ls(i)+(1−ε)(T − t). Consider the dual solution (β, γ) such that γt = 1, βt = 0

for t = 1, . . . , t? and γt = 0, βt = 1 for t = t? + 1, . . . , T . Then, by weak duality,

vPε ≤ vdual(β, γ) =
t?∑
s=1

∑
i

Ls(i) + (1− ε)(T − t?) = min
0≤t≤T

t∑
s=1

∑
i

Ls(i) + (1− ε)(T − t).

Now, consider the greedy algorithm that, in each iteration, gives enough allocation to the users in

order to complete their work starting with user 1, then user 2, and so on. We restrict the algorithms’
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allocations to (1 − ε)-allocations. We denote by workgreedy the work done by this algorithm. As

usual, we denote by wt the vector of work done at time t. Let t? be the maximum non-negative t

such that
∑

iwt(i) < 1− ε. Observe that
∑t?

s=1

∑
iws(i) =

∑t?

s=1

∑
i Ls(i). Then

min
0≤t≤T

t∑
s=1

∑
i

Ls(i) + (1− ε)(T − t) ≤
t?∑
s=1

∑
i

Ls(i) + (1− ε)(T − t?) = workgreedy ≤ vPε ,

since vPε is the optimal solution. �

Remark 1 This max-min result shows that the greedy algorithm is optimal for solving (Pε) and also

shows how to compute the dual variables. Finally, solving (Pε) can be done efficiently in O(NT )

by running the greedy algorithm.

B.2 Proofs of Section 3.2

In what follows, we denote by St the users with allocation ε
N at time t.

Proof Proof of Lemma 1

1. First, for i ∈ At we have

ht+1(i) =
ht(i)e

ηgt(i)eµi
(
1− ε

N |St+1|
)∑

j∈St+1
ĥt+1(j)

≥ ht(i)
(
1− ε

N |St+1|
)

e−η
∑

j∈St+1
ĥt+1(j)

.

We divide the analysis into two cases: Bt ∩ St+1 6= ∅ and Bt ⊆ St+1.
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For Bt ∩ St+1 6= ∅ we have

e−η
∑

j∈St+1

ĥt+1(j) ≤ eλη
∑

j∈St+1∩At

ht(j) + e−η
∑

j∈St+1∩Bt

ht(j)

= eλη
∑

j∈St+1

ht(j)− (eλη − e−η)
∑

j∈Bt∩St+1

ht(j)

≤ eλη
(

1− ε

N
|St+1|

)
− ε

N
(eλη − e−η) (since ht(i) ≥ ε

N )

≤ (1 + 2λη)
(

1− ε

N
|St+1|

)
− ε

N

(
λη + η − η2

2

)
(using 1 + λη ≤ eλη ≤ 1 + 2λη, e−η ≤ 1− η + η2

2 )

≤ 1− ε

N
|St+1|+ 2λη − ε

N
η
(

1− η

2

)
≤ 1− ε

N
|St+1| −

εη

4N
. (η ≤ 1 and 2λ ≤ ε

4N )

Therefore,

(
1− ε

N |St+1|
)

e−η
∑

j∈St+1
ĥt+1(j)

≥ 1− ε
N |St+1|

1− ε
N |St+1| − εη

4N

≥ 1

1− εη
4N

≥ 1 +
εη

4N
,

using 1
1−x ≥ 1 + x when x ∈ (0, 1). Hence ht+1(i) ≥ ht(i)(1 + εη

4N ).

Now, if Bt ⊆ St+1, then St+1 ⊆ At. We have

e−η
∑

j∈St+1
ĥt+1(j)

1− ε
N |St+1|

≤ (1− ε)eλη
1− ε

N |St+1|

≤ (1− ε)eλη
1− ε+ ε

N

≤ (1− ε)(1 + 2λη)

1− ε+ ε
N

(eλη ≤ 1 + 2λη since 2λη < 1)

≤ 1− ε+ 3λη

1− ε+ ε
N

= 1−
ε
N + 3λη

1− ε+ ε
N

.

Since
ε
N

+3λη

1−ε+ ε
N
≥ ε

N we obtain

ht+1(i) ≥ ht(i)
1

1− ε
N

≥ ht(i)
(

1 +
ε

N

)
≥ ht(i)

(
1 +

εη

4N

)
.
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2. The monotonicity of ht(i) with i ∈ A1
t is easy to see. Let us prove the second statement:

e−η
∑

j∈St+1
ĥt+1(j)

1− ε
N |St+1|

≤
eλη
∑

j∈St+1
ht(j)

1− ε
N |St+1|

≤ eλη
(
1− ε

N |St+1|
)

1− ε
N |St+1|

≤ eλη

≤ 1 + 2λη = 1 + εc,

since λ = ε2

8N . Then, for i ∈ A2
t ,

ht+1(i) ≥ ht(i)
eη(1− ε

N |St+1|)∑
j∈St+1

ĥt+1(j)
≥ ht(i)

1

1 + εc
≥ ht(i)(1− εc).

�

Proof Proof of Claim 3.2 Now, let [s? + 1, . . . , T ] and let us divide this interval into blocks

of length s̃ with a possible last piece of length of length at most s̃. Let L be one of these blocks

and let i be the user given by claim 3.1, that is, Mi,r = 1 for all r ∈ L. Consider L′ = {t ∈ L :∑
j∈At

ht(j) < 1− ε}. By using part 1 of Lemma 1, user i increases her allocation multiplicatively

in L′ by a factor of (1 + c). Observe that for t /∈ L′, user’s i allocation can increase or decrease

depending on ht(i). However, by Lemma by part 2 of 1, we know that ht(i) will not decrease by a

huge amount. Let k′ = |L′|, then i increases her allocation for k′ times and decreases it for at most

s̃− k′ times. Therefore, k′ maximum value is such that

ε

N
(1 + c)k

′
(1− εc)s̃−k′ = 1
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and therefore,

k′ ≤ ln(N/ε) + s̃ ln(1− εc)−1

ln((1 + c)/(1− εc))

≤ 1 + c

c(1 + ε)
ln(N/ε) +

ε(1 + c)

(1 + ε)(1− εc) s̃ (ln 1+c
1−εc ≥

c(1+ε)
1+c , ln 1

1−εc ≤ εc
1−εc)

≤ ε(1 + c)

(1 + ε)
s̃+

ε(1 + c)

(1 + ε)(1− εc) s̃ (s̃ = ln(N/ε)
εc )

= ε
1 + c

1 + ε

(
1 +

1

1− εc

)
s̃

≤ 3εs̃. (for N ≥ 2 and ε ≤ 1
10)

Hence, L′ is at most a fraction of s̃ and with this

∑
t∈L

∑
i

wt(i) ≥ (1− ε)(s̃− k′) ≥ (1− ε) (1− 3ε) s̃ ≥ (1− 4ε)|L|.

Summing over all blocks we conclude the desired result. �

B.3 Proof of Section 3.3

Proof Proof of Lemma 2 If A1
t = ∅, the result is vacously true. Suppose that A1

t 6= ∅. First, we

prove that under the assumption of Lemma 2, we have A
1
t ∩ St+1 6= ∅. For j ∈ St+1 we have

ε

N
= ht+1(j)

=
ĥt+1(j)eµi(1− ε

N |St+1|)∑
k∈St+1

ĥt+1(k)

≥ ht(j)(1− ε
N |St+1|)∑

k∈St+1
ht(k)eη(1+λ)

, (since µi ≥ 0)

This implies ht(j) ≤ ε
N e

η(1+λ) ≤ ε
N (1 + 2η(1 + λ)) < 2 ε

N ≤ β(j). Since
∑

j ht(j) = 1, i ∈ A1
t and∑

j β(j) = 1 we must have that there is a user j 6= i with allocation ht(j) ≥ β(j). Clearly, j /∈ St+1

and j /∈ A1
t . Therefore, A

1
t ∩ St+1 6= ∅.
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Following the proof of Lemma 1, for i ∈ A1
t , we have

e−η(1+λ)
∑

j∈St+1

ĥt+1(j) ≤
∑

j∈St+1∩A1
t

ht(j) + e−ηλ
∑

j∈St+1∩A
1
t

ht(j)

=
∑

j∈St+1

ht(j)− (1− e−λη)
∑

j∈St+1∩A
1
t

ht(j)

≤ 1− ε

N
|St+1| −

ε

N
(1− e−λη) (since St+1 ∩A1

t 6= ∅)

≤ 1− ε

N
|St+1| −

ελη

2N
. (1− e−x ≥ x

2 for x ∈ [0, 1])

Therefore,

ht+1(i) ≥ ht(i)
1− ε

N |St+1|
1− ε

N |St+1| − ελη
2N

≥ ht(i)
(

1 +
ελη

2N

)
.

�

C Greedy Online Algorithm

In this section, we prove that the following greedy allocation strategy is almost optimal in work

maximization. The algorithm divides the users into 3 categories: A non-empty queue users with

non-zero allocation, B non-empty queue users with zero allocation and I empty queue users with

zero allocation. At time t, a user i ∈ A is left in A if she still has non-empty queue, otherwise we

will move her to I; a user i ∈ I will be moved to B if her queue is becomes non-empty, otherwise

she will remain in I; finally, if all users from A are moved to I, then we will move all B to A,

otherwise we will left B untouched. In any case, we will distribute uniformly among the users that

remain in A.

Users move from A to I, I to B and B to A. Let wt be the work done by the algorithm and let w′t

be the optimal offline work.

Theorem 7 For any loads L1, . . . , LT ∈ RN
≥0, and any ε > 0, this greedy Algorithm guarantees

T∑
t=1

∑
i

wt(i) + 2
N2

ε
≥

T∑
t=1

∑
i

w′t(i)
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where w′t is the work done by the optimal offline sequence of (1− 2ε/N)-allocations.

Proof Let t? be the maximum t ≥ 0 such that
∑t+N2

s=1

∑
iws(i) ≥

∑t
s=1

∑
i Ls(i). By claim 3.1 we

know that each interval [r, r+N2/ε), with r > t?, has a user with no-empty queue. As in claim 3.2

we divide the interval [t?+1, T ] into blocks of length N2/ε with a last block of length at most N2/ε.

Pick any of these blocks, say L, and let L′ = {t ∈ L :
∑

iwt(i) < 1}. It is easy to see that |L′| ≤ 2N

and therefore, summing over all block, we have
∑

t≥t?+1

∑
iwt(i) + N2/ε ≥ (T − t?)(1 − 2ε/N).

The conclusion follows applying weak duality to (P2ε/N ). �

Remark 2 Against the best 1-allocations we can optimize ε and obtain ε =
√
N3/T . This greedy

strategy will be O(
√
NT ) far from the optimal dynamic work. Observe that this matches the lower

bound in Theorem 8.

D Lower Bound

Theorem 8 For any online deterministic algorithm A setting at each time 1-allocations, with

an underlying queuing system, and with the same limited feedback as Algorithm 1, there exists a

sequence of online loads L1, . . . , LT such that workh∗1,...,h
∗
T
−workA = Ω

(√
T
)

, where h∗1, . . . ,h
∗
T

are the optimal offline dynamic 1-allocations.

Proof We consider the case with N = 2 users, the general case reduces to N = 2 by loading jobs

only to two users. Let A be an online algorithm for allocating a divisible resource for 2 users and

with underlying queuing system and limited feedback. Without loss of generality, we can assume

that the allocations sets by A always add up to 1 at every time step.

We will construct a sequence of loads Lt = (Lt(1), Lt(2)) that at every time will add up to 1. This

will ensure that the overall work done by the optimal offline dynamic policy will be T . On the

other hand, we will show that this sequence of loads will lead to large queue length for at least

one of the users. The main ingredient is to use the fact the algorithm receives limited feedback

about the state of the system, i.e., which users have empty queue. In particular, this implies that if

there are two distinct set of load vectors Lt and L′t for some interval t ∈ [r, s] such that the queues
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remain non-empty on both these sequences, then the resource allocation to the users in the two

load sequences must be identical.

We will divide the time window [1, T ] into phases. Each phase will begin with a configuration of

queues, say Q = (Q(1), Q(2)), where one of the queues is empty and the other one nonempty. We

set q = Q(1) + Q(2) and we denote by qi the q at phase i. We define q0 = 0. We will prove that

at the end of each phase i ≥ 1, qi+1 ≥ qi + 1
4 with all qi+1 cumulated in one queue and the other

queue empty.

Initially, the algorithm has a fixed deterministic allocation h1 = (h1(1), h1(2)). If h1(1) ≤ h1(2),

then we load L1 = (0, 1). Otherwise, we load L1 = (1, 0). In any case, we have q1 ≥ 1
2 and all q1 in

one queue.

Now, we will describe how the general phases work. For the sake of simplicity, we will describe

the phase starting at time t = 1. We have queue configuration Q = (Q(1), Q(2)) with q > 0. By

the initial phase, we can assume q ≥ 1/2. Moreover, we can assume that only one of the queues is

nonempty, this point will be clear after we describe how the phase works and it is clearly true for

phase 1. Phase i with q = qi will last at most 2q + 2 time steps.

Suppose that Q(1) = 0 and Q(2) > 0. If h1(1) = 1, then we load L1 = (0, 1) and the phase ends

with q increased by 1 and user 1’s queue empty. Therefore, we can assume h1(1) < 1. Our first

load will be L1 = (h1(1) + ε, h2(2) − ε) with 0 < ε < 1
4 small enough and such that both queues

are nonempty. The following loads will be Lt = ht, the allocation of A at time t. Observe that the

first load will ensure that both users see nonempty queues until the end of the phase. Moreover,

user 1 always has exactly ε remaining in her queue.

• If there is a time τ? ∈ [1, 2q + 1] such that hτ?(1) ≥ 1/2, then we change the load at time τ?

for L′τ? = (0, 1). This will increment q by at least 1/2− ε ≥ 1/4 and the phase ends. Observe

that Qτ?+1(1) = 0.

• We can assume now that for the loads Lt = ht we always have ht(1) < 1/2 for all t ∈ [2, 2q+1].

We change the loads to L′t = (1, 0) until time τ? in which user 2 empties her queue. Recall

that the feedback of the algorithm is only the set of empty queues at every time step. Thus

the behavior of A under Lt and L′t will be the same until time τ?. Now, we change load Lτ? by
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L′τ? = (1−hτ?(2)+Qτ?(2)−ε′, hτ?(2)−Qτ?(2)+ε′) with 0 < ε′ < 1/4 small enough. This will

ensure that queue 2 will be exactly ε′. Now, in an extra step, we load Lτ?+1 = (1, 0). Again,

we have q increased by at least 1/4 and this ends the phase. Observe that Qτ?+2(2) = 0.

The analysis is similar for Q(1) > 0 and Q(2) = 0. Observe that at the end of each phase, only

one queue is nonempty and the other one is empty. In any case, we have the desired increment.

With this, we can set the following recurrence, q0 = 0, qi−1 + 1
4 ≤ qi ∀i ≥ 1. We deduce that

qi ≥ i/4. Now, let m be the number of phases. By construction, each phase last at most 2qi + 2.

Then T ≤ ∑m
i=1(2qi + 2) ≤ 40q2

m, where we have used 4qm ≥ 4qi ≥ i ≥ 1. From here we deduce

that qm ≥
√
T/40.

Now, the work done by the algorithm and the unfulfilled work in the queues must add up the overall

load. Then qm + workA = T = workh∗1,...,h
∗
T

from which we obtain the result. �
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E Additional Algorithms

Algorithm 3: Proportional Greedy

Input: Sequence of loads (Lt)
T
t=1 and SLAs β(1), . . . , β(N).

1 for t = 1, . . . , T do

2 wt(i)← 0, ∀i ∈ [N ].

3 Rem← 1.

4 Rem(i)← Qt−1(i) + Lt(i), ∀i ∈ [N ].

5 repeat

6 A← {i : Rem(i) > 0}.

7 Σ←∑
i∈At

β(i).

8 i∗ ← argmink∈A Rem(k).

9 if Rem(i) < β(i)
Σ Rem then

10 wt(i
∗)← wt(i

∗) + Rem(i∗).

11 Rem← Rem− Rem(i∗).

12 Rem(i∗)← 0.

13 else

14 for k ∈ A do

15 wt(k)← wt(k) + β(k)
Σ Rem.

16 Rem(k)← Rem(k)− β(k)
Σ Rem.

17 Rem← 0.

18 until Rem = 0 or {i : Rem(i) > 0} = ∅;
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Algorithm 4: Online Proportional

Input: Sequence of loads (Lt)
T
t=1 and SLAs β(1), . . . , β(N).

1 Initial distribution h1 = (β(1), . . . , β(N)),

2 for t = 1, . . . , T do

3 Set ht and obtain At = {i : Qt(i) 6= 0},

4 Update ht+1(i) = β(i)∑
j∈A β(j)

5 If A = ∅, then ht+1 = h1.

F Gamma Distribution

Recall that a Gamma distribution ([36]) is characterized by two parameters: the shape k > 0 and the

scale θ > 0. The PDF of a Gamma(k, θ) is given by 1
Γ(k)θk

xk−1e−x/θ where Γ(k) =
∫∞

0 uk−1e−udu is

the standard Gamma function. See Figure 8 for PDFs of different Gamma distribution for various

choices of k and θ.

Figure 8: PDF of different Gamma distributions.

Proposition 3 Let X ∼ Gamma(k, θ). Then, E[X] = kθ and Var(X) = kθ2.
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