
SARA: Self-Replay Augmented Record and Replay for Android in
Industrial Cases∗

Jiaqi Guo†
Xi’an Jiaotong University

Xi’an, China
jasperguo2013@stu.xjtu.edu.cn

Shuyue Li†
Xi’an Jiaotong University

Xi’an, China
lishuyue1221@stu.xjtu.edu.cn

Jian-Guang Lou
Microsoft Research Asia

Beijing, China
jlou@microsoft.com

Zijiang Yang
Western Michigan University

Kalamazoo, MI, USA
zijiang.yang@wmich.edu

Ting Liu
Xi’an Jiaotong University

Xi’an, China
tingliu@mail.xjtu.edu.cn

ABSTRACT
Record-and-replay tools are indispensable for quality assurance of
mobile applications. Due to its importance, an increasing number
of tools are being developed to record and replay user interactions
for Android. However, by conducting an empirical study of various
existing tools in industrial settings, researchers have revealed a gap
between the characteristics requested from industry and the per-
formance of publicly available record-and-replay tools. The study
concludes that no existing tools under evaluation are sufficient
for industrial applications. In this paper, we present a record-and-
replay tool called SARA towards bridging the gap and targeting a
wide adoption. Specifically, a dynamic instrumentation technique
is used to accommodate rich sources of inputs in the application
layer satisfying various constraints requested from industry. A self-
replay mechanism is proposed to record more information of user
inputs for accurate replaying without degrading user experience.
In addition, an adaptive replay method is designed to enable re-
playing events on different devices with diverse screen sizes and
OS versions. Through an evaluation on 53 highly popular indus-
trial Android applications and 265 common usage scenarios, we
demonstrate the effectiveness of SARA in recording and replaying
rich sources of inputs on the same or different devices.

CCS CONCEPTS
• Software and its engineering → Software notations and
tools; Software maintenance tools.

KEYWORDS
Android, Testing, Record-and-Replay
∗We would like to thank the anonymous reviewers for their helpful comments. Ting
Liu is the corresponding author.
†Work done during an internship at Microsoft Research Asia.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’19, July 15–19, 2019, Beijing, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6224-5/19/07. . . $15.00
https://doi.org/10.1145/3293882.3330557

ACM Reference Format:
Jiaqi Guo, Shuyue Li, Jian-Guang Lou, Zijiang Yang, and Ting Liu. 2019.
SARA: Self-Replay Augmented Record and Replay for Android in Industrial
Cases. In Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA ’19), July 15–19, 2019, Beijing, China.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3293882.3330557

1 INTRODUCTION
Mobile devices have quickly become the most accessible and popu-
lar computing devices in the world. Record-and-replay tools play
an important role in the process of quality assurance for mobile
applications, or apps for short, due to its capability in recording
user’s interactions with apps and replaying on various devices at
a later time, allowing developers to test apps on different devices
at once [27, 31]. For example, the process of regression testing
can be automated in collaboration with advanced test selection
techniques [7, 19, 22]. To this end, the burden of developers and
testers is greatly eased since manual testing is still preferred today
in apps development [23, 26, 29]. Much effort from academia and
industry has been dedicated in building record-and-replay tools
[1, 3, 10, 13, 15, 18, 20, 21, 30, 33–35].

However, a recent study [28] on most existing tools shows that
there is a significant gap between the capability of currently avail-
able tools and the record-and-replay needs of Android apps in
industry. Developers from WeChat [38], one of the most popular
social media apps with over 1 billion monthly active users, request
that a desirable record-and-replay tool should provide four features
and satisfy four constraints. The four features include (F1) Recorded
motion events should be based on screen coordinates (touch points
of testers on the screen); (F2) Recorded motion events should be
based on widgets (e.g., buttons, text fields); (F3) Recorded events
should be insensitive to the state of the app; and (F4) Timing be-
tween events should be recorded. The four constraints are (C1) No
custom OS is required; (C2) No instrumentation on app is required;
(C3) No root access is required; and (C4) Source code of app is not
required. Meanwhile, there are some other common requirements,
namely, source code of the tool is available (also requested by the
developers fromWeChat); recorded data should be human-readable
[33]; recorded data should be able to be replayed on different devices
with diverse screen sizes and OS versions [18].

90

https://doi.org/10.1145/3293882.3330557
https://doi.org/10.1145/3293882.3330557

ISSTA ’19, July 15–19, 2019, Beijing, China Jiaqi Guo, Shuyue Li, Jian-Guang Lou, Zijiang Yang, and Ting Liu

Table 1: Characteristics comparison of appetizer, monkeyrunner, RERAN and SARA.

Tool Coordinate
Sensitive

Widget
Sensitive

Timing
Sensitive

State
Insensitive

No
Custom OS

No
Instrumentation

No
Root Access

No Access
to Source Code

Open
Source

Different
Screen Sizes Readable

appetizer ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✗

monkeyrunner ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓

RERAN ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✗

SARA ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓

Based on the study, no publicly available tools satisfy all the de-
sired characteristics [28]. Table 1 shows the characteristics exhibited
by three state-of-the-practice tools: appetizer [3], monkeyrunner
[15], and RERAN [10]. There are three challenges in providing all
features under constraints requested from industry:
Recording and Replaying Rich Sources of Inputs. Mobile de-
vices provide rich sources of inputs to an app, including motion, key,
and sensor inputs. Recording and replaying inputs from sensors
like GPS usually requires a custom OS [20] or the source code of
the app [33]. However, as requested from industry, a custom OS
is not preferable (C1) and the source code of the app is usually
unavailable to testers (C4). Hence, it is challenging to record and
replay inputs with rich sources under various constraints.
Efficiently Recording Motion Events Based on Widgets. To
achieve robustness during replay, it is necessary to record both co-
ordinates and widgets (F1, F2) of motion events. There are various
ways to record the widgets under interactions, but they usually
introduce large time overhead, making them impractical to use in in-
dustrial settings. For example, it takes about 10 seconds for Culebra
[1] to perform a tap on a widget. In fact, most of the proposed tools
record motion events based solely on screen coordinates because
it is non-trivial to efficiently record motion events based on both
coordinates and widgets while preserving good user experience for
testers in practice.
Replaying Events on Different Devices. Android OS searches
for appropriate layout configurations declared in an app based on
the device screen resolution and size when the app is launched.
Developers are recommended but not strictly required to create
alternate UI layouts and UI resources for different screen resolutions
and sizes [17]. Thus, it is very desirable to replay events on different
devices with diverse screen sizes and OS versions. Unfortunately,
how to achieve the goal remains an open question.

In this work, we design and implement a record-and-replay
tool called SARA (Self-Replay Augmented Record and Replay for
Android) to address all aforementioned challenges and target a
wide adoption. To achieve the goal, SARA integrates three major
techniques:

(1) Dynamic instrumentation is applied to record and replay
diverse kinds of inputs on mobile devices, including inputs
from sensors. It works even under various aforementioned
constraints such as no custom OS and no source code.

(2) Self-Replaymechanism is proposed to address the problem of
efficiently recording motion events based on widgets. Specifi-
cally, SARA first records motion events based solely on screen
coordinates during user interactions. It then automatically
replays recorded events on the same device to identify the
widgets under interactions. The recording before the self-
replay is a low cost operation. Thus SARA can record motion

events based on both screen coordinates and widgets while
providing good user experience.

(3) An adaptive replay method is designed to replay events on
different devices. SARA is able to replay events by heuristi-
cally searching for widgets and transforming coordinates to
adapt to diverse screen sizes and OS versions.

We evaluate SARA on three different Android devices, with 53
highly popular industrial Android apps and 265 common usage
scenarios. As shown in Table 1, SARA satisfies most desired charac-
teristics desired by industry. The evaluation results show that

(1) SARA manages to record and replay 228 out of 265 com-
mon usage scenarios on the same device, which is much
more than 161 and 29 successful replays by appetizer [3] and
RERAN [10], respectively. We do not compare SARA with
monkeyrunner [15] because it is insensitive to the timing
between events. The timing between events is crucial during
a reply.

(2) SARA manages to replay 41 out of 42 common usage scenar-
ios on two devices with the same display aspect ratio but
different screen sizes, which is more than 31 successful re-
plays by appetizer. SARA replays 34 out of 42 on two devices
that vary in both display aspect ratios and screen sizes. Note
that appetizer fails to replay any events on devices with dif-
ferent display aspect ratios. We do not compare SARA with
RERAN as it does not support replaying events on different
devices.

(3) Although SARA applies the instrumentation technique and
records motion events based on widgets, compared with the
original runtime, the overheads of recording and replaying
are only 4.29% and 7.07%, respectively. The space overhead
is just 1.78 KB per second.

2 RELATEDWORK
There has been a lot of progressmade from academia and industry in
developing record-and-replay tools for desktop applications [9, 24,
25, 32, 36] andAndroid applications [1, 3, 10, 13, 15, 18, 20, 21, 30, 33–
35]. The tools for Android applications can be grouped into the
following three categories according to the layer in which they
record inputs.
The Linux Kernel Layer. RERAN [10] is one of the very first
record-and-replay tools proposed by researchers. It works in the
kernel layer. Specifically, it captures low-level events with ADB
command getevent by reading logs in /dev/input/event* files, and
utilizes command sendevent to replay events. The low-level events
are tightly coupled to the hardware, making it hard to reconstitute
into high-level gestures and be replayed on other devices. Following
tools like Mosiac [18] and appetizer [3] capture events through the

91

SARA: Self-Replay Augmented Record and Replay for Android in Industrial Cases ISSTA ’19, July 15–19, 2019, Beijing, China

same avenue. These tool have limitations in recording and replaying
some sensor inputs, because inputs like GPS are not written in logs.
The Android Framework Layer. VALERA [20] modifies the An-
droid framework to capture sensor and network input, event sched-
ules, and inter-app communication, making it achieve precise record
and replay. However, VALERA requires a custom OS to record and
replay, which violates the constraints from industry.
The Application Layer. There are a bunch of tools recording in-
put data in the application layer. Specifically, Mobiplay [33] adopts
a client-server architecture, involving a client app running on a
mobile device and a target app running on the server to intercept
inputs to the app. However, it fails to replay sensor inputs like GPS
in absence of the source code of the app. Espresso [13] records
motion events based on widgets and key events by attaching a
debugger to the app under record, but it cannot record sensor input
and complicated gestures like zoom, pinch, and it also requires
source code of the app. Robotium [35] is derived from the Sele-
nium web browser automation tool [5]. It is only able to intercept
those widgets that are controlled by the main process of the app.
During evaluations, we find that most popular industrial apps in
fact launch more than one process. Culebra [1] provides a graph-
ical user interface on desktop for users to interact with the app
under record. Before sending the user action to the app, Culebra
tries to identify the widget that is going to be interacted within the
view hierarchy, which is very similar to MobiPlay in spirit. But it
introduces large time overhead and cannot record sensor inputs.
Ranorex [34] is a cross-platform commercial test automation tool.
It supports recording events based on both coordinates and widgets
through instrumentation, but it cannot record sensor inputs and
fails to instrument large-size apps. SARA also falls into this category.
It is designed to record and replay diverse kind of inputs under the
constraints requested from industry.

3 DESIGN OF SARA
In this section, we elaborate on the design decisions behind SARA
and how SARA addresses the challenges in providing features under
various constraints requested from industry.

3.1 Recording and Replaying Rich Sources of
Input through Dynamic Instrumentation

A custom OS or the source code of an app is usually required by
existing tools to record and replay rich sources of inputs on mobile
devices. However, industry developers do not favor tools requiring
a custom OS. Installing a custom OS is time-consuming and error-
prone in practice because the custom OS may be incompatible
with devices. Another major concern is that events recorded in
the custom OS may be not transferable to the official Android OS.
Developers also do not like tools that require the source code of
the app under record since they sometimes outsource the testing to
other companies. However, recording and replaying rich sources
of inputs in absence of a custom OS and source code is non-trivial
[33], especially for those with inputs from sensors such as GPS.

To tackle the challenge, SARA applies dynamic instrumentation
to record rich sources of input data in the application layer. Firstly,
rich sources of inputs are delivered to the application layer, allow-
ing developers to process them. The input data in this layer are

high-level by design compared to those in the Linux kernel and
the Android framework layer. Hence, one of the most prominent
advantages of recording input data in the application layer is that
the recorded data is human-readable and easy to be reconstituted
into high-level gestures like zoom, making it fairly easy for testers
to analyze, revise and re-assemble these data for further testing
purpose. Secondly, dynamic instrumentation, which works at run-
time of the app, does not need a custom OS or the source code. It
is also hardly influenced by packing techniques that are increas-
ingly popular on the Android platform for hiding code [8]. This
is because the hidden dex-code will be unpacked in order to be
executed at runtime. The dynamic instrumentation technique in
SARA also plays an important role in replaying sensor inputs such
as GPS (discussed in Section 4).

Note that developers from WeChat also do not favor instru-
mentation as they are concerned about the compatibility between
instrumentation tools and the app. But as we will show in Sec-
tion 5, SARA is compatible with WeChat and other highly popular
industrial apps, which relieves their concerns to some extend.

3.2 Efficiently Recording Motion Events Based
on Widget through Self-Replay

Industry developers request a record-and-replay tool that records
events based on both coordinates and widgets. Intuitively, events
that are recorded based on widgets are more robust than those
that are recorded solely based on coordinates. There are various
ways to record the widgets under interactions, but they usually
introduce large overhead since information about widgets is far
more complicated than coordinates. For example, Espresso [13] is
able to intercept the widgets by attaching a debugger to an app
during record. But it inevitably results in slow response of the app
and consequently poor user experience.

To efficiently record events based on both coordinates and wid-
gets while providing solid usability, SARA introduces a novel self-
replay mechanism, breaking a typical recording phase into two
sub-phases. The goal of the first phase is to record events based on
coordinates, which does not introduce much overhead and hence
provides good user experience. The goal of the second phase is to
augment the events recorded in the previous phase with relevant
widgets information. Specifically, SARA replays the events automat-
ically on the recording device, and efficiently identifies the widgets
under interactions. The extra overhead introduced in the second
phase is transparent for testers. To this end, SARA is able to record
events based on both coordinates and widgets while preserving
good user experience.

It is worth noting that the self-replay mechanism can be easily
incorporated in existing record-and-replay tools. For example, it
can be added at the end of recording phase of Mobiplay [33] so that
the events recorded by MobiPlay come to be both coordinate- and
widget-sensitive.

3.3 Adaptive Replay
Although all events are recorded and the motion events are even
augmented with widget information, it still remains a challenging
task to replay motion events on different devices. The main reasons
are as follows. First, the view hierarchy in the same context of

92

ISSTA ’19, July 15–19, 2019, Beijing, China Jiaqi Guo, Shuyue Li, Jian-Guang Lou, Zijiang Yang, and Ting Liu

Recorder

Parser
Replayer

Widget Recognizer

Coordinate Transformer

Replayer

Candidate Recognizer

Recording Phase Self-Replaying Phase Replaying Phase

Developer/Testers

Record Module Self-Replay Module Replay Module

Replay Agent Replay Agent

Coordinate-
sensitive Events

Coordinate- and Widget-
sensitive Events

Figure 1: The workflow of SARA

an app usually varies on different devices especially when there
are scrollable widgets in the hierarchy. The number of items in a
scrollable widget is closely related to screen size. For example, there
can be seven visible items in a scrollable widget on the recording
device, but only the first five of them are visible on a device with a
smaller screen size. Second, for some high-level motion gestures
like swipe, the widget information is still not enough for an accurate
replay as the trajectory of the swipe also matters, especially for
those drawing scenarios. Finally, breaking changes in UI layout are
occasionally observed on different devices.

To address these problems, an adaptive replay method is pro-
posed. In particular, SARA replays events by heuristically searching
for widgets, e.g., automatically swiping scrollable widgets, and
transforming coordinates based on the screen parameters of the
replaying device to adapt to layouts on different devices.

4 IMPLEMENTATION
In this section, we first illustrate the overall three-phase workflow
of SARA. Then we demonstrate the implementation of the three
phases in detail.

4.1 SARA Overview
SARA operates in a three-phase process in order to record and re-
play. Figure 1 depicts the workflow of SARA. In the recording phase,
SARA records all input data including motion, key, and sensor in-
puts, and parses them into events. Then in the self-replaying phase,
SARA augments the recorded events with relevant widgets data
through self-replay. That is, SARA automatically replays the events
on the recording device and identifies the widgets under interac-
tions. Finally in the replaying phase, SARA heuristically searches
for widgets and conducts coordinate transformations based on the
screen parameters of the replaying device during replay.

4.2 Recording Phase
The goal of this phase is to precisely record inputs and the timing
between two consecutive inputs. SARA accomplishes the goal with
its Record Module that consists of Recorder and Parser.

Recorder. Recorder focuses on capturing rich sources of inputs.
As discussed in Section 3.1, SARA records input data in the applica-
tion layer by applying dynamic instrumentation technique. Typi-
cally, inputs of Android apps can be grouped into three categories,
namely, motion, key, and sensor. In the following, we describe

how Recorder captures each of the three categories of input in the
application layer.

4.2.1 Motion Inputs. The services provided by the Android frame-
work deliver motion inputs to the active app. The motion inputs
are then dispatched starting from the top of the view hierarchy of
the app, and then down, until it reaches the target widget. Hence,
to intercept all motion inputs, Recorder dynamically instruments
dispatchTouchEvent method of Activity, Dialog, and View in Popup
Window, recording the input data (e.g., the coordinate, the ac-
tion code) and the time since this phase starts. Note that Recorder
records the motion inputs based on coordinates in this phase. SARA
is able to recognize all sorts of motion gestures in principle as
developers also recognize them in dispatchTouchEvent method.

4.2.2 Key Inputs. Key inputs can be further classified into physical
key inputs (e.g., back, volume up) and soft keyboard inputs. Similar
to motion inputs, Recorder intercepts physical key inputs by dynam-
ically instrumenting dispatchKeyEvent method of Activity and Di-
alog, recording the input data (e.g., the key code) and the time since
this phase starts. Instead, soft keyboard inputs are usually delivered
to the active input method. The input method then delivers inputs
to the active app via Inter-Process Communication. Specifically, the
InputConnection interface provides a communication channel from
the input method to the app that is receiving the inputs. Hence,
Recorder instruments beдinBatchEdit and per f ormEditorAction
of InputConnection to record soft keyboard input data (e.g., the
input content, the text view that is receiving input). Note that for
WebView, Recorder captures key input data by registering an input
listener in web pages.

4.2.3 Sensor Inputs. Smartphones provide a richer set of sensors
than desktop/server machines. They can be classified into low-level
sensors and high-level sensors [20]. Low-level sensors include ac-
celerometer, gravity, gyroscope, etc. Developers are able to retrieve
real-time low-level sensors inputs by overwriting onSensorChanдed
method of SensorEventListener . Hence, Recorder intercepts the
method onSensorChanдed to record low-level sensor data. As for
high-level sensors such as GPS, Android provides rich APIs to
handle each kind of input. For example, when the GPS/location
is changed, the Android framework delivers a message to Locat-
ionListener to notify the app. Developers are able to handle the
change of location by overwriting the onLocationChanдed method
of LocationListener . Therefore, Recorder also interceptsonLocation-
Chanдed to record location data.

93

SARA: Self-Replay Augmented Record and Replay for Android in Industrial Cases ISSTA ’19, July 15–19, 2019, Beijing, China

Note that the methods to be instrumented may not be loaded
in memory when the phase starts. Recorder, therefore, also instru-
ments the loadClass method of ClassLoader so that it can perform
instrumentation once the method is loaded.

Parser. Input data in the application layer is high-level, making
it easy to be parsed into human-readable events. For example, two
consecutive motion inputs that share the same coordinates and the
same time when the user pressed down, or down time for short,
can be grouped together. Based on the time elapsed since down
time, the grouped inputs can be parsed into either a tap or a long
tap. In particular, Parser follows the official Android development
guideline [14] to parse motion inputs, key inputs, and sensor inputs.
We define the parsing results of Parser as events, including motion
events, input events, and sensor events. In addition, the timing
between events can be precisely calculated by Parser as Recorder
records the time since the recording phase starts when the input is
captured.

4.3 Self-Replaying Phase
The goal of this phase is to augment the motion events with relevant
widgets data through self-replay. SARA achieves the goal with a Self-
Replay Module that consists of Candidate Recognizer and Replayer.
Algorithm 1 outlines the process of this phase. It takes the recorded
events in the recording phase as input and outputs the augmented
events.

Candidate Recognizer. Candidate Recognizer is responsible
for recognizing the widgets under interactions and generating a
unique identifier for each of the widgets so that they can be uniquely
recognized in the following replaying phase. Before replaying a
motion event, Candidate Recognizer recognizes candidate widgets
in the view hierarchy of an app (line 5). If the coordinate of the
event lies in the region of a widget (determined by the position and
size of the widget), then this widget is regarded as a candidate. The
number of candidates is usually larger than one because overlaps
among widgets usually occur and the view hierarchy lacks of the
order of overlapped widgets. Hence, to deterministically recognize
the widget under interaction, Candidate Recognizer performs an
instrumentation on each candidate to record whether it receives
an input or not. The last widget that receives the motion input is
regarded as the target widget (line 7). Once the target widget is
recognized, Candidate Recognizer generates an unique identifier for
it (line 8). In particular, Candidate Recognizer searches a shortest
xpath in the view hierarchy to uniquely identify the target widget
in a bottom-up manner (lines 16-29). This xpath eventually serves
as the identifier for the widget.

Replayer. Replayer is responsible for replaying events on the
recording device. In terms of motion events and key events, Re-
player utilizes UIAutomator [11] to replay these events as it pro-
vides a set of APIs to perform interactions on apps, such as swipe,
press key, and set text. As for sensor events, Android does not pro-
vide any tools to inject sensor events to an app. But we find that
onSensorChanдed method of SensorEventListener will be called
when there is a reading from a sensor even if the sensor data is
not changed [16]. In addition, the frequency of reading is config-
ured in the app. Hence, to replay low-level sensor inputs, Replayer
makes an assumption that the frequency remains the same during

Algorithm 1: Self-Replay
Input :Recorded events E in recording phase
Output :Augmented eventsM
Component :Candidate Recognizer CRecognizer,

Replayer Replayer

1 letM be a list of events (initialized as empty);
2 Replayer.performSensorEvent(E);
3 foreach event e ∈ E do
4 if e is motion event then
5 CRecognizer.recognizeCandidates(e);
6 Replayer.performMotionEvent(e);
7 w = CRecognizer.targetWidget();
8 i = CRecognizer.generateIdentifier(w);
9 n = new MotionEvent(w , e , i);

10 M←M ∪ {n};
11 else if e is key event then
12 Replayer.performKeyEvent(e , v);
13 M←M ∪ {e};
14 sleep(e);
15 return M;

16 Procedure generateIdentifier(v ,w)
17 let i be an identifier forw (initialized as empty string);
18 P = findParents(v ,w);
19 c = w ;
20 foreach parent p ∈ P do
21 s = findChildren(p, c .text , c .description, c .packaдe ,

c .resourceId);
22 if s .lenдth > 0 then
23 i ← i+ generateXpath(c .text , c .description,

c .packaдe , c .resourceId , indexOf(s , c));
24 else
25 i ← i+ generateXpath(c .text , c .description,

c .packaдe , c .resourceId);
26 if isUnique(v , i) then
27 break;
28 c ← p;
29 return i;

replay. Based on this assumption, Replayer dynamically instru-
ments the onSensorChanдed method and replaces the read sensor
data with the recorded data in real-time. As for high-level sensor
inputs such as GPS, similarly, Replayer dynamically instruments
onLocationChanдed of LocationListener and replaces the location
data with the recorded data. Therefore, the dynamic instrumenta-
tion technique enables SARA to replay sensor inputs in absence of a
custom OS and the source code which is usually a must in existing
record-and-replay tools [20, 33].

4.4 Replaying Phase
The goal of this phase is to replay events on different devices with
diverse screen sizes and OS versions. SARA achieves the goal with

94

ISSTA ’19, July 15–19, 2019, Beijing, China Jiaqi Guo, Shuyue Li, Jian-Guang Lou, Zijiang Yang, and Ting Liu

Algorithm 2: Replay motion events in replaying phase
Input :Widget unique identifier i,

Motion event e,
dpi of the recording device sdpi,
dpi of the replaying device tdpi

Component :Widget RecognizerWRecognizer,
Coordinate Transformer Transformer,
Replayer Replayer

1 w =WRecognizer.recognize(i);
2 if w is null then
3 t = Transformer.transform(e, sdpi, tdpi);
4 else
5 t = Transformer.widgetTransform(w , e, sdpi, tdpi);
6 Replayer.performMotionEvent(t , e);

7 Procedure Transformer.transform(e , sdpi , tdpi)
8 let T be a list of coordinates (initialized as empty) ;
9 foreach coordinate c ∈ e .abs_coordinates do

10 x_dp, y_dp = px2dp(c .x , sdpi), px2dp(c .y, sdpi);
11 x_px , y_px = dp2px(x_dp, tdpi), dp2px(y_dp, tdpi);
12 T← T ∪ {(x_px ,y_px)}
13 return T;

a Replay Module, which consists of Widget Recognizer, Coordinate
Transformer and Replayer. Replayer in this module is the same as
that in the Self-Replay Module. What sets the Replay Module apart
is that in this replaying phase motion events are replayed based
on widgets and transformed coordinates. Algorithm 2 outlines the
replay process of a motion event in this phase. Widget Recognizer
first recognizes the target widget (line 1). If the widget is managed to
be recognized, Coordinate Transformer transforms the coordinates
relative to the widget based on the screen size and the pixel density
of the replaying device. Otherwise, Coordinate Transformer simply
transforms the coordinates relative to the screen (lines 2-5). Finally,
Replayer performs the events based on the transformed coordinates
(line 6).

Widget Recognizer. Widget Recognizer is responsible for rec-
ognizing the widget. Specifically, Widget Recognizer first recog-
nizes the target widget in the view hierarchy with its unique identi-
fier generated in the self-replaying phase. WhenWidget Recognizer
fails to recognize the target widget, it tries to search for the widget
by automatically swiping scrollable widgets in the view hierarchy.

Coordinate Transformer. The basic idea behind Coordinate
Transformer is that it tries its best to preserve the trajectory and the
motion distance on the replaying device (lines 7-13). Specifically,
dpi (dots per inch) refers to the physical density of the pixel on the
screen. Procedure px2dp converts pixel (px) to density-independent
pixel (dp) which is a commonly used distance unit in Android as it
preserves the visible size or distance on devices with different pixel
densities. Procedure dp2px instead performs the reverse conversion.

4.5 Tool Implementation
SARA is implemented as a desktop application that can run on both
Windows and Linux operating systems. Specifically, the Recorder in

Table 2: Overview of phones used in evaluations.

Phone Resolution Dpi Size (inch) OS Version
RedMi 1s 720 × 1280 320 4.7 7.0.1
Samsung Galaxy A8 1080 × 1920 480 5.7 6.0.1
Samsung Galaxy A9 Star Lite 1080 × 2220 420 6.0 8.0.0

the Record Module of SARA is mainly implemented with Frida [2], a
cross-platform dynamic instrumentation toolkit , which is capable
of instrumenting applications without root access. Replayer in the
Self-Replay Module and Replay Module is mainly implemented
with the python wrapper of Android uiautomator2 [6] and Frida.
Both Candidate Recognizer and Widget Recognizer heavily rely on
the view hierarchy, which is extracted by both uiatuomator2 and
ADB command adb shell dumpsys activity top.

5 EVALUATION
In this section, we perform evaluations of SARA in terms of its effec-
tiveness in recording and replaying events, and the overhead of it.
Following previous works [10, 33], we evaluate SARA on recording
and replaying events on the same device. In addition, we evalu-
ate SARA on replaying events on different devices, since it allows
developers to test apps on various devices at once, especially in
regression testing settings. To this end, we investigate the following
three research questions:
RQ1. How effective is SARA in recording and replaying events on
the same device?
RQ2.How effective is SARA in replaying events on different devices
with diverse screen sizes and OS versions?
RQ3. What is the time and space overhead of SARA?

5.1 Evaluation Setup
We conduct evaluations on 3 real phones as listed in Table 2. We
sample 53 top-recommended apps with the highest numbers of
downloads from each category in Google Play, the official applica-
tion store for Android OS, as listed in Table 3. Sampled apps are
required to be compatible with at least two of our phones. As shown
in the table, each app has at least 1 million installs, and these apps
span across 24 different categories, demonstrating the represen-
tation of these apps. For each sampled app, we further identify 5
common usage scenarios from its description in Google Play and
our hands-on experiences in using the app. For example, we regard
as the 5 common scenarios for app Twitter, “Create a post”, “Search
people”, “Like and comment”, “Edit profile”, and “Send message”.
The 265 scenarios cover each source of input to Android. Detailed
descriptions of scenario and screenshots along with the source code
of SARA are available on SARA’s website [4].

For RQ1, SARA is used to record and replay each common usage
scenario on the same device. To establish baselines, we also evalu-
ate appetizer [3] and RERAN [10], which are state-of-the-practice
record-and-replay tools for Android as reported in the study [28].
We do not evaluate other recently proposed and publicly available
tools like Espresso [13] and Culebra [1] because they either require
the source code of an app or introduce large time overhead, which
prevents us from effective evaluation on industrial apps in large
scale. Both appetizer and RERAN record inputs by reading logs in
/dev/input/event* files. What sets appetizer apart is that it does not

95

SARA: Self-Replay Augmented Record and Replay for Android in Industrial Cases ISSTA ’19, July 15–19, 2019, Beijing, China

Table 3: Overview of selected applications and evaluation re-
sults of recording and replaying events on the same device.
‘#Install’ shows the number of installs of an app according to
Google Play (‘m’ and ‘b’ indicates million and billion). ‘Size’
shows the size of an app (MB).

App name Category #Install Size SA. ap. RE.

Accuweather Weather 50m+ 34 5 1 0
Adobe Acrobat Reader Productivity 10m+ 19 4 1 0
Alipay Finance 1m+ 62 2 4 0
BBC News News & Magzine 10m+ 15 5 3 0
Booking Travel & Local 100m+ 31 5 1 0
Citymapper Maps & Navigation 5m+ 13 5 3 0
CNN News & Magzine 10m+ 31 5 2 0
Daylio Lifestyle 5m+ 9 5 5 1
Drugs.com Medical 1m+ 23 2 5 0
eBay Shopping 10m+ 20 5 3 0
ESPN Sports 10m+ 24 4 2 1
Fackbook Social 1b+ 70 0 3 1
File Commander Business 100m+ 16 4 1 0
Flow Flee Game 100m+ 11 5 2 0
Gmail Communication 1b+ 22 3 5 0
GoodRx Medical 1m+ 12 4 4 0
Google Calculator Tools 10m+ 1 5 2 1
Google Chrome Communication 1b+ 42 5 5 2
Google Photos Photography 1b+ 31 5 4 2
Google Translate Tools 50m+ 14 4 2 3
Google Wallpapers Personalization 50m+ 9 5 2 0
Instagram Social 1b+ 27 5 5 3
Go Music Music & Audio 50m+ 23 5 0 2
Investing.com Finance 5m+ 20 3 5 0
Keep Trainer Health & Fitness 1m+ 21 4 3 1
Kindle Books & Reference 1b+ 52 4 1 1
KFC Food & Drink 10m+ 58 5 4 0
LinkedIn Social 100m+ 33 5 5 1
McDonald Food & Drink 10m+ 49 4 4 0
MSN Weather Weather 1m+ 8 5 3 0
NBA App Sports 10m+ 23 5 4 0
OneDrive Productivity 50m+ 48 4 3 1
Onenote Productivity 100m+ 71 4 2 2
Period Calendar Health & Fitness 1b+ 13 5 3 0
QQ Music Music & Audio 5m+ 49 4 5 0
Realtor.com Real Estate House & Home 10m+ 12 5 4 0
Redfin Real Estate House & Home 1m+ 20 4 4 0
SBB Mobile Maps & Navigation 1m+ 24 4 1 0
Sketch Art & Design 50m+ 21 5 1 0
Snapseed Photography 50m+ 28 5 2 0
Steam Entertainment 10m+ 5 5 5 0
Taobao Shopping 10m+ 75 4 5 1
TED Education 10m+ 18 3 5 0
Textgram Art & Design 10m+ 20 5 2 0
Trivago Hotel Search Travel & Local 50m+ 10 4 4 0
Twitter News & Magazines 5b+ 30 4 5 3
VLC for Android Video 10m+ 16 4 1 1
Wallpapers HD Personalization 1m+ 3 5 0 0
Walmart Shopping 10m+ 51 4 2 0
Wechat Communication 100m+ 59 4 5 1
WhatsApp Communication 10b+ 30 5 3 3
Wikipedia Books & Reference 10m+ 19 5 3 0
Youtube Video 1b+ 21 4 2 0

Total 228 161 29

require root access and it supports replaying events on different
devices. We regard the replay as correct if and only if the Externally
Visible State is the same, where Externally Visible State is the subset
of app state that is viewed by users [20]. We manually check the
External Visible States in replaying phase to assess the correctness
of a replay. Evaluations are conducted on the Galaxy A8 device.

For RQ2, SARA is used to record scenarios on one device and
replay them on the remaining two devices. We compare SARA with
appetizer [3] for its capability in recording and replaying events
on devices that share the same display aspect ratio. To systemati-
cally study the effectiveness of SARA and appetizer, we randomly
sample 42 scenarios that are replayable with both of them on the
same device. Then, we record the sampled scenarios on RedMi 1s

Table 4: Overview of the main causes of failures of SARA in
recording and replaying events on the same devices.

Phase Main Cause #Scenarios Total

Recording

Incorrect soft keyboard input 7

20
Instrumentation failure 5
Implementation error 5
WebView failure 3

Self-Replaying
Imprecise timing between events 7

11Unsupported screen orientation 2
Swipe gesture failure 2

Replaying Non-deterministic states of app 6 6

and Samsung Galaxy A8, respectively, and replay events on the re-
maining two devices. The Externally Visible State usually varies on
devices with different screen sizes. Hence, in this study, we regard
the replay as correct if and only if all recorded events are triggered
on corresponding widgets in order.

For RQ3, we measure the time and space overhead of SARA by
running SARA on 36 randomly sampled scenarios that are replayable
with SARA. Specifically, in order to measure the time overhead, we
first record the original runtime of a scenario. Then, we compare
it with the runtime of the scenario in the recording phase and
replaying phase of SARA, respectively. As for the space overhead,
we measure the size of event logs generated in the recording phase
and the log rate. Evaluations are conducted on the Samsung Galaxy
A8 device.

5.2 Effectiveness in Recording and Replaying
Events on the Same Device

Table 3 shows the evaluation results of SARA (“SA.”), appetizer (“ap.”)
and RERAN (“RE.”) in recording and replaying scenarios on the
Samsung Galaxy A8. Digit in a table cell of the last three columns
indicates the number of scenarios of an app that a tool manages
to record and replay. Table cells with gray background indicate
the highest value compared with other tools. SARA, appetizer, and
RERANmanage to record and replay 86.0%, 60.7%, and 10.9% of 265
common usage scenarios on the same device, respectively. It is clear
that SARA achieves the best performance. RERAN achieves much
lower performance than the other tools because it usually halts
during a replay and produces error messages such as “Could not
open /dev/input/event0, Too many open files”. This is a well-known
problem of RERAN but no patches in its repository1 has fixed the
problem yet. As for appetizer, it fails to record the physical key
inputs, e.g., tap a back button, and it usually omits several events
during a replay.

Developers from WeChat do not favor instrumentation as they
are concerned about the compatibility between instrumentation
tools and the app. But as we show in the table, SARA is compatible
withWeChat and all other sampled industrial apps except Facebook,
which relieves their concerns to some extent.

To understand the source of failures of SARA, we analyze all the
fail cases and summarize the main causes of failures as shown in
Table 4.

1https://github.com/lorenzogomez/RERAN

96

https://github.com/lorenzogomez/RERAN

ISSTA ’19, July 15–19, 2019, Beijing, China Jiaqi Guo, Shuyue Li, Jian-Guang Lou, Zijiang Yang, and Ting Liu

Failures in Recording Phase. There are 20 cases where SARA
fails to record correct inputs. Specifically, SARA fails to instrument
Facebook, accounting for 5 fail cases. There are 3 cases where SARA
fails to record special soft keyboard inputs in WebView, e.g., tap a
search key in the keyboard, because such inputs are not delivered
to the listener registered in a web page. In another 7 cases, SARA
fails to record the correct soft keyboard inputs. The reasons are
two-folds. Firstly, the instrumentation tool, Frida, fails to process
classes that implement the Interface android .text .Editable which
provides rich methods to process input string. We have opened an
issue for this problem in the issue tracker of Frida but have not yet
received a reply. We try to infer input with several heuristic strate-
gies to bypass the problem, but in some cases we still miss inputs
from the soft keyboard, resulting in 5 failures. Secondly, apps like
OneNote support rich text editing by integrating a rich text editor.
There are in fact many ways to implement a rich text editor. SARA
currently only supports those based on android .widдet .TextView ,
consequently resulting in 2 failures. The rest 5 cases are due to
our implementation in recording the motion inputs inside a Popup
Window.
Failures in Self-Replaying Phase. There are 11 cases where
SARA fails to replay events in the self-replaying phase. In 7 cases,
SARA fails to capture the precise timing to replay a motion event
during a self-replay because in the self-replaying phase SARA instru-
ments candidate widgets before performing a motion event. This
inevitably introduces time overhead. One possible way to solve
the problem is to deduct the average time overhead introduced by
the instrumentation during self-replay between events. We leave
it as our future work. Current implementation of SARA does not
support replaying motion events on a rotated screen, which causes
another 2 failures. The rest 2 fail cases are caused by the problem
of uiautomator2 in performing swipe gestures.
Failures in Replaying Phase. The 6 fail cases in the replaying
phase are mainly caused by the nondeterministic states of an app.
For example, in SBB Mobile which shows available bus tickets in
real time, SARA fails to recognize the target widget as the state of
it changes continuously. How to deal with the nondeterministic
states of an app under test remains an open question in community.

5.3 Effectiveness in Replaying Events on
Devices with Different Screen Sizes and OS
Versions

Table 5 shows the sampled 42 scenarios that are replayable with
both SARA and appetizer. When recording scenarios on the RedMi
1s, SARAmanages to replay 41 and 34 of them on the Galaxy A8 and
Galaxy A9, respectively. appetizer manages to replay 31 scenarios
on the Galaxy A8. appetizer, however, does not support replaying
scenarios on the Galaxy A9 since A9 has different display aspect
ratio with RedMi 1s. When recording scenarios on the Galaxy A8,
SARA manages to replay 38 and 32 of them on the RedMi 1s and
Galaxy A9, respectively, while appetizer manages to replay 30 sce-
narios on the RedMi 1s. SARA is more effective than appetizer in
replaying scenarios on different devices in both evaluation settings.

During evaluations, we find that replaying scenarios on the
RedMi 1s and Galaxy A8 is much simpler than on the Galaxy A9.
Even though RedMi 1s and Galaxy A8 vary in dpi and screen sizes,

Figure 2: For the app Google Chrome, we select the second
item during a record on the RedMi 1s (left). During a replay
on the Galaxy A8 (right), we find that the item is prioritized
to the first one. appetizer fails to replay the selection as the
event it recorded is insensitive to widget. SARA instead suc-
cessfully replays the selection.

Figure 3: The layouts of Google Calculator on the Galaxy A8
(left) and Galaxy A9 (right) varies greatly.

the layouts of an app on them are roughly the same. Hence, scaling
recorded coordinates with respect to screen resolution works well
on these two devices. In fact, appetizer heavily relies on this scal-
ing technique to support replaying events on multiple devices. In
contrast to appetizer, SARA first tries to search for the widgets and
then transforms the coordinates relative to the target widget before
performing a motion event, making it more robust in dealing with
the state differences of an app in replaying phase. Figures 2 demon-
strates the robustness of SARA through an illustrative example.

When replaying events on the Galaxy A9, we find that the lay-
outs of an app are usually different from that on the RedMi 1s and
Galaxy A8, indicating that purely scaling recorded coordinates is
error-prone during a replay. Identifying the widgets under inter-
actions and conducting coordinate transformation based on them
can resolve the problem to some extent. Hence, SARA manages to
replay most of the scenarios on the Galaxy A9.

We analyze the 10 scenarios that are recorded on the Galaxy
A8 and SARA fails to replay on the Galaxy A9. The main cause
of failures is that SARA fails to identify the correct widgets under
interactions in the replaying phase. Seven of them are due to inac-
curate view hierarchies extracted by uiautomator2 [6]. Since SARA
relies heavily on the view hierarchy to find candidate widgets in the
self-replaying phase, it can hardly recognize the correct widgets if
none of the candidates are correct. Other factors accounting for the
failures include breaking change in layout (as shown in Figure 3),
nondeterministic state of the app (the target widget is not always

97

SARA: Self-Replay Augmented Record and Replay for Android in Industrial Cases ISSTA ’19, July 15–19, 2019, Beijing, China

Table 5: Evaluation results of replaying events on devices with different screen sizes and OS versions.

App name Scenario
RedMi 1s Galaxy A8

Galaxy A8 Galaxy A9 RedMi 1s Galaxy A9
SA. ap. SA. ap. SA. ap. SA. ap.

Accuweather Set units ✓ ✗ ✓ ✓ ✓ ✓
Adobe Acrobat Reader Change modes ✓ ✓ ✓ ✓ ✓ ✓
BBC Edit my news ✓ ✗ ✓ ✓ ✗ ✗
Booking Sort hotels ✓ ✓ ✓ ✓ ✓ ✓
CNN Save stories ✓ ✓ ✓ ✓ ✓ ✓
Citymapper Get me somewhere ✓ ✓ ✗ ✗ ✓ ✗
eBay Add to cart ✓ ✗ ✓ ✓ ✗ ✓
ESPN Add game alert ✓ ✓ ✓ ✓ ✓ ✓
File Commander Manage category ✓ ✗ ✓ ✓ ✗ ✓
Flow Flee Play 8 * 8 ✓ ✓ ✗ ✗ ✓ ✗
GoodRx Search for condition ✓ ✓ ✓ ✓ ✓ ✓
Google Calculator Change answer format ✓ ✓ ✗ ✓ ✓ ✗
Google Chrome Search bookmarks ✓ ✗ ✓ ✓ ✗ ✓
Google Translate Translate ✓ ✓ ✓ ✓ ✓ ✓
Google Wallpapers Visit art Wallpapers ✓ ✗ ✓ ✓ ✓ ✓
Instagram Search peopole ✓ ✗ ✗ ✓ ✓ ✗
Investing.com Browse market ✓ ✓ ✓ ✓ ✓ ✓
Keep Trainer Add a plan ✓ ✓ ✓ ✓ ✓ ✓
KFC Order meal ✓ ✓ ✗ ✓ ✓ ✗
LinkedIn Edit profile ✓ ✓ ✓ ✓ ✓ ✓
MSN Weather Check weather ✓ ✓ ✓ ✓ ✓ ✓
NBA Change mode ✓ ✓ ✓ ✗ ✓ ✓
OneDrive Manage Folder ✓ ✗ ✓ ✓ ✗ ✓
OneNote New a section ✓ ✓ ✓ ✓ ✗ ✓
Period Calendar Add a note ✓ ✓ ✓ ✓ ✓ ✓
QQ Music Post comments ✓ ✓ ✓ ✓ ✗ ✓
Redfin Real Estate Filter ✓ ✓ ✓ ✓ ✗ ✓
Realtor.com Real Estate Search houses ✓ ✓ ✓ ✓ ✓ ✓
Sketch Browse my feed ✓ ✗ ✗ ✓ ✗ ✗
Snapseed View Edits ✓ ✓ ✓ ✓ ✗ ✓
Ted Search a topic ✓ ✓ ✓ ✓ ✓ ✓
Textgram Change canvas background ✓ ✓ ✗ ✓ ✓ ✗
Trivago Hotel Search Search hotels ✓ ✓ ✓ ✓ ✓ ✓
Twitter Create post ✓ ✓ ✓ ✓ ✓ ✓
Twitter Like and comment ✓ ✓ ✓ ✓ ✓ ✓
Walmart Sort & filter items ✓ ✓ ✓ ✓ ✓ ✓
WeChat Open photos ✓ ✗ ✓ ✓ ✓ ✓
WeChat Post moment ✓ ✓ ✓ ✓ ✗ ✓
WhatsApp Search message ✓ ✓ ✓ ✓ ✓ ✓
WhatsApp Create group chat ✓ ✓ ✓ ✓ ✓ ✓
Wikipedia Search wikipedia ✓ ✓ ✗ ✓ ✓ ✗
Youtube Search videos ✗ ✗ ✓ ✗ ✗ ✗

Total 41 31 34 38 30 32

shown in the app), and a problem of uiautomator2 in performing
swipe gesture on the device.

5.4 Overhead
Table 6 shows the 36 sampled scenarios replayable with SARA, and
the time and space overhead of SARA on these scenarios. ‘Original
Time’ indicates the original runtime of a scenario without applying
a record-and-replay tool. ‘Time’ in ‘Recording phase’ and ‘Replaying
phase’ headers show the runtime of a scenario in the recording
phase and replaying phase of SARA, respectively.

As shown in the table, the average record and replay overheads
of SARA are 4.29% and 7.07%, respectively. Although SARA applies
the dynamic instrumentation technique, it introduces relatively
low overhead in the recording phase, which is critical in industrial
settings as testers are involved in this phase. As for the replay-
ing phase, we find that the overhead is mainly introduced in the
process of searching for widgets when replaying motion events.
Note that several apps, e.g., ESPN, have overhead of around 10.21%.
Upon investigation, we find that the search for target widgets is

much slower than most cases owing to their deeper depth in view
hierarchy. The time overhead in searching for widgets is closely
related to the complexity of the layout of an app. On average, SARA
achieves low enough time overhead in both the recording phase
and replaying phase.

The last two columns give the space overhead of SARA, including
the size and rate of recorded logs (SARA does not store logs on
phones). As the table illustrates, the average log size of is 77 KB and
the average log rate is 1.78 KB per second. The extremely low space
overhead meets our expectations, since SARA records input data in
the application layer. The size of logs depends on user operations
and duration of the scenarios.

6 DISCUSSION
Threats to Validity. As is the case for most empirical evaluations,
there are both external and constructive threats to validity asso-
ciated with the results we present. In terms of external validity,
our results might not generalize to other industrial apps and other
Android devices. In particular, we only consider 3 real phones, 53

98

ISSTA ’19, July 15–19, 2019, Beijing, China Jiaqi Guo, Shuyue Li, Jian-Guang Lou, Zijiang Yang, and Ting Liu

Table 6: The time and space overhead of SARA.

App name Scenario
Time Space

Original
Time
(sec.)

Recording phase Replaying phase Log size
(KB)

Log rate
(KB/s)Time

(sec.)
Overhead

(%)
Time
(sec.)

Overhead
(%)

Accuweather Check daily weather 49.74 51.42 3.38 52.27 5.09 70 1.41
Adobe Acrobat Reader Add a comment 31.16 31.17 0.03 33.59 7.80 57 1.83
Alipay Start a group chat 38.89 39.30 1.05 39.80 2.34 97 2.49
BBC News Edit my news 33.67 34.87 3.56 36.65 8.85 58 1.72
Booking Search hotel 35.20 38.45 9.23 39.31 8.84 35 0.99
Citymapper Find bus or line 51.13 53.17 3.99 53.30 4.24 73 1.43
CNN Read top news 34.48 35.61 3.28 35.61 3.28 79 2.29
Daylio Add notes 39.77 42.35 6.49 43.30 8.88 34 0.85
ESPN Add a favourite 27.72 29.10 4.98 30.55 10.21 35 1.26
File Commander Manage Category 17.53 19.25 9.81 19.42 10.78 13 0.74
Flow Flee Play 5*5 34.70 36.74 5.88 36.62 5.53 98 2.82
Gmail Search mail 41.72 44.24 6.04 45.11 8.13 124 2.97
GoodRx Pill identifier 44.54 47.98 7.72 48.40 8.67 117 2.63
Google Chrome Search bookmarks 22.11 24.77 12.03 24.12 9.09 100 4.52
Google Photos Search photos 46.71 48.95 4.80 46.81 0.21 77 1.65
Google Translate Translate 49.16 51.32 4.39 51.42 4.60 95 1.93
Instagram Create a post 20.37 21.76 6.82 22.90 12.42 63 3.09
Keep Trainer Begin a workout 51.88 52.77 1.72 55.70 7.36 54 1.04
Kindle Read book 41.40 45.69 10.36 45.63 10.22 44 1.06
McDonald’s Order meals 100.01 100.77 0.76 109.99 9.98 185 1.85
MSN Weather Add favorite city 28.21 28.92 2.52 28.69 1.70 86 2.97
Period Calendar Write a record 53.74 53.88 0.26 58.46 8.78 61 1.14
QQ Music Search music 48.57 49.65 2.22 51.98 7.02 113 2.33
Realtor.com Real Estate Search houses 71.81 72.47 0.92 74.20 3.33 172 2.40
Redfin Real Estate Search houses 28.97 29.62 2.24 30.22 4.31 32 1.10
Sketch New canvas 44.63 47.21 5.78 47.90 7.32 32 0.68
Snapseed Edit with tools 27.56 28.86 4.72 30.85 11.94 27 0.98
Taobao Browse a store 84.29 91.56 8.62 92.26 9.46 186 2.21
TED Watch a video 73.22 75.29 2.83 77.81 6.27 118 1.61
Textgram Create a new canvas 24.88 25.58 2.81 25.88 4.02 17 0.68
Trivago Hotel Search Check hotel 56.73 58.15 2.50 57.70 1.71 112 1.93
VLC for Android Jump to time 43.78 44.97 2.72 45.21 3.27 27 0.62
Wallpapers HD Refresh daily wallpaper 46.35 46.40 0.11 52.45 13.16 61 1.32
Walmart Sort items 48.83 49.24 0.84 52.62 7.76 129 2.64
WeChat Open photos 22.43 24.18 7.78 24.65 9.86 16 0.71
Wikipedia Browse reading list 38.80 39.24 1.13 41.94 8.09 84 2.16
Average 43.19 44.86 4.29 46.18 7.07 77 1.78

industry apps and 265, 42, and 36 common usage scenarios in RQ1,
RQ2 and RQ3, respectively. This limitation is an artifact of complex-
ity involved in figuring out scenarios, setting up environment and
recording scenarios on different devices. To mitigate this threat, we
sample top-recommended apps with the highest numbers of down-
loads from each category in Google Play and figure out scenarios
from the description in Google Play and our hands-on experiences.
The three real phones we select cover the most widely used An-
droid OS versions and screen sizes at the time of writing [12]. We
believe that, given the highly popular industrial apps from broad
categories and the representative phones we select, SARA should
also be applicable to other industrial apps and Android devices. In
terms of constructive validity, there might be errors in the imple-
mentation of SARA. To mitigate this threat, we extensively inspect
the evaluation results.
Limitations. There are still some limitations of SARA. First, hy-
brid apps (apps that are built with a mix of both native and web
technologies) pose steering challenges in recording and replaying

events based on widgets, since that some widgets are rendered by
WebView as HTMLElements, which cannot be found in the view
hierarchy. Second, game apps are usually developed with game
engines (e.g., Unity [37]). Most of the widgets in game apps are
rendered by the game engine, and also cannot be found in the view
hierarchy, making SARA fail to work with these widgets.
Implication.WeChat has been a highly popular industrial-strength
Android app with more than 1 billion monthly active users. The
requests for a reliable record-and-replay tool with desired features
from the WeChat developers are valuable for the research commu-
nity and the industry, which motivates us to design and implement
SARA. Although the motivation of SARA comes from WeChat, the
adoption of SARA does not limit to WeChat. We are looking forward
to working with industrial partners to improve SARA and integrate
SARA into their testing and maintenance process.

REFERENCES
[1] 2019. Culebra. https://github.com/dtmilano/AndroidViewClient/wiki/culebra.
[2] 2019. Frida. https://www.frida.re/.

99

https://github.com/dtmilano/AndroidViewClient/wiki/culebra
https://www.frida.re/

SARA: Self-Replay Augmented Record and Replay for Android in Industrial Cases ISSTA ’19, July 15–19, 2019, Beijing, China

[3] 2019. Replaykit. https://github.com/appetizerio/replaykit.
[4] 2019. SARA. https://sites.google.com/view/sara-record-and-replay.
[5] 2019. Selenium. https://www.seleniumhq.org/.
[6] 2019. uiautomator2. https://github.com/openatx/uiautomator2.
[7] Quan Do, Guowei Yang, Meiru Che, Darren Hui, and Jefferson Ridgeway. 2016.

Regression Test Selection for Android Applications. In Proceedings of the Interna-
tional Conference on Mobile Software Engineering and Systems. ACM, New York,
NY, USA, 27–28. https://doi.org/10.1145/2897073.2897127

[8] Yue Duan, Mu Zhang, Abhishek Vasisht Bhaskar, Heng Yin, Xiaorui Pan, Tongxin
Li, Xueqiang Wang, and X Wang. 2018. Things you may not know about android
(un) packers: a systematic study based onwhole-system emulation. In 25th Annual
Network and Distributed System Security Symposium, NDSS. 18–21.

[9] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M.
Chen. 2002. ReVirt: Enabling Intrusion Analysis Through Virtual-machine Log-
ging and Replay. ACM SIGOPS Operating Systems Review 36, SI (2002), 211–224.
https://doi.org/10.1145/844128.844148

[10] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and ToddMillstein. 2013. RERAN:
Timing- and Touch-sensitive Record and Replay for Android. In Proceedings of
the 2013 International Conference on Software Engineering. IEEE Press, Piscataway,
NJ, USA, 72–81. http://dl.acm.org/citation.cfm?id=2486788.2486799

[11] Google. 2019. Android UI Automator. https://developer.android.com/training/
testing/ui-automator.

[12] Google. 2019. Distribution dashboard. https://developer.android.com/about/
dashboards/.

[13] Google. 2019. Espresso Test Recorder. https://developer.android.com/studio/test/
espresso-test-recorder.

[14] Google. 2019. GestureDetector. https://developer.android.com/reference/android/
view/GestureDetector.

[15] Google. 2019. monkeyrunner. https://developer.android.com/studio/test/
monkeyrunner/.

[16] Google. 2019. SensorEventListener. https://developer.android.com/reference/
android/hardware/SensorEventListener.htm.

[17] Google. 2019. Support different screen sizes. https://developer.android.com/
training/multiscreen/screensizes.

[18] MatthewHalpern, Yuhao Zhu, Ramesh Peri, and Vijay Janapa Reddi. 2015. Mosaic:
cross-platform user-interaction record and replay for the fragmented android
ecosystem. In 2015 IEEE International Symposium on Performance Analysis of
Systems and Software. IEEE, Philadelphia, PA, USA, 215–224. https://doi.org/10.
1109/ISPASS.2015.7095807

[19] Mouna Hammoudi. 2016. Regression Testing of Web Applications Using
Record/Replay Tools. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, New York, NY, USA,
1079–1081. https://doi.org/10.1145/2950290.2983942

[20] Yongjian Hu, Tanzirul Azim, and Iulian Neamtiu. 2015. Versatile Yet Light-
weight Record-and-replay for Android. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications. ACM, New York, NY, USA, 349–366. https://doi.org/10.1145/
2814270.2814320

[21] Imaginea. 2019. Bot-bot. http://imaginea.github.io/bot-bot/.
[22] Bo Jiang, Yu Wu, Yongfei Zhang, Zhenyu Zhang, and Wing-Kwong Chan. 2018.

ReTestDroid: Towards Safer Regression Test Selection for Android Application.
In 2018 IEEE 42nd Annual Computer Software and Applications Conference, Vol. 01.
235–244. https://doi.org/10.1109/COMPSAC.2018.00037

[23] Mona Erfani Joorabchi, Ali Mesbah, and Philippe Kruchten. 2013. Real Challenges
in Mobile App Development. In 2013 ACM / IEEE International Symposium on
Empirical Software Engineering and Measurement. IEEE, Baltimore, MD, USA,

15–24. https://doi.org/10.1109/ESEM.2013.9
[24] Milan Jovic, Andrea Adamoli, Dmitrijs Zaparanuks, and Matthias Hauswirth.

2010. Automating Performance Testing of Interactive Java Applications. In
Proceedings of the 5th Workshop on Automation of Software Test. ACM, New York,
NY, USA, 8–15. https://doi.org/10.1145/1808266.1808268

[25] Shahedul Huq Khandkar, S. M. Sohan, Jonathan Sillito, and Frank Maurer. 2010.
Tool Support for Testing Complex Multi-touch Gestures. In ACM International
Conference on Interactive Tabletops and Surfaces. ACM, New York, NY, USA, 59–68.
https://doi.org/10.1145/1936652.1936663

[26] Pavneet Singh Kochhar, Ferdian Thung, Nachiappan Nagappan, Thomas Zim-
mermann, and David Lo. 2015. Understanding the Test Automation Culture of
App Developers. In 2015 IEEE 8th International Conference on Software Testing,
Verification and Validation. IEEE, Graz, Austria, 1–10. https://doi.org/10.1109/
ICST.2015.7102609

[27] Pingfan Kong, Li Li, Jun Gao, Kui Liu, TegawendÃľ F. BissyandÃľ, and Jacques
Klein. 2019. Automated Testing of Android Apps: A Systematic Literature Review.
IEEE Transactions on Reliability 68, 1 (2019), 45–66. https://doi.org/10.1109/TR.
2018.2865733

[28] Wing Lam, Zhengkai Wu, Dengfeng Li, Wenyu Wang, Haibing Zheng, Hui Luo,
Peng Yan, Yuetang Deng, and Tao Xie. 2017. Record and Replay for Android: Are
We There Yet in Industrial Cases?. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering. ACM, New York, NY, USA, 854–859.
https://doi.org/10.1145/3106237.3117769

[29] Mario Linares-VÃąsquez, Carlos Bernal-Cardenas, Kevin Moran, and Denys
Poshyvanyk. 2017. How do Developers Test Android Applications?. In 2017 IEEE
International Conference on Software Maintenance and Evolution. IEEE, Shanghai,
China, 613–622. https://doi.org/10.1109/ICSME.2017.47

[30] Kevin Moran, Richard Bonett, Carlos Bernal-Cárdenas, Brendan Otten, Daniel
Park, and Denys Poshyvanyk. 2017. On-Device Bug Reporting for Android
Applications. In 2017 IEEE/ACM 4th International Conference on Mobile Software
Engineering and Systems. IEEE Press, Piscataway, NJ, USA, 215–216. https:
//doi.org/10.1109/MOBILESoft.2017.36

[31] Kevin Moran, Mario Linares-Vásquez, Carlos Bernal-Cárdenas, and Denys Poshy-
vanyk. 2016. FUSION: A Tool for Facilitating and Augmenting Android Bug
Reporting. In Proceedings of the 38th International Conference on Software Engi-
neering Companion. ACM, New York, NY, USA, 609–612. https://doi.org/10.1145/
2889160.2889177

[32] Satish Narayanasamy, Gilles Pokam, and Brad Calder. 2005. BugNet: continu-
ously recording program execution for deterministic replay debugging. In 32nd
International Symposium on Computer Architecture. IEEE, Washington, DC, USA,
284–295. https://doi.org/10.1109/ISCA.2005.16

[33] Zhengrui Qin, Yutao Tang, Ed Novak, and Qun Li. 2016. MobiPlay: A Remote
Execution Based Record-and-replay Tool for Mobile Applications. In Proceedings
of the 38th International Conference on Software Engineering. ACM, New York,
NY, USA, 571–582. https://doi.org/10.1145/2884781.2884854

[34] Ranorex. 2019. ranorex. https://www.ranorex.com/mobile-automation-testing/
android-test-automation/.

[35] RobotiumTech. 2019. robotiumrecorder. https://github.com/RobotiumTech/
robotium.

[36] Sudarshan M. Srinivasan, Srikanth Kandula, Christopher R. Andrews, and
Yuanyuan Zhou. 2004. Flashback: A Lightweight Extension for Rollback and
Deterministic Replay for Software Debugging. In Proceedings of the Annual Con-
ference on USENIX Annual Technical Conference. USENIX Association, Berkeley,
CA, USA, 3–3. http://dl.acm.org/citation.cfm?id=1247415.1247418

[37] Unity Technologies. 2019. Unity. https://unity.com.
[38] WeChat. 2019. Wechat. https://play.google.com/store/apps/details?id=com.

tencent.mm.

100

https://github.com/appetizerio/replaykit
https://sites.google.com/view/sara-record-and-replay
https://www.seleniumhq.org/
https://github.com/openatx/uiautomator2
https://doi.org/10.1145/2897073.2897127
https://doi.org/10.1145/844128.844148
http://dl.acm.org/citation.cfm?id=2486788.2486799
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/about/dashboards/
https://developer.android.com/about/dashboards/
https://developer.android.com/studio/test/espresso-test-recorder
https://developer.android.com/studio/test/espresso-test-recorder
https://developer.android.com/reference/android/view/GestureDetector
https://developer.android.com/reference/android/view/GestureDetector
https://developer.android.com/studio/test/monkeyrunner/
https://developer.android.com/studio/test/monkeyrunner/
https://developer.android.com/reference/android/hardware/SensorEventListener.htm
https://developer.android.com/reference/android/hardware/SensorEventListener.htm
https://developer.android.com/training/multiscreen/screensizes
https://developer.android.com/training/multiscreen/screensizes
https://doi.org/10.1109/ISPASS.2015.7095807
https://doi.org/10.1109/ISPASS.2015.7095807
https://doi.org/10.1145/2950290.2983942
https://doi.org/10.1145/2814270.2814320
https://doi.org/10.1145/2814270.2814320
http://imaginea.github.io/bot-bot/
https://doi.org/10.1109/COMPSAC.2018.00037
https://doi.org/10.1109/ESEM.2013.9
https://doi.org/10.1145/1808266.1808268
https://doi.org/10.1145/1936652.1936663
https://doi.org/10.1109/ICST.2015.7102609
https://doi.org/10.1109/ICST.2015.7102609
https://doi.org/10.1109/TR.2018.2865733
https://doi.org/10.1109/TR.2018.2865733
https://doi.org/10.1145/3106237.3117769
https://doi.org/10.1109/ICSME.2017.47
https://doi.org/10.1109/MOBILESoft.2017.36
https://doi.org/10.1109/MOBILESoft.2017.36
https://doi.org/10.1145/2889160.2889177
https://doi.org/10.1145/2889160.2889177
https://doi.org/10.1109/ISCA.2005.16
https://doi.org/10.1145/2884781.2884854
https://www.ranorex.com/mobile-automation-testing/android-test-automation/
https://www.ranorex.com/mobile-automation-testing/android-test-automation/
https://github.com/RobotiumTech/robotium
https://github.com/RobotiumTech/robotium
http://dl.acm.org/citation.cfm?id=1247415.1247418
https://unity.com
https://play.google.com/store/apps/details?id=com.tencent.mm
https://play.google.com/store/apps/details?id=com.tencent.mm

	Abstract
	1 Introduction
	2 Related Work
	3 Design of SARA
	3.1 Recording and Replaying Rich Sources of Input through Dynamic Instrumentation
	3.2 Efficiently Recording Motion Events Based on Widget through Self-Replay
	3.3 Adaptive Replay

	4 Implementation
	4.1 SARA Overview
	4.2 Recording Phase
	4.3 Self-Replaying Phase
	4.4 Replaying Phase
	4.5 Tool Implementation

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Effectiveness in Recording and Replaying Events on the Same Device
	5.3 Effectiveness in Replaying Events on Devices with Different Screen Sizes and OS Versions
	5.4 Overhead

	6 Discussion
	References

