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Abstract
Putting computers into low power mode (e.g., suspend-to-

RAM) could potentially save significant amount of power

when the computers are not in use. Unfortunately, this

is often infeasible in practice because data stored on the

computers (i.e., directly attached disks, DAS) might need to

be accessed by others. Separating storage from computation

by attaching storage on the network (e.g., NAS and SAN)

could potentially solve this problem, at the cost of lower per-

formance, more network congestion, increased peak power

consumption, and higher equipment cost. Though DAS does

not suffer these problems, it is not flexible for power saving.

In this paper, we present DSWITCH, an architecture that, de-

pending on the workload, allows a disk to be attached either

directly or through network. We design flexible workload

migration based on DSWITCH, and show that a wide variety

of applications in both data center and home/office settings

can be well supported. The experiments demonstrate that our

prototype DSWITCH achieves a power savings of 91.9% to

97.5% when a disk is in low power network attached mode,

while incurring no performance degradation and minimal

power overhead when it is in high performance directly

attached mode.

Categories and Subject Descriptors D.4.2 [Storage Man-
agement]: Storage hierarchies

General Terms Design, Performance

Keywords Power proportional, NAS/SAN, Energy, Service

migration, Network, ARM

1. Introduction
Power consumption of computing infrastructure has be-

come one of the major concerns in households, offices,
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and data center environments. Modern PCs support various

low power modes, such as ACPI states S3 (suspend-to-

RAM) and S4 (hibernate) [1]. These low power modes can

significantly reduce the power consumption of a computer

when it is idle, which normally might use up to 60% of the

peak power.

Still, users tend to leave the machines on even when they

are not actively used. Among the reasons why a machine is

left on [38], a main one is the need to access data stored

on its disks. In an office setting, colleagues who work in a

different time zone might want to access shared files, while

background activities such as backup services and virus

scans often need to access the disks during off hours. At

home, family members might want to watch streaming video

on TV or look at photos on tablets, even though the media

files are stored on home PC. Moreover, P2P clients such

as BitTorrent might be downloading files from the Internet.

Though such applications only need minimal computational

power, they still force the PC to be in the wakeup state and

thus consume significant amount of energy.

The situation is similar in data center and enterprise set-

tings. Data center power consumption is undergoing alarm-

ing growth. Study [30] shows that much energy is wasted

by idle servers. Most online services hosted in data centers

show significant diurnal variation in load levels [38]. This

causes low server utilization in the range of only 20-30%

in typical deployments [16, 19]. Virtualization and live

VM migration techniques have been developed to migrate

computing tasks to consolidate servers when workload is

low [13, 17, 23]. However, modern data centers are filled

with commodity servers with their own computational and

storage resources [26]. It is relatively easy to migrate com-

putation transparently, but it is not practical to migrate data

daily for load consolidation.

Directly attached storage (DAS) co-locates storage with

computation. To decouple these two resources, network

storage (such as network attached storage and storage area

network) has long been studied and deployed. Network stor-

age uses dedicated storage servers to make data available on

the network, thus allows computational servers to be taken

offline freely. However, network storage systems come with

their own downsides. Network storage is expensive, often

requires its own dedicated network fabric. The performance
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of network storage is limited by the network performance,

which is often not as good as modern local storage systems

(such as fast SSDs). When mixed with regular network

traffic, networked storage may increase network congestion

and add latency unpredictability. Moreover, for a well pro-

visioned system, network storage may require higher power

during peak load, due to extra energy spent on pushing the

bits through network. Due to these limitations, dedicated

network storage is not a replacement of DAS. At home, even

though cheap NAS solutions are available, most home PCs

still come with local disks for better performance, which

is mostly unused when the PCs are offline. In data centers,

many cloud computing facilities use commodity servers with

directly attached disks, and build network file systems as

well as computation capacity on top of these servers [26].

This paper describes DSWITCH, a novel storage attach-

ment architecture that allows a disk to be operated and

switched between DAS mode and NAS mode, to achieve

high performance under load while still allowing the de-

coupling of storage and computation when idle. When the

workload is high, DSWITCH works in the DAS mode to

provide the performance of a directly attached disk with

negligible power overhead. When the workload is low,

DSWITCH can be switched into the NAS mode, to allow

access of the data stored on the disk through the network,

while the computer sleeps to save power.

We built a DSWITCH prototype leveraging a SATA mul-

tiplexer and an auxiliary low power computer. SATA mul-

tiplexer allows a regular SATA disk to be electrically con-

nected with either the main computer (MC) or the low

power computer (LC), so that the disk can be mounted by

either one (but not simultaneously). MC and LC are both

connected to the network. Both MC and LC can initiate

mode switch and they can wake up each other from sleeping.

Mode switching has minimal impact on other computers.

From a remote host’s point of view, often a mode switch

is just a temporary network service outage. In our prototype,

mode switching takes less than 30 seconds to complete for

most cases. For many workloads such as file sharing and

BitTorrent, reconnection mechanism can help automatically

recover from the temporary failure.

DSWITCH achieves significant power saving when the

workload is low. The low power computer in our prototype

only consumes 2.8 watts in peak load, while the main

computer consumes tens of watts when idle. In our exper-

iments, we find that DSWITCH can save 91.9% to 97.5% of

power while still allowing the machine to be reachable for

lightweight services such as remote desktop connection, P2P

file sharing, video streaming, and background downloading.

This paper makes the following contributions:

• We present DSWITCH, a novel storage attachment ar-

chitecture that combines the benefit of directly attached

and network attached storage. When workload is high,

DSWITCH provides the same high performance as di-

rectly attached storage with negligible power overhead.

When workload is low, DSWITCH allows a computer to

freely enter low power mode to save energy, while still

allowing remote hosts to access data through network.
• We implemented a DSWITCH prototype with off-the-

shelf components and extensively investigated its power

and performance profile.
• We evaluated DSWITCH in multiple application scenar-

ios in home, office and data centers, and find that the

architecture introduces minimal service disruptions and

provides sufficient performance as well as significant

power savings for various practical applications.

2. Why DSWITCH ?
Power consumption has become considerable expenditure of

home/enterprise and data centers [32]. With the price drop of

hardware, power saving would become crucially important.

In order to reduce power consumption of computers, several

power management techniques have been developed over the

years.

Dynamic Voltage and Frequency Scaling (DVFS) tech-

nique adjusts CPU voltage and frequency based on varying

workload. Though CPU becomes power-proportional, it ac-

tually draws only about 25% of the total power for a typical

computer [39]. Other components, such as motherboard,

memory, fans, still consume substantial power, which is

very challenging to be power-proportional. The burgeoning

heterogeneous multi-core processor also suffers the same

problem. Therefore, switching the main computer as a whole

to a low power computer becomes a favourable approach,

especially given the fact that the low power computer is

extremely power-efficient, consuming about the same power

as a PC in S3 state (see Table 1), while providing enough

computational resource for disk service and light-weight

workload.

Modern computers also support Advanced Configuration

and Power Interface (ACPI) [1]. However, though ACPI

state S3 (suspend to RAM) and S4 (hibernation) offer great

reduction in power draw, a machine in S3 or S4 totally

loses the presence on the network, thus cannot provide

service (e.g., storage access) any more. Techniques such as

Wake-on-LAN (WoL) [7], dedicated proxy machine [31],

can wake up a sleeping machine remotely. However, it is

usually overkill to wake up the machine for data access or

light-weight workload. Also this approach does not work

for the typically interactive servers in data centers, most

idle intervals of which are under one second although 60%

fraction of time is idle [30].

Local data access is essential for the performance of

applications in desktop scenario, as well as the efficiency of

computing jobs (e.g., big data analytics) in data centers, due

to its high throughput and low latency. DSWITCH guarantees

this benefit, while also having the remarkable properties of

NAS. That is, DSWITCH can flexibly couples and decouples
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Figure 1: DSWITCH architecture.

storage and computation, which makes it possible to design

much more efficient power saving mechanisms for various

scenarios without introducing additional overhead (see § 4).

3. Design of DSWITCH

DSWITCH is a disk attachment architecture, the design of

which is primarily motivated to achieve the following goals:

• When the workload is low, allow the host computer to

sleep or be turned off to save power, while still main-

taining data accessibility on the network with reasonable

performance.
• When workload is high, achieve the same performance

and power profile as a directly attached disk.
• The switching process should only have minor disruption

on the availability of data and services. More importantly,

it should not cause data corruption on the disk.

In the following discussion, we assume that the disks have

serial ATA (SATA) interface, which is by far the most widely

used interface for hard disks and SSDs. DSWITCH for other

disk interfaces, such as SAS, can be implemented similarly.

3.1 Design Overview
DSWITCH is the co-design of hardware architecture and

software management. On the hardware side, in order to

minimize the modification to current machine, we design

DSWITCH as a plug-in module, connected to the machine

through a SATA cable as shown in Figure 1. Specifically,

DSWITCH sits between a disk and a host computer (i.e.,
MC), and adds an alternative path from the disk to the

network. Inside DSWITCH, there are two main components:

a low-power computer (i.e., LC) and a SATA multiplexer.

The disk is connected to the downstream of the SATA

multiplexer, while the two upstreams connect to LC and MC

respectively. LC has a network interface that connects itself

to the network, it also controls the SATA multiplexer.

DSWITCH works in one of two modes in Figure 2. In

the directly attached mode, the SATA multiplexer connects

the disk to MC directly, guaranteeing high local data access,

while LC can sleep. In the network attached mode, the SATA

Figure 2: State transition.

multiplexer connects the disk to LC, while MC is put to

sleep to save power. We could (but not always need to) take

advantage of the fact that MC’s network interface is inactive

in S3 state, and let LC assume the same network identity

(i.e., name, IP and MAC), in order to reduce disruption of

the services to the external world.

It is challenging to design the software part for this new

hardware platform. First, services on MC should be able to

be offloaded flexibly, even facing heterogenous hardware

and operating systems between MC and LC. Second, the

induced service interruption should also be controlled within

an acceptable range for different scenarios. Therefore, we

design two switch modes: service migration and VM migra-
tion.

Service migration directly migrates services from MC

to LC, which is mainly for light-weight and cross-platform

applications, including CIFS file sharing (Samba)/NFS, Bit-

Torrent, web server, and so on. Since LC is a full blown

computer, it can run many of these standard services without

any issues. Such service migration is often sufficient for

home and office.

VM migration migrates services from MC to another

MC, while LC only serves data access. Because LC has a

vastly inferior CPU with a potentially different instruction

set. It might run a different OS that is not compatible with

the OS on the MC. For platform dependent software or the

services that require high CPU performance (e.g., database

server), another computer with similar configuration as MC

is more preferable. In this case, LC will expose the disk

through a storage protocol such as NFS, iSCSI, and a remote

virtual machine can mount this disk and provide the required

services.

3.2 Switch with Service Migration
It is non-trivial to design a smooth and robust transition

between MC and LC. First, there is no dedicated channel

for them to communicate with each other and coordinate

their actions. Second, they have to use the same network

identity to provide services, which means they cannot be

online simultaneously. Third, their actions should be care-

fully organized to reduce service interruption and avoid data

corruption.

We use the disk as a communication medium which

allows MC and LC to exchange information, such as the list

of to-be-resumed applications and their states. Currently, the

migration is performed on a service-by-service basis. The

programmer has to write the code to generate the script for
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Figure 3: Switch with service migration.

service resuming. It is easy for stateless services, just the

command of starting the service is enough. However, for

stateful services, the script should include state recovery

which needs to be supported by the service (e.g., wget).

This migration design is more general and practical than live

process migration, especially on different CPU architectures.

On the other hand, we relax the restriction that MC and

LC should be online mutually exclusively, since it makes

the switch process very vulnerable. The idea is we give

two different network identities to them, thus, they can

communicate with each other during the switch process,

guaranteeing correct execution or implementing roll-back if

necessary, which greatly narrows the failure window.

The actions of MC and LC are carefully scheduled and

we add necessary parallelism to them, as shown in Figure 3.

The trigger event can be generated by the user or a load

monitoring daemon. Moreover, since MC and LC are not

equal (i.e., only LC controls the SATA multiplexer), the

operation sequences are different in the two directions.

From MC to LC. The steps of MC and LC are shown in

Figure 3(a). The disk is safely removed (using HotSwap! [3]

in Windows or umount in Linux) before switching. In the

whole process, MC need not change its network identity.

For LC, it wakes up after receiving the magic packet. At this

time, it is still using the network identity of its own. Then LC

reconfigures its network identity to be the same as MC, after

making sure that MC has become unreachable. At the same

time, it sends signals through the GPIO pins to the SATA

multiplexer to switch the disk. Then it is able to start the

corresponding services.

From LC to MC. Switching from LC to MC is a little

different from the process above. As shown in Figure 3(b),

when LC receives the switching command, it reconfigures its

network back to its own network identity, and sends a magic

packet to wake up MC. Meanwhile, it stops the services, and

then removes the disk safely and switches the disk back to

MC. At last, LC enters sleep state. On MC’s end, it is waken

up by the magic packet and starts to detect the disk. Then

MC mounts the disk and starts the services.

We guarantee the correct execution of switch operation

through a handshake between MC and LC, and implement

rolling back if failure occurs. Taking switching from MC

to LC for example, after LC wakes up, it builds a socket

connection with MC and reports its healthiness, then MC can

go to sleep. If a failure occurs after this handshake, LC will

execute the reverse switch to roll back.

The operation flow can handle the most common case

when the disk is not used for OS files of MC. For the OS disk,

we have to make sure that the disk is switched to LC after

MC turns into S3 state and that MC is woken up after the

disk is switched back. An alternative approach for dealing

with OS disk would be to run MC root from a RAMdisk,

loaded from a network service.

3.3 Switch with VM Migration
The switch process shown above is designed for a single

DSWITCH unit, it is suitable for desktop PCs at home or

in office, and is sufficient to support lightweight services

that can be provided by both MC and LC. Though the same

process is applicable in data centers as well for lightweight

services, we take a different approach for workloads that

are CPU and memory demanding (e.g., database service for

business oriented queries), or are platform dependent. In this

case, we might want to enlist a spare computer that has

compatible configuration as MC to carry out the workload.

Most often, the spare computer would be another computer

in the data center that is also lightly loaded.

We use the idea of virtual machine consolidation which

has been widely applied in data centers for power saving.

We migrate the workload (e.g., services or VMs) from the

physical server where it originally resides, called origin-

server, to another physical server called step-server. There

are two ways to implement the consolidation. For the first

way, the origin-server runs VMs to provide service, and we

simply stop the VMs on the origin-server and restart them on

a step-server. For the second way, the service runs directly on

the origin-server, and we migrate this origin-server to a step-

server to be a VM. We describe the switch process of the

second way in detail below, the first one can be implemented

similarly.

Here, a coordinator is employed to coordinate the ac-

tions of servers. It makes switch decisions based on pre-
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determined policies, and sends commands to the machines

accordingly. Moreover, it monitors the switch process in or-

der to find failures timely. When a failure occurs, the origin-

server, step-server and LC are coordinated to implement

rolling back using the reverse direction switch process. On

the other hand, LC in this case only takes charge of data

service (e.g., expose the disk through iSCSI), thus, it uses its

own network identity all the time.

The detailed switch processes are shown in Algorithm 1

and Algorithm 2. For switching from MC to LC, the coor-

dinator triggers the switch operation and picks a machine as

the step-server. Then the origin-server as well as its services

is migrated to the step-server, running as a VM. There is no

communication between origin-server and step-server, they

exchange the information, such as network identity, iSCSI

Qualified Name (iqn), through the coordinator, which makes

it easy to control their actions. The reverse switch is a similar

process.

Algorithm 1 Switch from MC to LC

1: Origin-Server (MC):
2: receive switch command from Coordinator
3: stop services; safely remove disks

4: send magic packet to wake up LC

5: handshake with LC; go to sleep

6: LC:
7: wake up; switch and mount disks

8: start iSCSI target to expose the disks

9: report the completion to Coordinator
10: Step-Server:
11: receive network conf. of MC from Coordinator
12: start a VM configured with the network conf.

13: the VM: mount the disks through iSCSI initiator

14: the VM: start the services

15: the VM: report the completion to Coordinator

Algorithm 2 Switch from LC to MC

1: Step-Server:
2: receive switch command from Coordinator
3: shut down the VM; notify LC

4: LC:
5: receive the notification

6: stop iSCSI target; safely remove and switch disks

7: send magic packet to wake up MC

8: handshake with MC; go to sleep

9: Origin-Server (MC):
10: wake up; detect and mount disks

11: start services

12: report completion to Coordinator

Stopping services and removing disk safely are sufficient

to avoid data corruption. However, on-the-fly operations in-

evitably will fail for a short period of time during switching

operation. Depending on the applications, this outage could

potentially be mitigated by temporarily redirecting requests

to replicas before switching.

4. Switch Scheduling
Though in high performance mode disks are directly at-

tached to servers, DSWITCH decouples them by adding

additional path for disks onto the network. Usually both

computers and clusters have to provision enough resource

for the peak load, which actually induces over-provision

most of the time. Thus, DSWITCH architecture can achieve

significant power savings in various scenarios, while still

guaranteeing equal or better performance (due to data local-

ity). The scheduling mechanisms based on DSWITCH tend

to be much less complex, since there is no need to worry

about data availability, consistency, and transfer.

Here we explicitly elaborate three representative use

cases and their scheduling mechanisms to show the easy

usage and significant power efficiency of DSWITCH.

4.1 Office Scenario
As illustrated at the beginning, computers in companies tend

to be left on for working at home or sharing files with col-

leagues. Several approaches have been proposed to address

energy waste in such situation [13, 17], however, they need

data transfer, or resource virtualization and migration.

DSWITCH makes power saving in office scenario very

simple and efficient. Note that data is the central resource,

while computing resource (i.e., computers) exists almost

everywhere. Thus, we can work with any PC, as long as

the data is available, rather than powering on the powerful

computer in the office. In this case, the computer in the office

is switched to LC mode, which exposes the storage on the

network with significantly low power. Then we can freely

mount the storage remotely using any PC.

However, for those “always-on” [13] but platform-

dependent applications and services, we would like to

employ an alternative approach, i.e., setting up a server in

the company for desktop consolidation, which can almost

deal with all situations in office scenario. The consolidation

is much easier to be implemented compared to that in other

works. Specifically, when a computer turns into LC mode, its

storage is exposed by LC. Then the server starts a VM which

mounts the storage and runs the required applications. Each

VM possesses limited resources (e.g., CPU, memory), if its

resource utilization exceeds a threshold, it will be shut down

and the corresponding MC will be waken up. The switch

operation can be triggered by users as well. Actually, the

two approaches above can be deployed together, users can

freely choose the one they want.

We can estimate the expected power savings (see mea-

sured numbers in § 7.1). The power saving of DSWITCH

in the first approach is EM−EL
EM

, where EM is the power

consumption of a computer in idle and EL is LC’s power

consumption. For the second approach, since a physical

machine’s power draw can be estimated by a linear function

of its load [21], we assume the server consumes Eidle +nEi,

where Eidle is the idle power of the server, Ei is the added
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power draw of one VM on average and n is the number of

the computers using this approach. Thus, the power saving

can be expressed as
nEM−(Eidle+nEi+nEL)

nEM
.

4.2 Three-Replica Storage
Three-replica has been widely applied in modern systems,

and many works proposed power proportional mechanisms

based on changing the number of online data replicas [14,

38, 42]. For example, Sierra [38] rearranges the placement

of replicas, in order to power off additional data copies (i.e.,
low gear mode) when the load of the cluster is low without

sacrificing data availability. It achieves significant power

savings. However, Sierra has to use distributed virtual log

(DVL) to support writing to those off-line nodes, in order not

to violate the placement rule of replicas. This means the data

should be first recorded on the online nodes in three-replica

and be written back when the corresponding nodes are online

again, which inevitably induces the waste of network and

disk I/O resource and possibly impacts online services.

DSWITCH can achieve significant power saving even

without modifying such systems, since it makes data ac-

cessibility not a concern any more when powering off

nodes. We demonstrate the implementation of Hadoop on

DSWITCH platform as an example. Each node in Hadoop

runs a tasktracker and a datanode. We determine the number

of online nodes according to the load of the cluster, using the

load prediction technique [38, 43]. When a node should be

turned off, we stop the tasktracker and migrate the datanode

onto LC.

The online nodes are randomly selected. When the cluster

is shifted up, we randomly select some off-line nodes to join

the online group. When the cluster is shifted down, we select

some nodes randomly from the online group to power off.

Though it is possible to involve data locality in the node

selection for better performance, the random node selection

is usually enough (see § 7.5.3 for detailed numbers).

On the other hand, if we use extremely low power

ARM as LC that can only provide limited throughput for

data access. The write performance would be degraded

greatly if the datanode in LC mode serves the write, and

so does the read performance. In this case, we can modify

namenode of HDFS to schedule write only to the online

nodes. This still maintains the random data placement since

the online nodes are randomly selected. Also it is possible

to serve read using multiple replicas in parallel. Therefore,

the total read throughput can be expressed as nTM + (N −
n)TL, where n and N are the numbers of online nodes and

all nodes respectively, TM and TL are the read throughput

provided by MC and LC. The total write throughput becomes

nTw/3, where Tw is the write throughput of MC. We do

not implement this special design, since according to our

evaluation the LC that can provide the throughput of 30MB/s

already shows good performance.

4.3 VM Consolidation
VM consolidation is another typical scenario in modern

data centers. It is often implemented based on NAS to

avoid cumbersome disk migration, but NAS has the draw-

backs as discussed before and sacrifices high local data

access. DSWITCH, however, supports VM consolidation

without suffering these drawbacks. Here we do not propose

a new consolidation mechanism, since there have been lots

of such mechanisms [18, 35, 41] which can be deployed

on DSWITCH platform seamlessly. More importantly, data

locality is greatly improved in our implementation. We

consolidate VMs among each rack and randomly select the

online nodes. So, n/N VMs on average have local data

access, and other VMs can obtain rack locality.

In the current implementation, VM consolidation is im-

plemented by simply stopping and restarting the VMs. Live

VM migration has not been supported (see § 5).

5. Discussion and Future Work
Security and Management. We have not covered security

issues in the discussion above. Data security and access

control are very important issues that must be addressed

in practice. However, these issues are largely out of the

scope of this paper. Since both LC and MC are complete

computers running full blown operating systems, they can

implement any security and data access control measure

demanded by IT policy. Similarly, computers in large offices

and data centers often have management utilities to facilitate

tasks such as network configuration and policy deployment.

Again, we are not discussing machine management issues

here because they can be implemented on DSWITCH in a

similar way as on regular PC.

Choice of LC. There are many different low-power com-

puters available in the market [37]. If we only use LC for

file sharing, a low performance ARM computer is enough.

For applications and services that demand high performance,

low-power X86 computers like those based on Atom CPUs

can be used. Running the same OS on CPUs with the same

instruction set on both LC and MC opens doors for many

opportunities, such as supporting the same software release.

The choice of LC’s computational power largely depends on

the supported services and their workload patterns. But, usu-

ally the LC, that can provide similar data access performance

to MC, is able to support most services in data centers.

Live VM Migration. Currently DSWITCH is not suitable

for the services that cannot tolerate interruption. A possible

way is running them in VMs, and implementing live VM

migration. DSWITCH could support live VM migration, if

we use a layer to mask disk switch operation. Take NFS

for example, when switching a disk, the corresponding NFS

clients first block the I/Os to this disk. Then the disk is

switched and exposed again, after which the NFS clients

update their NFS connections and resume the blocked I/Os.
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Figure 4: Alternative DSWITCH architecture.

This can be accomplished by modifying NFS, we leave this

in future work.

Reducing Networking Cost. Current DSWITCH design has

two network interfaces belonging to MC and LC respec-

tively, which means a system needs two NICs and two

network switch ports. This could be expensive in certain

cases, e.g., for 10GbE deployments or in data centers where

the cost of the network switch is based on port count. Here

we propose an alternative design whose implementation will

be left for future work. As shown in Figure 4, MC and LC

share the same NIC and the NIC can be switched between

them with a PCI-E multiplexer (e.g., MAXIM MAX4969).

LC controls the PCI-E multiplexer in the same way as it

controls the SATA multiplexer. The switch process might

be simpler, since we can omit network reconfiguration and

MAC address spoofing, which could also greatly reduce

the switching time. However, we cannot use WoL to wake

up machines in this design. A different side-channel, such

as a USB cable between MC and LC is needed for the

machines to wake up and communicate with each other. It

is also possible to integrate DSWITCH in motherboard or

NIC directly, and use the side-channel for communication

and notification to simplify switch process and reduce switch

latency.

6. Prototype Implementation
We implemented a DSWITCH prototype using an ARM-

based low power computer called Cubietruck [2] due to

its support of Gigabit Ethernet and native SATA port. It

is equipped with AllWinnerTech A20 dual-core Cortex-A7

ARM CPU, 2GB DDR3 SDRAM, and is supported by sev-

eral Linux distributions. We run Lubuntu-12.10-Desktop on

Cubietruck for most of the tests. Due to lack of good iSCSI

support in Lubuntu, we install Fedora19 on Cubietruck for

iSCSI tests and also use Fedora on MC for the same set

of tests. Cubietruck has tens of general purpose input and

output (GPIO) pins. We use GPIO to control the SATA

multiplexer. Both Cubietruck and MC are connected to a

SATA Multiplexer

Cubietruck

To MC

Backside

Switch Control

Power

5V

GND

1.5TB HDD

Figure 5: DSWITCH prototype.

1 Gbit/s switch. Cubietruck do not currently support WoL,

so we leave it on even when the disk is switched away.

A daemon is listening on a port on Cubietruck. When MC

wants to wake up Cubietruck, it sends socket message to this

port instead of sending WoL messages.

We use MAX4986 1 Evaluation Kit from MAXIM as

the SATA multiplexer in our prototype. We move the three

SATA connectors to the backside of the EV kit in order to

operate it with two hosts and one device (the original board

is configured for one host and two devices). We connect the

control switch (SEL) on the EV kit to a Cubietruck’s GPIO

pin. The SATA port in MC needs to be set to AHCI mode in

BIOS to support hot swap. Since Cubietruck supports disk

hot swap, no additional setting is required. The power supply

of the EV kit is provided by the 5V pin on Cubietruck.

7. System Evaluation
In this section, we evaluate the power and performance

of DSWITCH, and also evaluate various applications and

services implemented on DSWITCH. Then we evaluate the

performance and power savings that can be achieved by

DSWITCH platform when running Hadoop cluster.

For most of the experiments, we use a typical office

PC (DELL OptiPlex 9010, with Intel Core i7-3770, 16GB

RAM and 1 Gbit/s Ethernet) as MC. We benchmark the

I/O performance of MC and LC using Iometer [5] and

IOzone [4].

The disk to be switched in the tests is a Seagate 1.5TB

7200RPM 3.5 inch disk. The disk is powered by a separate

power supply. We measure the disk power consumption to be

6.66 watts when active, 4.71 watts when idle and 0.05 watts

when spun down. We do not add disk power consumption in

all the reported numbers in our evaluation.

7.1 Power Consumption
To understand the power consumption of normal desktops

and servers, we evaluate the power consumption of a typical

1 It supports SATA 3.0 speed at 6Gb/s, and its MTTF is estimated to be more

than 42700000 hours using Accelerated Life Test [11].
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Computers Lightweight I/O Idle S3 Save

Workstation 218.7 211.2 3.3 97.5%

Game machine 116.3 107.5 2.4 95.9%

OptiPlex 9010 56.0 41.5 1.3 91.9%

Cubietruck 2.8 1.6 - -

Table 1: Power consumption of different machines (watt).

The power consumption of idle state is measured after

machines have been idle for 5 minutes. The power

consumption of lightweight I/O workload is measured

when they are providing 1MB/s sequential data access

through Samba. The last column is the power savings

of DSWITCH compared with computers’ idle power. The

power consumption of DSWITCH consists of the power

consumptions of Cubietruck in idle, MC in S3 and the SATA

multiplexer.

desktop (DELL OptiPlex 9010), a Game machine (Intel i7-

4770, 32GB RAM, NVidia GeForce 760) and a powerful

workstation (Dell T5500, Dual Xeon X5650, 48GB RAM,

NVidia GeForce 660Ti), as shown in Table 1. The machines

all run Ubuntu desktop 12.04. As we can see from the

table, compared with their respective power consumptions

in S3 state, machines awake consume significantly more

power even when they are idle or providing lightweight

services [25]. Cubietruck, on the other hand, consumes very

little power even with I/O workload.

We measure the power consumption of the SATA multi-

plexer to be around 0.45W. Therefore, DSWITCH working

in the low power network attached mode can achieve a

power saving of 91.9% to 97.5% (excluding disk power

consumption). When working in the high performance di-

rectly attached mode, the power overhead of DSWITCH is

only 2.05W. It could potentially be reduced to be as little

as 0.45W when sleep and wakeup are supported in future

revision of Cubietruck.

7.2 Price Comparison
Here we estimate monetary cost of DSWITCH, and verify

its cost-efficiency in both home and data center scenarios.

SATA multiplexer is estimated as $15 each [10], and a

low power computer for home scenario (e.g., CubieBoard,

Raspberry Pi) can be less than $33, thus, a DSWITCH is

about $48. Assuming a computer is idle for 50% of the

time (running 24 hours a day) [31], it only takes about 3.3,

6.5, 17.3 months respectively for the three computers in

Table 1 to earn back the cost of DSWITCH 2. Note that with

DSWITCH, there is no need to setup NAS any more.

For data centers, not only does DSWITCH provide better

data access performance, the deployment of DSWITCH is

also much cheaper than those commercial NAS/SAN so-

2 We use the electricity price in New York, i.e., 19.29 Cents per

Kilowatthour [9].

Events Min Avg Max

Enter S3 2.6 2.8 3.2

Network Resumes from S3 4.0 4.9 5.1

Network MC to LC 3.0 3.5 4.0

Network LC to MC 7.0 13.9 22.0

Service MC to LC 9.2 12.7 15.3

Service LC to MC 11.0 17.0 22.8

Table 2: Disruption of network and services (second). Each

event is tested for 10 times and the table shows minimum,

average and maximum numbers.

lutions. Here we use Cubietruck ($80) as LC for better

performance, and one additional 1Gb/s port is $4, so, the

price of a DSWITCH becomes $99 accordingly. We compare

it with DELL PowerVault MD3260i [8], a SAN storage ar-

ray, which is already cheaper than other similar commercial

products. MD3260i without disks costs $23607.68, thus,

the amortized cost for one disk is $393, 3 times higher

than DSWITCH. Moreover, if LC allows more disks to be

attached or we use wholesale prices, the capital expenditure

of deploying DSWITCH will be further reduced.

7.3 Network and Services Reachability
During switch process, the network and the services are

disrupted. We carry out a series of experiments to understand

the factor that contribute to the length of the service disrup-

tion. The summary of the evaluation is shown in Table 2.

We measure the time for MC to enter S3, which is the

time between the request and the power LED’s first blink, to

be 2.8s on average. We use ICMP ECHO (ping) messages

to detect the availability/unavailabilty of the network. When

leaving S3, the network of MC needs about 5s to resume af-

ter the wake-up event is triggered. The network is disrupted

for only 3.5s when switching from MC to LC. Switching

from LC to MC disrupts the network a little longer, on

average about 13.9s. The reason is because LC has to first

reconfigure the network back to its own network identity,

this is the time when the network of the unit becomes

unreachable. Then it sends magic packet to wake up MC,

which needs an additional 5s or so to resume its network.

Lastly, we use Samba as an example to measure end-to-

end service disruption. When switching from MC to LC,

the time is mainly consumed by detecting and mounting the

disk, which takes about 5s. Because the disk has to be spun

down and cleanly unmount right before MC enters S3, so

LC has to spin up the disk again. Both starting and stopping

Samba service takes around 1s. If a service requires longer

time to stop or start, the service unreachable time would be

correspondingly longer. For switching from LC to MC, the

time of the service being unreachable is about 17s, longer

than the time for network recovery.
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The service interruption is reasonable and acceptable.

Home/office scenario usually does not have stringent de-

mand for very short interruption. The switch operation is

often executed after users finish using MC, for example,

leaving the office. In data center scenario, most services have

their own fault tolerance mechanism, such as three replicas,

thus, the interruption can be tolerated seamlessly. However,

if a service cannot tolerate interruption, the mechanism

discussed in § 5 could be applied.

7.4 Disk Performance
In order to evaluate disk performance, Cubietruck and MC

expose the disk on the network using Samba and iSCSI re-

spectively. We also tested local disk read/write performance

for comparison using standard C++ library.

For iSCSI test, we installed iSCSI target (i.e., scsi-target-
utils) on both machines. The iSCSI target runs with write-
cache off in the configuration since different cache sizes

would have different impact on the performance. Then

we tested disk performance with various workloads using

Iometer and used one worker to generate these workloads.

In order to get the real networked disk’s performance, we set

the test file’s size 4 times larger than the system memory

(i.e., we use 8GB file for Cubietruck and 64GB file for

MC) to avoid the whole test file being cached in the system

memory.

The result is shown in Table 3. For sequential read and

write, the throughput increases with the increase of request

size for MC, while for Cubietruck it seems that it can

support about 33 MB/s for sequential read and 16 MB/s for

sequential write at most. For 4KB sequential write and 4KB

random read/write, Cubietruck shows the same performance

with MC. The performance of the two machines does not

have much difference especially for random access and

small request size.

To deeply understand the performance result, we recorded

the CPU utilization of the iSCSI target service during the

test. We can see that the CPU utilization of MC is very

low. If we consider the resource of all 8 processors, the

CPU utilization of the desktop is even less than 3%. On the

other hand, though Cubietruck has 2 processors, the CPU

is also not fully utilized, at the maximum of 122.7%. For

some workloads, it is because of the bottleneck of the disk.

While for other workloads, none of disk, network and CPU

reaches its own bottleneck (Cubietruck can reach 600 Mbit/s

network speed with nearly 100% CPU utilization). We also

tried multiple workers generating workloads simultaneously.

The performance increases by 1∼5MB/s, however, still

below the performance of MC. Thus we suspect it is because

of bad task scheduling. Disk, network and CPU are not well

pipelined.

For Samba service, we tested the disk performance using

IOzone as Samba provides file-level data service. We also

set the file size 4 times bigger than the system memory to

avoid the whole file being cached in the memory. As shown
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Figure 6: Result of wget test.

in Table 3, the performance of sequential read is stable for

different request sizes, probably because Samba has read-

ahead mechanism regardless of the request size. The write

performance of both Cubietruck and MC is better than iSCSI

service mainly because Samba returns write request right

after the data is written in memory. For sequential write,

the throughput of Cubietruck does not increase that fast

compared to MC, we think it is because Cubietruck has

relatively poor sequential write performance for local disk.

Cubietruck performs sequential read as fast as MC while its

sequential write is only 38MB/s.

7.5 Service Performance
7.5.1 Home Scenarios
We tested multiple applications on our DSWITCH prototype,

such as video streaming through file sharing, background

downloading using wget, and BitTorrent. We observe that

DSWITCH provides satisfactory services in all these appli-

cation scenarios. In this section, we report some detailed

results on background downloading using wget.
In the setup, an Apache Webserver is deployed in the

same LAN to provide a fixed upload throughput. We report

the wget performance of both MC and LC, as well as the

behavior during switch operation. As shown in Figure 6(a),

the download speed of MC increases almost linearly with the

increase of throughput limit at the source, while Cubietruck

can only support a maximum download speed of around

18MB/s. We perform switch in the middle of download (no

bandwidth limit) and plot the downloading speed of this

period as shown in Figure 6(b). The interrupted time for

switching from LC to MC is about 7.4s, while switching

from MC to LC takes 18.1 seconds.

7.5.2 Database
We also evaluated the performance of TPC-H and TPC-

C [24] on our prototype using MySQL database which runs

in a virtual machine (KVM, 4 cores, 4 GB memory, virtio

enabled). The disk that stores this VM’s image is mounted

to the host machine (MC) of this VM through three ways:

locally, NFS share provided by another MC, and NFS share

provided by LC (i.e., Cubietruck).
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Workloads 4KSR 4KSW 4KRR 4KRW 1MSR 1MSW 1MRR 1MRW

MC local 117/7.2 105/12.0 0.43/1.0 0.38/1.0 120/6.1 185/12.8 48.9/2.5 36.2/1.5

LC local 113/90.1 37.2/48.5 0.41/2.1 0.41/2.6 110/91.5 38.4/41.2 43.5/38.7 23.2/17.1

MC iSCSI 11.9/22.7 0.46/1.7 0.53/2.0 0.24/1.0 98.6/13.6 40.1/5.5 45.9/7.5 20.4/3.5

LC iSCSI 7.1/88.1 0.46/15.3 0.46/14.2 0.24/9.9 32.5/122.7 15.8/72.0 25.2/94.9 12.1/55.2

MC Samba 44.6/6.2 7.0/20.0 0.44/1.3 2.24/2.6 46.4/6.7 88.5/36.4 29.1/4.9 53.1/21.2

LC Samba 22.5/85.6 5.2/89.3 0.51/7.4 2.19/31.3 22.5/87.0 24.5/90.7 20.0/77.5 29.6/97.3

Table 3: Disk performance of different workloads. local, iSCSI and Samba are local disk read/write, iSCSI service and Samba

service respectively. The name of the workloads consists of 3 parts: 4K or 1M, Sequential or Random, Read or Write. There are

two numbers separated by ’/’ in each cell, the left one is throughput (MB/s), the right one is the corresponding CPU utilization

compared to the resource of a single processor.

Figure 7: Result of TPC-H benchmark. Scale factor of TPC-H

equals 1 in this test.

For TPC-H, before executing each query, we drop the

cache of the VM, host machine and NFS server, and also

restart MySQL. We only show several queries in Figure 7,

other queries have similar results. Since TPC-H is CPU

intensive benchmark, the three modes present similar query

latency. For low latency queries, local mode is a little better.

While, for long latency queries, MC NFS performs better,

probably because NFS client prefetches more data from NFS

server during the execution of the queries, increasing cache

hit. The query latency of LC NFS is only a little lower than

that of MC NFS.

For TPC-C, we use InnoDB as the storage engine, and

change the number of warehouses to test the performance.

The result is shown in Figure 8. NFS mode performs much

worse than Local mode, due to the high network latency

it induces. Moreover, MC NFS and LC NFS have similar

throughput, since the bottleneck locates in disk I/O and

transaction implementation rather than CPU and network.

7.5.3 Hadoop Cluster
We implemented Hadoop on three nodes, one of them is

attached with the DSWITCH prototype. When switching this

node to LC, its datanode is migrated to another node, running

in a VM which mounts the disk exposed by LC. We switch

the disk during data read and write. The interrupted interval

of datanode heartbeats is 22s when switching from LC to

MC, and 41s from MC to LC, both are much lower than

Figure 8: Result of TPC-C benchmark.

the default timeout 10 minutes. We do not show detailed

numbers for the sake of space.

Then, we implement Facebook Hadoop workload pro-

vided in [6, 22] on a Hadoop cluster with 19 machines. Each

machine has 64GB of memory and 2.6GHz AMD Opteron

4180 Processor (12 cores). All these machines are connected

by a 1 Gbit/s switch. The trace in our evaluation is generated

from the samples of the 2009 Facebook Hadoop cluster

using SWIM [6]. We implement the first 3000 jobs in our

cluster, which lasts about 14 hours. During its peak load, all

the machines are heavily loaded.

The number of submitted jobs in every 5 minutes is

shown in Figure 9. We use “oracle” load prediction to

determine the number of online nodes, called workload

aware scheduling (WAS) as shown in Figure 9. We compare

WAS with full gear mode (i.e., all nodes stay online) and half

gear mode (i.e., 9 nodes stay online). The half gear mode

is implemented by simply stopping 10 nodes’ tasktrackers.

Here we evaluate two different implementations of WAS:

first, the LC mode is simulated by stopping tasktracker,

called WAS-ST; second, the LC mode is simulated by

stopping tasktracker and limiting the throughput of that node

to 30MB/s (e.g., tc in linux), called WAS-BD.

We set the full gear mode as the baseline, and show the

performance of the other three modes in Figure 10. WAS-

ST almost has no performance degradation and meanwhile

saves
68.8(EM−EL)

EM
% power consumption (e.g., 67.8% if we
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between the baseline and the other modes, e.g., the duration of the

10th job in WAS-ST minus the duration of the 10th job in baseline.

use EM = 211.2 and EL = 2.8 in Table 1). A small part of

jobs show a little higher or lower duration compared to the

full gear mode, which can be seen as the random errors of

job duration. However, for the half gear mode, about 10%

jobs suffer significant performance degradation, because

the cluster cannot provide enough computational resource

during peak load. WAS-BD on the other hand shows almost

the same performance as WAS-ST, which illustrates that less

powerful LC can still provide reasonable performance in

such systems.

8. Related Work
Various works have investigated methods to enter computers

into sleep state when they are idle without losing their

presence on the network. In order to support always-on

semantics, remote proxies [31] have been designed. Works

such as [13, 17, 23] propose VM migration, which is mainly

used in data centers to consolidate idle computers. These

works have to wake up the computers for storage access

even for very light workload. Some works like [12, 20, 36]

propose multi-tiered hardware architecture and each tier has

a different power consumption profile. Somniloquy [12]

and Turducken [36] target laptops in household and enter-

prise scenarios, they equip a single computer with a little

proxy (i.e., a low-power mini-processor) which maintains

the network presence for the computer. Another work [29]

moves a step further to build a sharing and consistent file

system ZZFS based on Somniloquy. However, the low-

power tier still cannot operate the storage of the sleeping

computer directly, which is required for normal execution

of many applications. This means the computer has to

wake up for many trivial tasks. Power-Agile [20] explores

the configuration space of heterogeneous devices for great

power efficiency.

Many works have been done to deal with power pro-

portionality in data centers. Since workloads in data cen-

ters show significant peak-to-trough ratios [38]. Some ap-

proaches [14, 40] achieve this goal by increasing repli-

cation factor, however, it demands more storage capacity

and degrades write performance. Rearranging data layout

carefully [14, 38] is a common approach to power off a

proportion of servers, but it would generate more write

workload because the data that should be written to the

offline servers need to be written to the online servers

temporarily. On the other hand, since erasure coding has

been applied in data centers broadly [27, 34], it is becoming

harder to apply these approaches. DSWITCH architecture

removes the strict constraint for data availability, which

might offer more optimization space for these solutions.

There are other works targeting power saving in data

centers. e-STAB [28] considers traffic load which is an

important factor when designing their dynamic power man-

agement. PowerNap [30] minimizes idle power and the

states transition time to achieve rapid reaction to workload

variation, but it requires nearly all components of the system

to support sleep state, which actually has not been widely

supported in current servers. FAWN [15] directly replaces

commodity server with low-power embedded CPU server

for data-intensive workloads. However, workloads in data

centers tend to be both CPU and I/O intensive, the approach

of FAWN can only support certain I/O intensive workloads.

Some works target power saving of disks. The work

in [33] proposes a different data layout policy which aggre-

gates hot data onto a small number of “hot” disks and spins

down the disks that store cold data. However, it introduces

more latency when accessing cold data since the disks

need to be spun up first. Another work in [44] uses multi-

speed disks and complicate management schemes (i.e., data

layout and migration, disk speed settings) to achieve power

proportionality. In this paper we target flexible power pro-

portionality of computers, so the approaches for disks above

can actually be co-deployed with ours.

9. Conclusion
We have presented DSWITCH, an storage attachment ar-

chitecture that allows a disk to be either connected to a

host computer through SATA interface, or to be directly

connected to the network through SAN or NAS proto-

col. DSWITCH combines the benefit of both directly at-

tached storage (DAS) and network attached storage (NAS
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and SAN). And the DSWITCH architecture can be widely

adopted in home, office and data center environments.
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