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“Safety critical’ systems interacting with humans,
often in a complex environment
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Investigators with the federal agency determined that the car's
¥ detection systems, including radar and laser instruments, observed a
4 woman walking her bicycle across the road roughly six seconds
before impact — likely enough time, in other words, for a vehicle

' driving 43 mph to brake and avoid fatally injuring the woman.

But it did not immediately identify the woman as a human
~ pedestrian. Instead, the agency said, "as the vehicle and pedestrian
Y

e paths converged, the self-driving system software classified the

£ pedestrian as an unknown object, as a vehicle, and then as a bicycle

m with varying expectations of future travel path."
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A Formal Methods Approach

Formal Methods: rigorous algorithmic techniques to model, design,
and analyze systems based on formal mathematical reasoning.

“Towards Verified Artificial Intelligence”, S. A. Seshia et al., 2016:
https://arxiv.org/abs/1606.08514
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A Formal Methods Approach

Formal Methods: rigorous algorithmic techniques to model, design,
and analyze systems based on formal mathematical reasoning.

Prove rigorous guarantees when possible;

do formally-guided, intelligent simulation/testing when not.

“Towards Verified Artificial Intelligence”, S. A. Seshia et al., 2016:
https://arxiv.org/abs/1606.08514
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Randomness can play a crucial role in
Formal Methods for Autonomy!

- Modeling Autonomous Systems and Their Environments

- Verification — Constrained-Random Simulation, Probabilistic
Verification

- Synthesis: Randomized Planning/Control
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Randomized Formal Methods for Safe Autonomy
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Controller Synthesis i
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but safe trajectories
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(FSTTCS’15) behavior

Simulation-Based ML Diverse and tunable
Training and Analysis

(PLDI’19) training and test sets




Why Randomness: Variety/Coverage

- Train/test set generator for an object-detecting neural network

- “Generate images of bumper-to-bumper traffic”

- Huge and diverse space of possibilities — randomness lets you cover it well

Fremont et al., Scenic: A Language for Scenario Specification and Scene Generation, PLDI 2019 (to appear).



Why Randomness: Realism

- Home automation lighting controller
- “Mimic the user’s typical behavior while they are away”
- Deterministic models unrealistic — human behavior is random
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Akkaya et al., Control Improvisation with Probabilistic Temporal Specifications, 10TDI 2016.



Why Randomness: Unpredictability

- Surveillance robot
- “Patrol an area, visiting each important location sufficiently often”

- Using a random route makes the robot’s future location harder to predict

Fremont and Seshia, Reactive Control Improvisation, CAV 2018.
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Randomness with Guarantees

- Randomness is essential for all these systems

- But, they must also satisfy formal specifications:

‘use < 20 kWh of “‘objects must “‘never collide with
power per day” not intersect” another drone”

- How to design a system with random but controlled behavior?
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Algorithmic Improvisation (Control Improvisation)

- A framework for automatically synthesizing (reactive) systems with
random behavior but formal guarantees:

- Guaranteed safety (hard and soft constraints)
- Guaranteed randomness (randomness constraint)

- Key novelty: Randomness is part of the specification!
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Motivating Applications

- Robotic Surveillance
- “patrol an area in an unpredictable way”

- Visit each location sufficiently often Hard-
Constraint
Soft
- Take a route close to the shortest one Constraint
| Randomness
- Don’t always take the same route Constraint
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Motivating Applications

- Synthetic Data Generation

- “create traffic images for this neural network”

- Objects should not intersect

Constraint
. Usually, be similar to real-world traffic Sont
; Constraint
o o fof Randomness
« Generate a diverse set or Images Constraint
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Commonalities

- These and other applications: music improvisation, fuzz testing...

Generate sequences subject to three kinds of constraints:
- Hard constraint: every sequence satisfies some property
- Soft constraint: most sequences satisfy some property

- Randomness constraint: no sequence is generated too frequently

Control Improvisation is a precisely-defined theoretical problem
capturing these requirements

[D. Fremont et al., “Control Improvisation”, FSTTCS 2015. Extended version on arxiv, 2018.]



Related \Work

- Control improvisation is a fundamentally new type of problem

HARD SOFT RANDOM REACTIVE

Factor Oracles [1] _

Mutational Fuzzers [2]

unitorm Sampling [3] [ AN EEE ]
Generative Fuzzers [2,3] _ _

Reactive Synthesis [4]

Control Improvisation | R R

1] Assayag & Dubnov, Soft Computation, 2004.
2] see Sutton, Greene, & Amini, Addison-Wesley, 2007.

3] e.g. Hickey & Cohen, SIAM Journal on Computing, 1983.
4] e.g. Pnueli & Rosner, POPL 1989.
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Definition of Control Improviser
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Definition of Control Improviser

Given H, S, n, an error probability 0 < e <1, and bounds 0 <A, p <1,
a distribution D : £" — [0,1] is an improvising distribution if:

e Prlwel|w+ D=1 Hard constraint
« PrlweA|lw+« D|>1-¢ Soft constraint
. Ywe I, A< D(w)<p Randomness req.

The Clinstance C = (H,S,n,e, A\, p) is feasible if D exists.
An improviser is a probabilistic algorithm sampling from D.

Fremont et al., Control Improvisation, arXiv:1704.06319, extending FSTTCS 2015.




Example

- Suppose A = {a,, a,, as}
and 1\A ={iy, i, }

- With ¢ = p = Va:

- Return a,, a,, and a; with
probability V4

- Return i, and i, with
probability %&




Reactive Control Improvisation

Fremont and Seshia, Reactive Control Improvisation, CAV 2018.
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Reactive Control Improvisation

- Changes to definition:

- System and adversary alternate picking
symbols (2-player game)

- Hard, soft, randomness constraints hold
against every adversary

- Improviser — improvising strategy

- This enables randomized reactive
synthesis (for bounded time)

A

Fremont and Seshia, Reactive Control Improvisation, CAV 2018.




RCI Example

- Hard constraint:

- Visit the 4 circles in 30 moves,
avoiding the adversary

» Soft constraint:

- /5% of the time, visit each circle
exactly once

- Randomness requirement:

- Use the smallest feasible p
(about 10-12)




Outline

1. Control Improvisation
- Definition and motivating applications

2. Theory of CI
- Efficient algorithms and hardness results

3. Designing and Analyzing Perception Systems

4. Conclusion & Future Work
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Existence of Improvisers

- When is it possible to solve a Cl problem?
- Feasibility just requires [ and A to be large enough (with A = 0)

Theorem. A CI instance C = (H, S, n,¢,0, p)
is feasible if and only if:

o [I| >1/p
o |[Al = (1—¢)/p.
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Improvisation Schemes

A synthesis algorithm:

Improvisation » :

A polynomial-time improvisation scheme for a class P of CI
iInstances is an algorithm S such that given C in P,

- S returns an improviser if C is feasible, and otherwise L

- S and the improvisers it generates run in time polynomial in |C|
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A Generic Improvisation Scheme

- If you can efficiently:
- Intersect and take the difference of two specifications
- Restrict a specification to a given length
. Count the number of words satisfying a specification Nontriviall
; e.g.ifspecis a
- Uniformly sample from those words

Boolean formula
- There is a polynomial-time improvisation scheme:

1. Construct specifications for /, A, and /\ A
2. Count them and check the feasibility inequalities
3. Sample from A or /\ A with the right probabilities
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Algorithms and Complexity

- Poly-time improvisation schemes for:
- DFAs (examples in music and robotic planning)
- Unambiguous context-free grammars (fuzz testing)

S DFA CFG NFA
H unamb. | amb.
DFA poly-time | poly-time
CFG unamb?guous poly-time P
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Algorithms and Complexity

- Poly-time improvisation schemes for:
- DFAs (examples in music and robotic planning)
- Unambiguous context-free grammars (fuzz testing)

S DFA CFG NFA
H unamb. | amb.
) ?‘ngOXi'matef SCheIme DFA poly-time | poly-time
Oor booiean rformuias, . T
using SAT solvers CFG unzzzizzzz poly-time #r
NFA i

Fremont et al., Control Improvisation, arXiv:1704.06319, extending FSTTCS 2015.
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Feasibility of Reactive Control Improvisation

- Feasibility (realizability) again reduces to counting: there must be
sufficiently many ways to win the 2-player game

Theorem. An RCI instance is feasible if and only if:

e W(I)>1/p

o W(A)=(1-6)/p.
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Width

- Number of “winning” plays, minimized over all adversaries

W(X) =maxmin|{w € X | P, -(w) > 0}

Improviser Adversary Probability of
strategy strategy obtaining trace w
Number of possible
traces in X



Algorithms for RCI

Fremont and Seshia, Reactive Control Improvisation, CAV 2018.



Algorithms for RCI

- Again, efficient scheme for
DFA specifications

H\S | RSG | DFA | NFA | CFG | LTL | LDL

RSG
DFA
NFA
CFG
LTL
LDL

poly-time

PSPACE

Fremont and Seshia, Reactive Control Improvisation, CAV 2018.



Algorithms for RCI

- Again, efficient scheme for
DFA specifications

- PSPACE-equivalent for

. S || RSG | DFA | NFA | CFG | LTL | LDL
temporal logics ak ‘ | I

RSG
DFA
NFA
CFG
LTL
LDL

poly-time

PSPACE

Fremont and Seshia, Reactive Control Improvisation, CAV 2018.
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Motivating Example: an Autonomous Venhicle

- At any moment in time, the
scene is the environment
configuration (object
positions, colors, etc.)

- Collecting examples of real-
world scenes is expensive

- We would like to generate
realistic scenes

automatically for training or
testing
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- Scene space is large, high-
dimensional

Car Location Car Orientation

Car Color Weather |
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Generating Meaningful Scenes

- Scene space is large, high-
dimensional

- Realistic scenes have
complex geometric Car Location
constraints W

- We may be interested In
particular types of scenes
(e.g. highway traffic)

- Generating these is another
instance of Cl, but with what
Kind of specification?

TR o SR
Car Color Time of Day
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Specifications for Scenes

- Again, hard, soft, randomness constraints:

- Objects should not intersect
- 20% of the images should be at night

- The gap between cars should follow this distribution...

- How to encode these? A probabilistic programming language



SCENIC: a Scenario Description Language

- Defines a distribution over scenes

Fremont et al., Scenic: A Language for Scenario Specification and Scene Generation, PLDI 2019.



SCENIC: a Scenario Description Language

- Defines a distribution over scenes

Bumper-to-Bumper Traffic
(~20 lines of Scenic)

Fremont et al., Scenic: A Language for Scenario Specification and Scene Generation, PLDI 2019.



SCENIC: a Scenario Description Language

- Defines a distribution over scenes Bumper-to-Bumper Traffic

(~20 lines of Scenic)

- p o = e~ el o
e //c ).’r‘. y 4 P p . & ‘, '
, & o fo T Ly B .
/: s - =2y - » 2

Fremont et al., Scenic: A Language for Scenario Specification and Scene Generation, PLDI 2019.



SCENIC: a Scenario Description Language

« Defines a distribution over scenes

Bumper-to-Bumper Traffic
(~20 lines of Scenic)

- Readable, concise syntax for
common geometric relationships

Fremont et al., Scenic: A Language for Scenario Specification and Scene Generation, PLDI 2019.



SCENIC: a Scenario Description Language

- Defines a distribution over scenes

Bumper-to-Bumper Traffic
(~20 lines of Scenic)

- Readable, concise syntax for
common geometric relationships

- Domain-specific sampling
techniques based on
configuration spaces

Fremont et al., Scenic: A Language for Scenario Specification and Scene Generation, PLDI 2019.



SCENIC: a Scenario Description Language

« Defines a distribution over scenes

Bumper-to-Bumper Traffic
(~20 lines of Scenic)

- Readable, concise syntax for
common geometric relationships

- Domain-specific sampling
techniques based on
configuration spaces

Fremont et al., Scenic: A Language for Scenario Specification and Scene Generation, PLDI 2019.



SCENIC: a Scenario Description Language

- Defines a distribution over scenes Bumper-to-Bumper Traffic

- Readable, concise syntax for i s GF Scanii)

common geometric relationships

- Domain-specific sampling
techniques based on
configuration spaces

/, ~ . ’l-
A Tl

Fremont et al., Scenic: A Language for Scenario Specification and Scene Generation, PLDI 2019.



SCENIC: a Scenario Description Language

« Defines a distribution over scenes

Bumper-to-Bumper Traffic
(~20 lines of Scenic)

- Readable, concise syntax for
common geometric relationships

- Domain-specific sampling
techniques based on
configuration spaces

« Declarative hard and soft
constraints

Fremont et al., Scenic: A Language for Scenario Specification and Scene Generation, PLDI 2019.
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Related Work: PPLs
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Related Work: PPLs

- SCENIC’s semantics is that of a standard imperative PPL (e.g. [1])

- PPLs have been used as generative models of graphics
- €.g. Quicksand [2], Picture [3]
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Related Work: PPLs

- SCENIC’s semantics is that of a standard imperative PPL (e.g. [1])

- PPLs have been used as generative models of graphics
- €.g. Quicksand [2], Picture [3]

- The main differences in SCENIC:
- emphasis on generation, not inference

- domain-specificity

| Gordon et al., FOSE 2014.
Ritchie, NIPS Workshop on Prob. Prog., 2014.
Kulkarni et al., CVPR 2015.
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Related Work: Graphics & ML

- Scene synthesis from examples or grammars [4, 5]
- Data augmentation/generation in ML [6, 7]

- The main differences in SCENIC:

- more control
- easy to use & interpret

Fisher et al., SIGGRAPH 2012.

Jiang et al., Int. J. Computer Vision, 2018.
Johnson-Roberson et al., ICRA 2017.

] Wong et al., DICTA 2016.
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Example: a Badly-Parked Car

from gta import Car, curb, roadDirection
ego = Car

spot = OrientedPoint on visible curb
badAngle = Uniform(1.0, -1.0) x (10, 20) deg
Car left of (spot offset by -0.5 @ 9),

facing badAngle relative to roadDirection
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Specifiers

- Syntactic elements defining properties of an object
- Can be combined in arbitrary ways to build up a complete definition

Car at 120 @ 70, facing toward carWash
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Specifiers

- Syntactic elements defining properties of an object
- Can be combined in arbitrary ways to build up a complete definition

Car at 120 @ 70, facing toward carWash

1 1

Specifies Specifies
position heading

- SCENIC has 9 completely different position specifiers
- All mirroring ways we use natural language to talk about positions



Specifiers Capture Dependencies

- Can depend on other properties and other specifiers

Car left of taxi, facing 30 deg relative to roadDirection

1

Specifies position
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Specifiers Capture Dependencies

- Can depend on other properties and other specifiers

Car left of taxi, facing 30 deg relative to roadDirection

Specifies position Specifies Depends on position

given width heading

\—'—I

Specifies heading given position



Domain-Specific Sampling Techniques

 Prune infeasible
parts of the space
by dilating polygons




Domain-Specific Sampling Techniques

 Prune infeasible
parts of the space
by dilating polygons

require distance to taxi <= 5
require 15 deg <= (relative
heading of taxi) <= 45 deg
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Applications of Scenic

- Exploring system performance
- Generating specialized test sets

- Debugging a known failure
- Generalizing in different directions

- Designing more effective training sets
- Training on hard cases




Outline

1. Control Improvisation
- Definition and motivating applications

2. Theory of ClI
- Efficient algorithms and hardness results

3. Designing and Analyzing Perception Systems

4. Conclusion and Future Work
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Summary and Conclusions

- Algorithmic Improvisation: a framework for
randomized synthesis

- Data generation, planning, fuzz testing, music
Improvisation, human modeling...

- Applications to safe autonomy
- Controller synthesis, synthetic data generation

- Randomized formal methods can contribute
In many ways to the design and verification of
autonomous systems
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The Future of Algorithmic Improvisation

- Fundamentally new problem in CS — rich possibilities at all levels
- Intelligent data generation for a variety of data types

- Environment modeling, including modeling dynamic agents

- Generalized theory of Cl enabling new applications

- Verifying ML/Al-based systems: the VerifAl toolkit [CAV 2019]



VERIFAI: A Toolkit for the Design and Analysis of

[CAV’19]

Al-Based Systems https://github.com/BerkeleyLearnVerify/Verif AT

INPUTS

---------------------------------------------------------------------------
’’’’’
l' ~

Controller >
Plant Model .

Perception 3
Component :

Environment
Model

o

SCENIC

Property >
(temporal logic,
obj. function, \

monitor b
program, ...)

SIMULATOR
}
Y
8 N ~ ™
SEARCH 11 MONITOR
(Sampling, etc.)
" J \. 4
| |
a * S,
ABSTRACT ERROR
FEATURE TABLE
. SPACE y " ANALYSIS I

-~ -
~§- e
T ————————— - - - - - —_———_——_—_—_—_—_—_—_— . —_—_—— - —_—_—_———————_——_——. ..~

OUTPUTS/
USE CASES

FALSIFICATION s
counterexample(s)

FUZZ TESTING =
traces

COUNTEREXAMPLE
s ANALYSIS
debug info.

| DATAAUGMENTATION
data set

i HYPER-PARAMETER
= SYNTHESIS

parameter values

/ MODEL PARAMETER

SYNTHESIS

parameter values



Modeling Case Study in the SCENIC Language

# Pick location for blockage randomly along curb
blockageSite = OrientedPoint on curb

# Place traffic cones

spotl = OrientedPoint left of blockageSite by (0.3, 1)
conel = TrafficCone spotl,

(0, 360) deg

# Place disabled car ahead of cones
SmallCar ahead of spot2 by (-1, 0.5) @ (4, 10),
acing (@, 360) deg

Fremont et al., Scenic: A Language for Scenario Specification and Scene Generation, PLDI 2019 (to appear).
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The Future of Algorithmic Improvisation

Fundamentally new problem in CS = rich possibilities at all levels
Intelligent data generation for a variety of data types
Environment modeling, including modeling dynamic agents

Generalized theory of Cl enabling new applications

Verifying ML/Al-based systems: the VerifAl toolkit
https://github.com/BerkeleyLearnVerify/Verif AT

Thank you!
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