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Fig. 1. Capturing acoustic texture variation in RiverHouse. The source in this simple scene represents a river located to the right of the house. We illustrate

what our method does at two particular points: inside a small room (top row) and outside near the river (bottom row). Running a numerical simulation of sound

transport which stochastically emits pulses over the source into this scene, we obtain pressure responses for each listener position (second column). After

sparsity-regularized deconvolution, these are converted to an aggregate impulse response representing arrival events at the listener (third column). We then

extract an event loudness density, encoding temporal density of arrivals at the listener position as a function of loudness (fourth column). Source events are

multiplied inside the house due to reverberation yielding many similarly quiet arrivals. Whereas outside and near the source, fewer arrivals are recorded

overall, with some infrequent but loud events that stand out from the rest (dashed red area).

Extended stochastic sources, like falling rain or a flowing waterway, provide

an immersive ambience in virtual environments. In complex scenes, the

rendered sound should vary naturally with listener position, differing not

only in overall loudness but also in texture, to capture the indistinct murmur

of a faraway brook versus the bright babbling of one up close. Modeling an

ambient sound as a collection of random events such as individual raindrop

impacts or water bubble oscillations, this variation can be seen as a change

in the statistical distribution of events heard by the listener: the arrival rate

of nearby, louder events relative to more distant or occluded, quieter ones.

Reverberation and edge diffraction from scene geometry multiply and mix

events more extensively compared to an empty scene and introduce salient

spatial variation in texture. We formalize the notion of acoustic texture by

introducing the event loudness density (ELD), which relates the rapidity of

received events to their loudness. To model spatial variation in texture, the

ELD is made a function of listener location in the scene. We show that this

ELD field can be extracted from a single wave simulation for each extended
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source and rendered flexibly using a granular synthesis pipeline, with grains

derived procedurally or from recordings. Our system yields believable, real-

time changes in acoustic texture as the listener moves, driven by sound

propagation in the scene.
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1 INTRODUCTION
Many types of natural sound sources can be modeled as the super-

position of spectrally-similar atomic source events overlapping in

time and distributed over the source’s spatial extent, such as indi-

vidual rain drops, oscillating bubbles in a stream, or bird tweets in a

flock. These events occupy similar frequency bands within human

auditory perception so we perceive them as an aggregate. Yet not

all detail is lost and we are able to hear certain statistical properties

which we call the acoustic texture. For instance, a faraway stream

sounds noise-like but becomes a more distinct babbling with in-

dividually recognizable drips and gurgles as one gets closer. The
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texture varies not only with distance but also from sound propa-

gation within the scene: rain sounds different when heard indoors

through a door compared to outside, not just because it gets fainter,

but also because events get mixed at the door and are multiplied via

reverberation within the room.

We seek to efficiently capture and render this acoustic texture

variation to improve the realism of ambiences in games and virtual

reality. The problem is challenging. Brute force rendering where

each individual source event’s emitted signal is convolved with its

acoustic impulse response captures all audible detail but at tremen-

dous CPU cost. Zhang et al. [2018] models variation in overall loud-

ness and directionality from a single wave simulation, producing a

constant far-field texture lacking the spatial variation we wish to

model. Our approach also performs a wave solution to efficiently

propagate amassive superposition of sound radiated from the source

events. Instead of emitting a temporally and spatially dense signal

representing idealized noise, we stay closer to reality by stochasti-

cally emitting band-limited pulses over time and source extent. At

each potential listener location, we deconvolve away the injected

pulse to obtain an aggregate impulse response capturing times and

loudnesses of arrival events after propagation through the scene.

We employ a sparsity-regularized deconvolution in the time domain

that contends with numerical dispersion errors to produce sharp

estimates of event arrival time.

Our key contribution is to formulate and compactly encode acous-

tic texture with a novel event loudness density (ELD) computable

from this propagated aggregate response. Assuming a stationary

stochastic process, we observe that it is the distribution of event

loudnesses in terms of their arrival rate at the listener that deter-

mine the perceived acoustic texture. We thus define the ELD as the

temporal frequency, or density, of events received at the listener as

a function of their loudness.

The ELD distills effects of distance and environmental interaction

on sound as it propagates from a given extended source volume to

the listener location. With the listener near a large source, a broader,

flatter ELD is obtained representing a variety of event loudnesses

with some nearby loud events heard over a background of quieter

ones. Further away or in a more occluded part of the scene, the ELD

becomes quieter overall and more peaked. This reflects extensive

mixing of similarly quiet sounds, resulting in a faint and noise-

like texture which gives a distant impression. Temporal density is

increased by reverberation, resulting in an ELD with larger integral

(total event frequency) indoors compared to the same sound source

in free field with no scene geometry. Figure 2 provides more detail

on the relationship between acoustic texture and ELD.

The ELD varies smoothly over space, yielding a compact repre-

sentation after compression in our test scenes with sizes about 1MB

per source, including an orthogonal directional representation bor-

rowed from [Zhang et al. 2018]. Run-time rendering decompresses

and interpolates the ELD at the dynamic listener location, and then

performs granular synthesis to superimpose many fragments of

sound, or grains, with statistics governed by the decoded ELD. The

grains may be generated procedurally or extracted from recordings.

Our results and accompanying video show that extracting a field

of ELDs driven by sound propagation in a scene yields a natural-

sounding perceived texture. Overall, we propose the first practical
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-60 0dB0 8s

d
en

si
ty

 [
s−

1
d
B
−
1
]

lo
u

d
n

es
s 

[d
B

]

loudness [dB]time [s]

Fig. 2. Three examples relating the aggregate impulse response of arrival
events, left, and the corresponding event loudness density (ELD), right. Refer
to the accompanying video to hear the corresponding audio renderings.
Shifting the distribution horizontally, along the loudness axis, corresponds
to making all arrivals louder or quieter (top). Scaling up the ELD without
changing its shape corresponds to adding more events drawn from the same
loudness distribution (middle). Making the ELD broader, with a fixed area
below the curve, changes the arrivals from a train of similar loudnesses to a
train with large variations in loudness (bottom).

system to capture real-time spatial variations in acoustic texture for

extended sources in complex scenes.

2 PRIOR WORK
Geometric acoustics. GA methods are surveyed in [Savioja and

Svensson 2015], amounting to a small-wavelength approximation to

the wave equation able to render spatial audio effects at interactive

rates and support dynamic geometry. Neglecting diffraction, bi-

directional path tracing has shown promise [Cao et al. 2016]. To

account for the prominent role of diffraction in audible-wavelength

sound propagation, stochastic scattering can be performed at or

near geometric edges where sound paths bend. Techniques are

being investigated [Schissler et al. 2014] but the general problem

remains open [Savioja and Svensson 2015]. Typical extended sources

we consider comprise thousands of source events; it becomes very

costly to obtain converged estimates that find all paths connecting

each source event to the listener.

Wave simulation. Solving the wave equation directly captures

diffraction [Hamilton and Bilbao 2017] and explores all these paths
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systematically but implicitly, but at a computational cost that pro-

hibits interactive movement of sources and listener. Previous sys-

tems [Raghuvanshi and Snyder 2014; Raghuvanshi et al. 2010] pre-

compute the simulation and extract compact perceptual information,

enabling real-time rendering of propagation effects.

These wave-based techniques consider a single point source; our

interest lies in large ambient sources comprising thousands of in-

dependent source events. Although we use a band-limited pulse

emitted from a point source like Raghuvanshi and Snyder [2014],

we introduce them over many points on the source within the same

simulation, propagating a massive superposition of their resulting

radiated and scattered wavefronts within the scene. Our parameter-

ization of the aggregate acoustic response also differs. Raghuvanshi

and Snyder [2014] extract loudness for the direct sound, early re-

flections, and late reverberation transient phases of the impulse

response for rendering perceptually important acoustic effects on

sound emitted from a single coherent point source. Our work fo-

cuses on capturing the variable statistical texture of ambient sounds

and their modification by sound propagation.

To model liquid sounds, there has also been work on near-field

wave-based modeling of generation and propagation from sources

such as water bubbles in a container, although for offline render-

ing [Langlois et al. 2016]. We target large-scale propagation effects

from big stochastic sources within complex scenes, not limited to

liquids.

Incoherent ambient sounds. Zhang et al. [2018] distributes an ide-

ally incoherent signal over the spatio-temporal extent of the ambient

source in a precomputed wave simulation. It then extracts and recon-

structs two salient parameters as a function of 3D listener position:

aggregate loudness and directionality. These parameters modulate

a fixed input sound clip representing ocean waves, rain, or other

ambient sources in the far field. Its assumption of ideal, steady, tem-

poral incoherence is satisfied only when the listener is extremely

far from the source, and thus neglects the changing texture of what

is heard as the listener gets closer. Our representation includes di-

rectional effects using the same representation (low-order spherical

harmonics), but also captures the salient acoustic texture variation.

Perceptual statistics of sound texture. Research in sound perception
[McDermott et al. 2009; McDermott and Simoncelli 2011] has de-

veloped statistical descriptions that can be extracted from recorded

sounds to summarize the perceived sound texture. These methods

focus on stochastic temporal fluctuations in acoustic energy across

different audio frequency bands, and they can be used to trans-

form Gaussian random noise into sounds matching the original.

We are interested in a related but different problem: characterizing

and rendering the spatially-varying modification on sound texture

due to propagation within a complex scene. Our representation is

independent of the particular sounds emitted by the source. This

modification is what we term acoustic texture, captured in the ELD.

Once it has been extracted for a source volume and scene, we let the

user specify any grain sounds, synthesizing the resulting radiated

sound and applying the acoustic texture modification in real-time.

Granular sound synthesis. Granular synthesis is a broad term

encompassing many techniques in audio processing and synthesis

that break a sound into short units called grains and then reassemble

them by concatenation or blending to modify (e.g., pitch shift) the

original sound or to synthesize new sounds [Gabor 1946; Roads 2004;

Verron et al. 2009]. Specialized for the sound of rain, [Miklavcic et al.

2004; Zita 2003] physically model the impact sounds of drops as

grains, clustering them near the listener in free space. Liu et al.

[2019] further propose the material sound texture representing rain

drop sounds over various materials. Our acoustic texture instead

represents propagation effects of an extended homogeneous source.

Our run-time employs granular synthesis, where grains are indi-

vidual source event sounds which are generated and mixed stochas-

tically to render the output. Our focus is to inform this process with

the virtual environment.

3 PRECOMPUTED SOUND TRANSPORT
The first phase of our system is a precomputation that depends only

on the scene and the source volume, in which we simulate sound

wave propagation. The results of this simulation will be processed

to derive the event loudness density (ELD) at listener positions

throughout the scene for later use in run-time rendering.

Our precomputation uses the finite difference time domain (FDTD)

method [Taflove and Hagness 2005] to propagate sounds, which

numerically solves the wave equation

1

c2
∂2p

∂t2
(x , t) − ∇2p(x , t) = s(x , t) (1)

on a discrete grid in space-time, where x is 3D spatial location, t is
time, c = 340m/s is the speed of sound, and p is acoustic pressure.

The source term s(x , t)models the ambient source as an aggregation

of events and will be explained later. The simulation duration is

denoted T = TS +TD , where TS is the length of time in which the

source continues to emit event pulses and TD is the time required

for a wave to propagate across the diagonal of the simulation do-

main. The fixed value TS = 2s builds reliable and spatially-smooth

statistics for the ELD in all our experiments. Perfectly-matched

layers [Berenger 1994] are used to avoid reflection at the domain

boundaries.

Care must be taken to keep the simulation stable and avoid nu-

merical dispersion and dissipation errors; see [Zhang et al. 2018]

for a discussion. Our experiments use a voxel size of ∆x = 0.25m

and a time step of ∆t = 0.25ms, which implies a Nyquist frequency

of 2000Hz.

Source event signal. The source event pulse introduced into the

wave solver should follow two rules of thumb to minimize numerical

error. First, its power spectral density should be bandlimited in the

frequency domain, vanishing near DC (0Hz), to avoid residual parti-

cle velocity, and before the simulation Nyquist, to reduce dispersion

errors that cause ringing in FDTD. Second, it should be compact

in the time domain, minimizing overlap among neighboring event

signals so that arriving events can be distinguished.

The Gaussian derivative is a compact, zero-mean signal. We tune

its single parameter to avoid extensive energy approaching the

simulation Nyquist via

s0(t) = − t
√
e

σ
e
− t2

2σ 2
(2)
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Fig. 3. Band-limited source event pulse used by the solver, s0(t ). Left: Source
pulse in time-domain. Right: energy spectral density.

where σ = 3∆t and the maximum amplitude of s0(t) is 1. We also

define the width of the pulse ts such that |s0(ts/2)| = 0.01, yielding

ts = 5.4ms. Figure 3 shows the signal and its power spectral density.

Source event placement. We then introduce this source pulse iden-

tically at random onset times over the source duration TS and ran-

dom 3D locations over the source. Since the arrival event density at

the listener integrates over the source, we fix the temporal event

density across the entire volume of the source as d0 = 0.1/ts . A
simple tradeoff governs our choice of this density. Higher density

allows a shorter, less expensive simulation but makes it more likely

arrivals will be incorrectly merged. Lower density avoids mergers

but requires a longer and more expensive simulation to collect suf-

ficient statistics. While TS = 2s works well in our tests, for larger

sources it can be increased to ensure ELD convergence. This is read-

ily ascertained by analyzing the smoothness of spatial variation in

ELD statistics, as shown in Figure 6.

4 ELD EXTRACTION
Wave simulation produces a time-varying pressure response p(t ;x)
at each listener position. This data is processed as the simulation

runs to accumulate a measurement of the ELD at each x . Doing
this robustly and efficiently is challenging and must contend with

numerical error. Dispersion errors in a bandlimited FDTD simulation

cause “ringing”, creating many lagging and attenuated copies of

a single arrival event. Standard frequency-domain deconvolution

exacerbates ringing and impractically requires storing the entire

response in memory. We seek a streaming method which manages

event aliasing and avoids assembling the entire response before

extraction.

4.1 Deconvolution
Deconvolving the pressure response p(t ;x) with respect to the

source pulse s0(t) recovers the aggregate impulse response h(t ;x)
by inverting

p(t ; x) = h(t ; x) ∗ s0(t). (3)

Inspired by compressive sensing [Candes et al. 2006; Donoho et al.

2006], we propose a sparsity-regularized time-domain deconvolu-

tion which reduces sensitivity to ringing. We interpret (3) as a sparse

superposition of time-shifted copies of s0(t), converting deconvolu-

tion into an L2 minimization problemwith L1 regularization (LASSO

pressure response

deconvolved aggregate impulse response

Fig. 4. L1-regularized, least-squares deconvolution. The top image shows

the received pressure signal; the bottom shows the deconvolved result. Our

method is designed to cope with the ringing resulting from numerical dis-

persion in order to distinguish arrival events. Parts of the pressure response

marked in dashed red at left show ringing “copies” of the original Gaussian

derivative pulse injected into the simulation. Our method does not confuse

these for additional arrivals. Two pulses overlap in the area marked in dotted

red at right; our method correctly resolves two separate arrival events.

[Tibshirani 1996]):

argmin

h

1

2



Ah − p


2
2
+ λ ∥h∥

1
(4)

where each column of the square matrix A is a time-shifted version

of the elementary pulse s0(t) and λ is a regularization parameter.

Applying this idea directly on the entire space-time pressure

response is expensive. We instead extract h(t ;x) in non-overlapping

segments of length T0 = 10∆t and accumulate ELD statistics from

each. Since the input pulse has a finite duration ts , one must consider

an input window with ts/2 extra duration on either side to ensure

that any output peak is fully captured within the analyzed segment.

Thus, p(t) is analyzed using overlapping input segments of duration

ts +T0 that increment by T0. In each segment, the matrix A is n × n
where n = (ts +T0)/∆t ; the first column contains the shifted pulse

s0(t + ts/2) and the last column contains s0(t −T0 − ts/2).
We then apply the alternating direction method of multipliers

(ADMM) to solve (4) in each segment [Boyd et al. 2011]. We regular-

ize using λ = 0.1 | |ATb | |∞; a standard choice that balances sparsity

and convergence rate. The result is an estimate of h(t ; x) of length
n. We discard the overlapping portions of the time segment from

this output, using only the middle portion (of width T0) for ELD
accumulation.

Figure 4 shows the output of this method on input representing

our wave simulator’s pressure response when emitting a few pulses

into the free field (i.e. without scene geometry). While the input

is degraded by numerical dispersion, deconvolution still recovers

narrow spikes.
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Acoustic texture rendering for extended sources in complex scenes • 1:5

4.2 Accumulation and encoding
At each simulation voxel, deconvolution over each time segment

yields a corresponding segment of the aggregate impulse response

from which it is straightforward to accumulate the ELD. We apply

peak detection (using a simple relative min/max detector on three

values adjacent in time), extract the peak’s amplitude A, compute

its loudness via L = 10 log
10
A2

, and accumulate peak loudnesses

into a running histogram. Because max loudness is unknown when

encoding begins, we accumulate into a histogram of conservatively

large span: [−60, 60]dB with bin width of 3dB. The overall compu-

tation allows streaming, requiring only the time-varying pressure

response over one time segment and the accumulated histogram (40

bins) as its stored state. We note that the just-noticeable difference

for human perception of loudness is 1dB under ideal conditions;

3dB provides a good balance between quality and memory use.

Once simulation completes, the histogram is converted to the

encoded ELD as follows. We first extract the maximum loudness

received, quantized to 3dB, as a separate channel denoted Lm . We

then store temporal densities at the next 12 loudness bins of width

3dB descending from Lm . This yields an encoding range of 3 × 12 =

36 for a minimum loudness of 36dB below the maximum which we

have found sufficient in our experiments. The range can be expanded

to include more of the softer end of the distribution at the expense

of additional storage.

Event density in each bin is divided by the total temporal density

over the whole simulated source, which we denoted d0 in Sec. 3.

Encoding relative rather than absolute density factors out depen-

dence on the arbitrary density of the simulation source and allows

run-time substitution of a source of different density via simple

scaling. The relative densities are quantized in the range [0, 20]with
a quantum of 1/3.
We spatially down-sample listener positions from what is simu-

lated by a factor of 4 in each dimension. Overall the process produces

13 parameter fields containing, for each listener location, Lm and rel-

ative event densities in 12 ELD loudness bins offset from it. As with

previous work [Raghuvanshi and Snyder 2014; Zhang et al. 2018],

the parameter fields are spatially smooth and can be compressed.

We compress the raw data by applying lossless LZW coding to the

running difference along x scanlines.

4.3 Spatialization
In addition to the above ELD information, we also extract and encode

an overall directional distribution of energy at each listener position

x as the simulation runs. Our method follows [Zhang et al. 2018]

but we summarize here. As in [Raghuvanshi and Snyder 2018] (Eq.

11, here corrected), we compute the directional acoustic power flux

using the formula

f (x , t) = −p(x , t)v(x , t) = p(x , t)
∫ t

−∞
∇p(x ,τ )dτ . (5)

We then aggregate directional energy in terms of spherical har-

monics (SH). At each time step t , the acoustic power flux direction
ˆf (x , t) = f (x , t) /



f (x , t)

 is projected onto a low-order (4 in our

experiments) SH basis and the SH coefficient vector accumulated

via

El,m =
1

T

∫ T

0

p2(t)Yl,m ( ˆf (t))dt (6)

where Ylm are the (real-valued) SH basis functions. At run-time, the

mono sound signal is synthesized as discussed in the next section,

and then spatialized per this spherical energy distribution (while

ignoring inter-aural phase) to produce an output binaural signal.

5 RUN-TIME RENDERING
Our run-time rendering uses granular synthesis [Roads 2004], which

controls meso-scale sound texture by mixing micro-scale acoustical

grains, so as to synthesize the sound of an extended source. We

assume a collection of brief grain sounds such as rain drops or bird

tweets; how we generate them is discussed later. Our goal is to

simulate the sound due to a source that emits these grains randomly,

and our approach is to produce an acoustic texture by mixing many

random grains drawn according to the ELD at the listener’s position.

5.1 Grain blending
We first decompress and spatially interpolate at the current listener

location x , to obtain the ELD E(L;x) where L is loudness. We hence-

forth drop the listener position, x . Recall that E(L) relates the relative
temporal event density to loudness. We employ a straightforward

method that is cache-friendly and obtains real-time performance. It

scales and adds grain signals to the output audio buffer such that

their loudness and temporal density statistics respect E(L).
Because grains can be longer than the audio buffer size (in our

case 1024 audio samples), our method queues active grains. For each,

it stores the grain onset time, the grain index in its collection, and

the grain amplitude, so that its signal can be synthesizing coherently

across multiple output audio buffers. Two simple algorithms drive

synthesis, detailed in Figure 5. We define overall grain density (i.e.,

grains generated per second) as D = d ′
0

∫
E(L)dL. The integral

yields the total number of events per second at the listener relative

to the source’s event density. This is multiplied with d ′
0
, the absolute

event density of the source, which is specified by the sound designer

based on physical or artistic concerns and can be modified in real-

time if desired. This yields D, the expected number of grains we

will superpose per second. Grain density D changes as the listener

moves, and is updated at the start of every audio buffer.

To stochastically draw the grain amplitude requires a simple pro-

cedure we perform on the fly. The computation is minimal because

E(L) is represented with just 12 loudness bins. We first compute

E(L)/D to form a probability density function (PDF) providing the

probability for each loudness bin. We then integrate to form the cu-

mulative distribution function (CDF). Generating a uniform random

number q in [0, 1], we compute the loudness corresponding to q by

inverting the CDF. Finally, we relate grain amplitude to loudness

via A = 10
L/20

.

Per-buffer loudness adjustment. This method works well for im-

pulsive but not long-lasting grains, such as the human utterances in

BabblingCrowd. Long grains can potentially span large changes in

loudness as the listener moves through the scene, e.g. if the listener

walks away from the source into an occluded room. To provide

better temporal continuity, we make a simple adjustment that scales

ACM Trans. Graph., Vol. 38, No. 6, Article 1. Publication date: November 2019.
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R: audio sample rate [44100Hz]

rand(): uniform random number generator in [0,1]

Runtime synthesis

for each output audio buffer

Call Add new grains
for each active grain

synthesize signal remainder and add to buffer, scaled by A
if grain now complete, dequeue

Add new grains

for each time sample t in buffer

if rand() < D/R, // decide to generate grain

generate random index i into grain collection

draw grain amplitude A from ELD E
enqueue grain at (t , i,A)

Fig. 5. Granular rendering of the event loudness density (ELD).

loudness in each current audio buffer to vary with the grain’s cur-

rent ELD max. Specifically, suppose a grain was initially generated

with loudness L when its ELD max was L
orig

m . Later its ELD max

becomes Lcurrm . We then render this grain in the current audio buffer

with loudness L−Lorigm +Lcurrm . No cross-fading was found necessary,

although it might be needed for very fast listener motion.

Atmospheric attenuation. Without atmospheric attenuation, high

frequencies can sound unnaturally harsh when standing far from the

sound source. Our solver lacks such modeling, but we find a simple

approximation sufficient in practice. We employ standard analytical

formulae relating propagation distance to atmospheric attenuation

[ISO 9613-1 1993]. We conservatively estimate distance to the source

as r ≈ 10
(L0−L)/20

, where L0 is the empirically determined loudness

of the source at 1m distance, and L is the ELD’s average loudness

across all arriving events at the listener location. Our formula as-

sumes attenuation from a point source; since the loudness falls

off more gradually for an extended source, we under-estimate the

distance. We implement the computed frequency-dependent attenu-

ation using a 4-band equalization filterbank with center frequencies

of {125,600,2400,9600}Hz.

5.2 Grain collection creation
Our rendering method requires a collection of grains as input; they

should be spectrally and semantically similar and short. Most of

our grains persist for just a few tens of milliseconds, but some (e.g.

human utterances) are longer, up to a few seconds. Each time a grain

is added in the algorithm from Fig. 5, we randomly select its index i
from the collection. Our examples use several different approaches

to generate these grain collections.

For water sounds (both drop impacts and flows) we applied a

procedural model based on bubble oscillations [Doel 2005]. Although

this model is fast enough to perform procedural synthesis in real

time, we simplify the implementation by pre-generating a random

collection of 1000 grains, thereafter treating them as recordings.

For the crowd and bird-flock grain collections, we manually seg-

mented recorded clips into individual events. We obtained 45 tweet

grains from a single recorded clip of starling calls, and 2000 grains

(English utterances) from a database of recordings [Shtooka 2010].

For the lapping waves, we segmented a recording applying a Kaiser-

Bessel sliding window [Bosi and Goldberg 2012], with 2 second

width, 1 second sliding step, and β = 10, yielding a collection of 19

grains.

6 RESULTS
We precompute a single FDTD simulation and encode the ELD and

SH directional parameter fields for each scene per sound source,

which takes 1–16 hours on a desktop computer with Intel i7-8700K

CPU@3.70GHzwith 6 cores and 32G RAM. In all our test scenes, the

compressed data is about 1MB per sound source; further information

is reported in Table 1. Our run-time implementation is integrated

in Unreal Engine 4.

Results for ambient soundscapes in four scenes are included in

the supplementary video. RiverHouse includes a linear stream of

water with nearby building geometry. RainOverPool models the

sound of light rain hitting a rectangular water pool in a house and

garden scene. StylizedKingdom demonstrates outdoor acoustic

texture effects from a flock of starlings in a tree canopy and water

lapping around a lake. BabblingCrowd includes a single extended

source in a small room representing a babbling crowd.

In most scenes, run-time grain density, d ′
0
, varies from 18 to 90

s
−1
. The exception is procedural water sounds, where we use a

higher density (around 1800 s
−1

for rainfall and 9000 s
−1

for stream

flow). Recall that arrival density at the listener is further modified,

compared to the source density, by the ELD. As the listener moves,

we plot the ELD corresponding to that location, annotated with

green bars for the 50th (median) and 95th percentile loudnesses

across all arriving events, and the average loudness. The video

also demonstrates the enhanced realism provided by rendering the

spatially-varying acoustic texture using the ELD, compared to a

fixed texture (labeled “loudness variation only” in the video) as in

[Zhang et al. 2018].

Our approach first produces a mono signal blending across all

grains, and then spatializes the blended result using an aggregate

directional representation collected over the entire source. Ideally,

each grain would be spatialized separately since each exhibits a

separate arrival direction. Our simple model compactly encodes

the main effects, becoming less convincing with a collection of

directional and highly recognizable/distinguishable grains, as with

a listener standing in the midst of a babbling crowd.

RiverHouse. Near the stream source, crisp gurgling sounds are

audible. The acoustic texture stays nearly constant as the listener

walks along its bank. As the listener moves away from the stream,

these distinct gurglings gradually disappear and the texture smoothly

changes to become more noise-like. Inside the house, reverberation

causes a Gaussian ELD shape, essentially capturing the room’s de-

cay time characteristic. Behind the house outdoors, edge diffraction

rather than reverberation serves to mix events arriving around the

sides of the building from across the source, resulting in a unimodal
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Table 1. Precomputation data.

scene (source)

scene

(m)

scene voxels

source box

(m)

source voxels

bake time

(h)

bake RAM

(GB)

run-time RAM

(MB, encoded)

RiverHouse 45 × 40 × 5.0 0.90 × 10
6

7.0 × 40 × 0.50 8.0 × 10
3

1.0 1.6 0.40

RainOverPool 35 × 55 × 3.0 0.70 × 10
6

8.0 × 16 × 0.50 4.0 × 10
3

10 1.2 0.80

StylizedKingdom

(starlings)

53 × 32 × 8.0 0.80 × 10
6

10 × 4.0 × 1.0 2.5 × 10
3

3.3 2.2 0.50

StylizedKingdom

(lake)

60 × 60 × 8.0 2.0 × 10
6

35 × 45 × 1.0 17 × 10
3

16 3.7 1.2

BabblingCrowd 40 × 30 × 14 1.4 × 10
6

18 × 10 × 1.0 10 × 10
3

4.2 2.7 0.50

but non-Gaussian ELD without loud outliers and conveying a dis-

tant source. Outdoors but between two walls, the result sounds like

the expected fusion of indoors and outdoors.

RainOverPool. Individual rain drops are audible close to the

pool, becoming gradually indistinct farther away, and suddenly

more noise-like and denser as the listener enters the house.

StylizedKingdom. The flock of starlings tweeting spatializes well
overhead. As the listener moves away from it, the individual calls

merge into a more uniform, high pitched texture. The scene also

demonstrates our system’s ability to render multiple sources.

BabblingCrowd. A babbling crowd gathers in a small room in

this scene. The listener begins in a large indoor courtyard outside

the room’s open door. Acoustic texture varies convincingly as the

listener moves from near to far or side to side across the opening.

Inside the room in the midst of the crowd, we obtain a plausible

result even though grain utterances fail to merge into recognizable

conversation.

7 CONCLUSION
Our system models ambient sounds by randomly distributing identi-

cal pulses over the source’s space-time extent and propagating these

through a synthetic scene via a single wave simulation. To capture

the nuanced spatial variation in the perceived sound texture, we

focus on how propagation changes not only overall loudness but

also the relative arrival density of events at different loudnesses.

We formulate the event loudness density, statistically relating the

temporal density of event arrivals as a function of their loudness,

and show how the ELD can be extracted from simulation via careful

deconvolution, and used to govern run-time synthesis with free

listener movement. The encoded parameters are spatially smooth

and compress well, letting our system obtain convincing variation

of acoustic texture in complex scenes while maintaining a small

run-time memory budget.

Unlike geometric (ray tracing) techniques, our wave propagation

approach accounts for diffraction so that sound is heard around

obstacles and through portals even when the source isn’t directly

visible (e.g., behind the RiverHouse). However, diffraction produces

low-pass filtering effects on each event, which our deconvolution

method does not currently recover. Rather than analyzing arrival

events separately, this cue might be inexpensively restored by ap-

plying an equalization filter driven by aggregate frequency content

over all received pulses in the response.

Reverberation affects ambient sources, but quite differently from

how it affects point sources. Since ambient sounds are sustained in

time and comprise many similar and overlapping events, we expect

that reverberation primarily serves to increase the temporal event

density, captured in the ELD. This effect is audible in the demos,

e.g. as the listener walks from outdoors into the RiverHouse. But

reverberation also exhibits a decaying “tail” (RT60) effect that can’t

be realized just by changing overall density and so is ignored by our

approach. The effect is more saliently missed as event arrivals get

very sparse, so that the gaps between them are long enough to hear

the reverb falloff from a single event.

Our simple spatialization assumes that phases of sound arriving

from different directions are decorrelated due to mixing of many

micro-events at the listener, making interaural phase difference less

significant than the head shadowing (interaural level difference)

that we do model. As with reverberation, this shortcut becomes less

convincing as events get temporally sparse at the listener, so that the

interaural phase cue of a single event (arriving in a single direction)

becomes more audible. When event arrivals become sufficiently

sparse, our method might be extended by rendering the loudest

individual events as separate coherent point sources.

Our system currently applies spatialization on the aggregate di-

rectionality of energy over all event arrivals. In fact, acoustic texture

varies with direction. Standing between an extended source and the

door to a room which functions as a sound reservoir, the ELD is

broader (more near-field sounding) in the ear facing the source and

more peaked (far-field sounding) in the ear facing the door through

which room reverberation gets mixed.

Finally, a complete solution would offer some way to capture near-

field effects where our model breaks down and the arrival time and

energy of successive events become audibly correlated. As shown in

our crowd babble scene, while a reasonable rendering is obtained as

long as utterances remain unintelligible, the full cocktail party effect,

coherently preserving both the directional and semantic content of

sounds made by each nearby speaker, remains for future work.
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River house

Rain-on-pool

Starling flock

Babbling crowd

50% percentile (dB) 95% percentile (dB) energy above 95-th percentile event density for 95% of energy

Fig. 6. Spatial maps of ELD characteristics.We show results for three scenes each with a single ambient source, indicated by the dashed yellow area in the

fourth column. The leftmost two columns show median (50th percentile) and 95th percentile loudness over all arriving events, respectively. These indicate the

smoothness of our parameterization. The third column plots the fraction of energy remaining above the 95th percentile: brighter areas indicate more loud

arrivals that stand out over the rest. Note how this property diminishes inside the river house, conveying the increased mixing of grains that happens indoors

due to reverberation. The fourth column maps summed arrival density over the biggest loudnesses containing 95% of total energy. Note how it increases in

enclosed spaces from reverberation but decreases in the vicinity of the source.
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