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Abstract

The dominant approaches for named entity recognition (N-
ER) mostly adopt complex recurrent neural networks (RN-
N), e.g., long-short-term-memory (LSTM). However, RNNs
are limited by their recurrent nature in terms of computation-
al efficiency. In contrast, convolutional neural networks (C-
NN) can fully exploit the GPU parallelism with their feed-
forward architectures. However, little attention has been paid
to performing NER with CNNs, mainly owing to their dif-
ficulties in capturing the long-term context information in a
sequence. In this paper, we propose a simple but effective
CNN-based network for NER, i.e., gated relation network
(GRN), which is more capable than common CNNs in cap-
turing long-term context. Specifically, in GRN we firstly em-
ploy CNNSs to explore the local context features of each word.
Then we model the relations between words and use them as
gates to fuse local context features into global ones for pre-
dicting labels. Without using recurrent layers that process a
sentence in a sequential manner, our GRN allows computa-
tions to be performed in parallel across the entire sentence.
Experiments on two benchmark NER datasets (i.e., CONLL-
2003 and Ontonotes 5.0) show that, our proposed GRN can
achieve state-of-the-art performance with or without external
knowledge. It also enjoys lower time costs to train and test.

Introduction

Named Entity Recognition (NER) is one of the fundamental
tasks in natural language processing (NLP). It is designed to
locate a word or a phrase that references a specific entity, like
person, organization, location, etc., within a text sentence. It
plays a critical role in NLP systems for question answering,
information retrieval, relation extraction, etc. And thus many
efforts have been dedicated to the field.

Traditional NER systems mostly adopt machine learning
models, such as Hidden Markov Model (HMM) (Bikel et
al. 1997) and Conditional Random Field (CRF) (McCallum
and Li 2003). Although these systems can achieve high per-
formance, they heavily rely on hand-crafted features or task-
specific resources (Ma and Hovy 2016), which are expensive
to obtain and hard to adapt to other domains or languages.

With the development of deep learning, recurrent neural
network (RNN) along with its variants have brought great
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success to the NLP fields, including machine translation,
syntactic parsing, relation extraction, etc. RNNs have been
proved to be powerful in learning from basic components of
text sentences, like words and characters (Tran, MacKinlay,
and Yepes 2017). Therefore, currently the vast majority of
state-of-the-art NER systems are based on RNNs, especially
long-short-term-memory (LSTM) (Hochreiter and Schmid-
huber 1997) and its variant Bi-directional LSTM (BiLSTM).
For example, Huang et al. (2015) firstly used a BiLSTM to
enhance words’ context information for NER and demon-
strated its effectiveness.

However, RNNs process the sentence in a sequential man-
ner, because they typically factor the computation along the
positions of the input sequence. As a result, the computation
at the current time step is highly dependent on those at pre-
vious time steps. This inherently sequential nature of RNNs
precludes them from fully exploiting the GPU parallelism
on training examples, and thus can lead to higher time costs
to train and test.

Unlike RNNSs, convolutional neural network (CNN) can
deal with all words in a feed-forward fashion, rather than
composing representations incrementally over each word in
a sentence. This property enables CNNs to well exploit the
GPU parallelism. But in the NER community, little attention
has been paid to performing NER with CNNs. It is main-
ly due to the fact that CNNs have the capacity of captur-
ing local context information but they are not as powerful
as LSTMs in capturing the long-term context information.
Although the receptive field of CNNs can be expanded by
means of stacking multiple convolutional layers or using di-
lated convolutional layers, the global context capturing is-
sue still remains, especially for variant-sized text sentences,
which hinders CNNs obtaining comparable performance as
LSTMs for NER.

In this paper, we propose a CNN-based network for NER,
i.e., Gated Relation Network (GRN), which is more power-
ful than common CNNs for capturing long-term context in-
formation. Different from RNNs that capture the long-term
dependencies in a recurrent component, our proposed GRN
aims to capture the dependencies within a sentence by mod-
elling the relations between any two words. Modelling word
relations permits GRN to compose global context features
without regard to the limited receptive fields of CNNs, en-
abling it to capture the global context information. This al-



lows GRN to reach comparable performance in NER versus
LSTM-based models. Moreover, without any recurrent lay-
ers, GRN can be trained by feeding all words concurrently
into the neural network at one time, which can generally im-
prove efficiency in training and test.

Specifically, the proposed GRN is customized into 4 lay-
ers, i.e., the representation layer, the context layer, the rela-
tion layer and the CRF layer. In the representation layer, like
previous works, a word embedding vector and a character-
level embedding vector extracted by a CNN are used as
word features. In the context layer, CNNs with various ker-
nel sizes are employed to transform the word features from
the embedding space to the latent space. The various CNN’s
can capture the local context information at different scales
for each word. Then, the relation layer is built on top of the
context layer, which aims to compose a global context fea-
ture for a word via modelling its relations with all words in
the sentence. Finally, we adopt a CRF layer as the loss func-
tion to train GRN in an end-to-end manner.

To verify the effectiveness of the proposed GRN, we con-
duct extensive experiments on two benchmark NER dataset-
s, i.e., CoNLL-2003 English NER and OntoNotes 5.0. Ex-
perimental results indicate that GRN can achieve state-of-
the-art performance on both CoNLL-2003 (F;=91.44 with-
out external knowledge and F1=92.34 with ELMo (Pe-
ters et al. 2018) simply incorporated) and Ontonotes 5.0
(F1=87.67), meaning that using GRN, CNN-based model-
s can compete with LSTM-based ones for NER. Moreover,
GRN can also enjoy lower time costs for training and test,
compared to the most basic LSTM-based model.

Our contributions are summarized as follows.

e We propose a CNN-based network, i.e., gated relation
network (GRN) for NER. GRN is a simple but effective
CNN-based architecture with a more powerful capacity
of capturing the global context information in a sequence
than common CNNSs.

e We propose an effective approach for GRN to model the
relations between words, and then use them as gates to
fuse local context features into global ones for incorpo-
rating long-term context information.

e With extensive experiments, we demonstrate that the pro-
posed CNN-based GRN can achieve state-of-the-art NER
performance comparable to LSTM-based models, while
enjoying lower training and test time costs.

Related Work

Traditional NER systems mostly rely on hand-crafted fea-
tures and task-specific knowledge. In recent years, deep neu-
ral networks have shown remarkable success in the NER
task, as they are powerful in capturing the syntactic depen-
dencies and semantic information for a sentence. They can
also be trained in an end-to-end manner without involving
subtle hand-crafted features, thus relieving the efforts of fea-
ture engineering.

LSTM-based NER System. Currently, most state-of-the-
art NER systems employ LSTM to extract the context infor-
mation for each word. Huang et al. (2015) firstly proposed
to apply a BILSTM for NER and achieved a great success.

Later Ma and Hovy (2016) and Chiu and Nichols (2016) in-
troduced character-level representation to enhance the fea-
ture representation for each word and gained further perfor-
mance improvement. MacKinlay et al. (2017) proposed to
stack BiLSTMs with residual connections between different
layers of BiLSTM to integrate low-level and high-level fea-
tures. Liu et al. (2018) further proposed to enhance the NER
model with a task-aware language model.

Though effective, the inherently recurrent nature of
RNNs/LSTMs makes them hard to be trained with full par-
allelization. And thus here we propose a CNN-based net-
work, i.e., gated relation network (GRN), to dispense with
the recurrence issue. And we show that the proposed GRN
can obtain comparable performance as those state-of-the-
art LSTM-based NER models while enjoying lower training
and test time costs.

Leveraging External Knowledge. It has been shown that
external knowledge can greatly benefit NER models. Exter-
nal knowledge can be obtained by means of external vocab-
ulary resources or pretrained knowledge representation, etc.
Chiu and Nichols (2016) obtained F1=91.62% on CoNLL-
2003 by integrating gazetteers. Peters et al. (2017) adopted
a character-level language model pretrained on a large ex-
ternal corpus and gained substantial performance improve-
ment. More recently, Peters et al. (2018) proposed ELMo,
a deep language model trained with billions of words, to
generate dynamic contextual word features, and gained the
latest state-of-the-art performance on CoNLL-2003 by in-
corporating it into a BILSTM-based model. Our proposed
GRN can also incorporate external knowledge. Specifical-
ly, experiments show that, with ELMo incorporated, GRN
can obtain even slightly superior performance on the same
dataset.

Non-Recurrent Networks in NLP. The efficiency is-
sue of RNNs has started to attract attention from the NLP
community. Several effective models have also been pro-
posed to replace RNNs. Gehring et al. (2017) proposed
a convolutional sequence-to-sequence model and achieved
significant improvement in both performance and training
speed. Vaswani et al. (2017) used a self-attention mechanis-
m for machine translation and obtained remarkable transla-
tion performance. Our proposed GRN is also a trial to in-
vestigate whether CNNs can get comparable NER perfor-
mances as LSTM-based models with lower time costs for
training and test. And different from (Gehring et al. 2017;
Vaswani et al. 2017), we do not adopt the attention mecha-
nism here, though GRN is a general model and can be cus-
tomized into the attention mechanism easily.

Iterated dilated CNN (ID-CNN), proposed by Strubell et
al. (2017), also aims to improve the parallelization of N-
ER models by using CNNs, sharing similar ideas to ours.
However, although ID-CNN uses dilated CNNs and stacks
layers of them, its capacity of modelling the global context
information for a variant-sized sentence is still limited, and
thus its performance is substantially inferior to those of the
state-of-the-art LSTM-based models. In contrast, our pro-
posed GRN can enhance the CNNs with much more capac-
ity to capture global context information, which is mainly
attributed to that the relation modelling approach in GRN al-



lows to model long-term dependencies between words with-
out regard to the limited receptive fields of CNNs. And thus
GRN can achieve significantly superior performance than
ID-CNN.

Proposed Model

In this section, we discuss the overall NER system utiliz-
ing the proposed GRN in detail. To ease the explanation, we
organize our system with 4 specific layers, i.e., the represen-
tation layer, the context layer, the relation layer and the CRF
layer. We will elaborate on these layers from bottom to top
in the following subsections.

Representation Layer

Representation layer aims to provide informative features
for the upper layers. The quality of features has great impact-
s on the system’s performance. Traditionally, features are
hand-crafted obeying some elaborative rules that may not
be applicable to other domains. Therefore, currently many
state-of-the-art approaches tend to employ deep neural net-
works for automatic feature engineering.

As previous works like (Ye and Ling 2018), the represen-
tation layer in GRN is comprised of only word-level fea-
tures and character-level features. In this paper, we use pre-
trained static word embeddings, i.e., GloVe! (Pennington,
Socher, and Manning 2014), as the initialized word-level
feature. And during training, they will be fine-tuned. Here
we denote the input sentence s as s = {s1,582,...,57},
where s; with ¢ = 1,2,...,T denotes the ith word in the
sentence, and 7' is the length of the sentence. We also use
y = {y1, 2, ..., yr} to denote the corresponding entity la-
bels for all words, i.e., y; corresponding to s,. With each
word s; represented as a one-hot vector, its word-level fea-
ture w; is extracted as below:

w; = E(Sz) (])

where E is the word embedding dictionary, initialized by the
GloVe embeddings and fine-tuned during training.

Furthermore, we augment the word representation with
the character-level feature, which can contribute to ease
the out-of-vocabulary problem (Rei, Crichton, and Pyysalo
2016). Same as (Ma and Hovy 2016), here we adopt a CN-
N to extract the character-level feature for each word s;, as
illustrated in Figure 1.

Specifically, the j-th character in the word s; containing n
characters is firstly represented as an embedding vector cz» in
a similar manner as Eq. 1, except that the character embed-
ding dictionary is initialized randomly. Then we use a con-
volutional layer to involve the information of neighboring
characters for each character, which is critical to exploiting
n-gram features. Finally, we perform a max-over-time pool-
ing operation to reduce the convolution results into a single
embedding vector ¢;:

¢ = conv([cé-fk/Q, e s C§+k/2])

¢; = pooling([ef, ..., &, ..., &)
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Figure 1: CNN to extract the character-level feature for a
word. Best see in color.

where k is the kernel size of the convolutional layer. Here
we fix k = 3 as (Ye and Ling 2018).

Note that RNNs, especially LSTMs/BiLSTMs are also
suitable to model the character-level feature. However, as
revealed in (Yang, Liang, and Zhang 2018), CNNs are as
powerful as RNNs in modelling the character-level feature.
Besides, CNNs can probably enjoy higher training and test
speed than RNNs. Therefore, in this paper we just adopt a
CNN to model the character-level feature.

We regard c; as the character-level feature for the word s;.
then we concatenate it to the word-level feature w; to derive
the final word feature z; = [¢;, w;].

Context Layer

Context layer aims to model the local context information
among neighboring words for each word. The local context
is critical for predicting labels, regarding that there could ex-
ist strong dependencies among neighboring words in a sen-
tence. For example, a location word often co-occurs with
prepositions like in, on, at. Therefore, it is of necessity to
capture the local context information for each word.

And it is obvious that the local dependencies are not lim-
ited within a certain distance. Therefore, we should enable
the context layer to be adaptive to different scales of local
information. Here, like InceptionNet (Szegedy et al. 2015),
we design the context layer with different branches, each
being comprised of one certain convolutional layer. Figure 2
shows the computational process of the context layer.

Specifically, we use three convolutional layers with the
kernel size being 1, 3, 5, respectively. After obtaining the
word feature Z = {z1, 22,..., 2r} of a sentence s, each
branch firstly extracts the local information zF within a
window-size k for each word s;. Then a max-pooling opera-
tion is employed to select the strongest channel-wise signals
from all branches. To add the non-linear characteristic, we
also apply fanh after each branch.

25 = COHVk([Zi_k/27 ey Ziy ~"7Ci+k/2D

3
T; = pooling([tanh(éil),tanh(é?),tanh(ff)]) ©)

where k € {1,3,5} is the kernel size. For each k, we use
k /2 zero-paddings to ensure that each word can get the cor-
responding context feature. Here, we consider the output z;
of the context layer as the context feature for word s;.
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Figure 2: Branches with various convolutions for extracting
the local context feature for words. Best see in colors.

Although with various kernel sizes, the context layer can
capture different kinds of local context information, it still
struggles to capture the global one. However, we will show
that with the gated relation layer described in the following
subsection, the global context information can be realized
by a fusion of the local one, thus tackling the shortcoming
of the context layer.

Relation Layer

It has been shown that both short-term and long-term con-
text information in a sequence is very critical in sequence
learning tasks. LSTMs leverage the memory and the gating
mechanism (Hochreiter and Schmidhuber 1997) to capture
both context information and gain significant success. How-
ever, conventional CNNs cannot well capture the long-term
context information owing to the limited receptive fields,
and thus existing CNN-based NER models cannot achieve
comparable performance as LSTM-based ones.

In this subsection, we introduce the gated relation layer
in our proposed GRN, which aims to enhance the conven-
tional CNNs with global context information. Specifically, it
models the relations between any two words in the sentence.
Then, with the gating mechanism, it composes a global con-
text feature vector by weighted-summing up the relation s-
cores with their corresponding local context feature vectors,
as shown in Figure 3. Similar to the attention mechanis-
m, our proposed GRN is effective in modelling long-term
dependencies without regard to the limited CNN receptive
fields. And importantly, GRN can allow computations to be
performed in parallel across the entire sentence, which can
generally help to reduce the time costs for training and test.

Given the local context features = {z1,z2,...,27}
from the context layer for a sentence s, the relation layer
firstly computes the relation score vector 7;; between any
two words s; and s;, which is of the same dimension as
any x;. Specifically, it firstly concatenates the correspond-
ing context features x; and x;, and then uses a linear func-
tion with the weight matrix W,.,, and the bias vector b,.,, to
obtain 7;;:

Tij = Wie [xi§xj] + bry (4)

Like (Santoro et al. 2017), we can directly average these
relation score vectors as follows:

1 Z
ri= ) i ®)

j=1

where r; is the fused global context feature vector for the
word s; by the direct feature fusion operation, i.e., averaging
in Eq. 5. However, considering that non-entity words gener-
ally take up the majority of a sentence, this operation may
introduce much noise and mislead the label prediction. To
tackle that, we further introduce the gating mechanism, and
enable the relation layer to learn to select other dependen-
t words adaptively. Specifically, for the word s;, we firstly
normalize all its relation score vectors r;; with a sigmoid
function to reduce their biases. Then we sum up the normal-
ized relation score vectors r;; with the corresponding local
context feature vector x; € & = {x1,2,...,z7} of any
other word s;. And similar to Eq. 5, finally we normalize
the sum by the length of the sentence, i.e., T'.

T

1
ri = TZU(TU)@%' (6)

Jj=1

where o is a gate using sigmoid function, and ® means
element-wise multiplication. Note that r;; is asymmetrical
and different from r;;, and the relation vector w.r.t s; itself,
i.e., 74, is also incorporated in the equation above. There-
fore, with 7; consisting of all the information of other words
in the sentence, it can be seen as the global context feature
vector for s;.

In a way, GRN can be seen as a channel-wise attention
mechanism (Chen et al. 2017). However, instead of using a
softmax function, we leverage the gating mechanism on the
relation score vectors to decide how all the words play a part
in predicting the label for the word s;. We can also customize
Eq. 6 to the formula of attention with gating mechanism,
where a gate is used to compute the attention weight for a
word:

aij = o(Walzs ;] + by)

T
1 (N
T, = T El()éij*xj
j=

where «;; € R! is an attention weight rather than a vector.
To distinguish from the proposed GRN (i.e., Eq. 6), we
name Eq. 5 as Direct Fusion Network (DFN) and Eq. 7 as
Gated Attention Network (GAttN). We will consider DFN
and GALttN as two of our baseline models to show the supe-
riority of the proposed GRN.
Here we also add a non-linear function for r; as follows.

p; = tanh(r;) (8)

And we define p; as the final predicting feature for word s;.

CRF Layer

Modelling label dependencies is crucial for NER task (Ma
and Hovy 2016; Liu et al. 2018). Following (Ma and Hovy
2016; Huang, Xu, and Yu 2015), we employ a conditional
random field (CRF) layer to model the label dependencies
and calculate the loss for training GRN.

Formally, for a given sentence s = {s1, S2, ..., S} and it-
s generic sequence of labels y = {y1, y2, ..., y1 }, we firstly
use Y(s) to denote the set of all possible label sequences for



Eq.4 - N
ool . T
*2 S A 2
- - /
X3 relation matrix: {r;;} ’y ool T3
Xr_p N Trea
R N
L Xr-1 ﬂ"‘mrr—l
xr L] o

J L 1 L 1
Local context feature x Relations Gating

Figure 3: Gated relation layer in GRN for composing the
global context feature for each word. 7;; denotes the relation
score vector between word s; and word s;. Best see in color.

s. The CRF model defines a family of conditional probabil-
ity p(y|s) over all possible label sequences y given s:

T
[Tiz1 9i(yiz1,%,8)
T
Zy’ey(s) Hi:l ¢i(yz/‘—1’ yé, s)

where ¢;(yi—1,4,5) = exp(f(si,y,y)) with f being a
function that maps words into labels:

Flsiy'sy) = Wypi + by (10)
where p; is derived as Eq. 8, W, is the predicting weights
w.r.t y and by , is the transition weight from 3’ to y. Both

W, and b, , are parameters to be learned.
Loss of the CRF layer is formulated as follows.

L=-Y logp(yls) (11)

p(yls) = ®

And for decoding, we aim to find the label sequence y*
with the highest conditional probability:

y* = argmax, ¢ (o p(y|s) (12)
which can be efficiently derived via Viterbi decoding.

Experiments

To verify the effectiveness of the proposed GRN, we
conduct extensive experiments on two benchmark NER
datasets: CoNLL-2003 English NER (Tjong Kim Sang and
De Meulder 2003) and OntoNotes 5.0 (Hovy et al. 2006;
Pradhan et al. 2013).

e CoNLL-2003 English NER consists of 22,137 sentences
totally and is split into 14,987, 3,466 and 3,684 sen-
tences for the training set, the development set and the
test set, respectively. It includes annotations for 4 types of
named entities: PERSON, LOCATION, ORGANIZATION
and MISC.

e OntoNotes 5.0 consists of much more (76,714) sentences
from a wide variety of sources (telephone conversation,
newswire, etc.). Following (Chiu and Nichols 2016), we
use the portion of the dataset with gold-standard named
entity annotations, and thus excluded the New Testaments
portion. It also contains much more kinds of entities, in-
cluding CARDINAL, MONEY, LOC, PRODUCT, etc.

dataset Train Dev Test
Sentence 14,987 3,466 3,684
CoNLL-2003 Token 204,567 51,578 | 46,666
Entity 23,499 5,942 5,648
Sentence 59,924 8,528 8,262
OntoNotes 5.0 Token 1,088,503 | 147,724 | 152,728
Entity 81,828 11,066 11,257

Table 1: Statistics of CoNLL-2003 and Ontonotes 5.0.

Table 1 shows some statistics of both datasets. Follow-
ing (Ma and Hovy 2016), we use the BIOES sequence la-
belling scheme instead of BIO for both datasets to train mod-
els. As for test, we convert the prediction results back to the
BIO scheme and use the standard CoNLL-2003 evaluation
script to measure the NER performance, i.e., F'; scores, etc.

Network Training

We implement our proposed GRN with the Pytorch Ili-
brary (Paszke et al. 2017). And we set the parameters below
following (Ma and Hovy 2016).

Word Embeddings. The dimension of word embedding
is set as 100. And as mentioned, we initialize it with S-
tanford’s publicly available GloVe 100-dimensional embed-
dings. We include all words of GloVe when building the vo-
cabulary, besides those words appearing at least 3 times in
the training set. For words out of the vocabulary (denoted as
UNK) or those not in GloVe, we initialize their embeddings
with kaiming uniform initialization (He et al. 2015).

Character Embeddings. We set the dimension of charac-
ter embeddings as 30, and also initialize them with kaiming
uniform initialization.

Weight Matrices and Bias Vectors. All weight matrices
in linear functions and CNNs are initialized with kaiming
uniform initialization, while bias vectors are initialized as 0.

Optimization. We employ mini-batch stochastic gradient
descent with momentum to train the model. The batch size
is set as 10. The momentum is set as 0.9 and the initial learn-
ing rate is set as 0.02. We use learning rate decay strategy to
update the learning rate during training. Namely, we update
the learning rate as &gi - at the ¢-th epoch with p = 0.02.
We train each model on training sets with 200 epochs to-
tally, using dropout = 0.5. For evaluation, we select its best
version with the highest performance on the developmen-
t set and report the corresponding performance on the test
set. To reduce the model bias, we carry out 5 runs for each
model and report the average performance and the standard
deviation.

Network Structure. The output channel number of the
CNN in Eq. 2 and Eq. 3 is set as 30 and 400, respectively.

Performance Comparison

Here we first focus on the NER performance comparison
between the proposed GRN and the existing state-of-the-art
approaches.

CoNLL-2003. We compare GRN with various state-of-
the-art LSTM-based NER models, including (Liu et al.
2018; Ye and Ling 2018), etc. We also compare GRN with
ID-CNN (Strubell et al. 2017), which also adopts CNNs



Model Mean(+std) F, | Max Fy Mean P/R
(Collobert et al. 2011) 88.67

(Luo et al. 2015) 89.9 90.0/89.9
(Chiu and Nichols 2016) 90.91 +0.20 90.75/91.08
(Zhuo et al. 2016) 88.12

(Rei, Crichton, and Pyysalo 2016) 84.09

(Lample et al. 2016) 90.94

(Ma and Hovy 2016) 91.21 91.35/91.06
(Rei 2017) 86.26

(Zukov-Gregoric et al. 2017) 89.83

(Liu, Baldwin, and Cohn 2017) 89.5

(Peters et al. 2017) 90.87 +0.13

(Liu et al. 2018) 91.24 +0.12 91.35

(Ye and Ling 2018) 91.38 +0.10 91.53

ID-CNN (Strubell et al. 2017) 90.54 +0.18

CNN-BIiLSTM-CRF 91.17 £ 0.18 91.45 | 90.98/91.35
GRN 91.44 + 0.16 91.67 | 91.31/91.57
(Collobert et al. 2011)* 89.59

(Luo et al. 2015)* 91.2 91.5/91.4
(Chiu and Nichols 2016)* 91.62+0.33 91.39/91.85
(Peters et al. 2017)* 91.93 +0.19

(Tran, MacKinlay, and Yepes 2017)* 91.66

(Yang, Salakhutdinov, and Cohen 2017)* 91.26

(Peters et al. 2018)* 9222 +0.10

GRN* 92.34 + 0.10 92.45 | 92.04/92.65

Table 2: Performance comparison on CoNLL-2003. * in-
dicates models utilizing external knowledge besides the
CoNLL-2003 training set and pre-trained word embeddings.
P/R denotes precision and recall.

without recurrent layers for NER. Furthermore, consider-
ing that some state-of-the-art NER models exploit external
knowledge to boost their performance, here we also report
the performance of GRN with ELMo (Peters et al. 2018) in-
corporated as the external knowledge. Note that ELMo is
trained on a large corpus of text data and can generate dy-
namic contextual features for words in a sentence. Here we
simply concatenate the output ELMo features to the word
feature in GRN. The experimental results are reported in Ta-
ble 2, which also includes the max F'; scores, mean precision
and recall values if available. Note that CNN-BiLSTM-CRF
is our re-implementation of (Ma and Hovy 2016), and we
obtain comparable performance as that reported in the paper.
Therefore, by default we directly compare GRN with the re-
ported performance of compared baselines. It should also be
noticed that, since the relation layer in GRN can be relat-
ed to the attention mechanism, here we also include some
attention-based baselines, i.e.,, (Rei, Crichton, and Pyysalo
2016) and (Zukov-Gregoric et al. 2017).

As shown in Table 2, compared with those LSTM-based
NER models, the proposed GRN can obtain comparable or
even slightly superior performance, with or without the ex-
ternal knowledge, which well demonstrates the effectiveness
of GRN. And compared with ID-CNN, our proposed GRN
can defeat it at a great margin in terms of F; score. We also
try to add ELMo to the latest state-of-the-art model of (Ye
and Ling 2018) based on their published codes, and we find
that the corresponding F; score is 91.79 =+ 0.08, which is
substantially lower than that of GRN.

OntoNotes 5.0. On OntoNotes 5.0, we compare the pro-
posed GRN with NER models that also reported perfor-
mance on it, including (Chiu and Nichols 2016; Shen et al.
2017; Durrett and Klein 2014), etc. As shown in Table 3,
GRN can obtain the state-of-the-art NER performance on
OntoNotes 5.0, which further demonstrates its effectiveness.

Model Mean(=+std) Fy Mean P/R
(Passos, Kumar, and McCallum 2014) 82.30

(Durrett and Klein 2014) 84.04 85.22/82.89
(Chiu and Nichols 2016) 86.28 £ 0.26 86.04 / 86.53
(Shen et al. 2017) 86.63 + 0.49

ID-CNN (Strubell et al. 2017) 86.84 + 0.19

GRN 87.67 + 0.17 | 87.79/87.56

Table 3: Performance comparison on OntoNotes 5.0. P/R de-
notes precision and recall.

Model Mean(+std) ¥y | F1 Drop
GRN w/o context 88.36 + 0.21 3.08
GRN w/ branchg 90.88 £0.22 0.56

GRN w/o relation 90.13 + 0.28 1.31
relation | DFN 90.72 + 0.06 0.72
GAttN 87.11 £0.25 4.33

Full | GRN [ 9144£016 | 0 |

context

Table 4: Ablation study on CoNLL-2003.

Model Mean(+std) ¥y | F1 Drop
Context GRN w/o context 82.21 +0.23 5.46
GRN w/ branchg 86.66 £ 0.21 1.01

GRN w/o relation 85.87 £ 0.16 1.80
relation | DFN 85.81 +0.14 1.86
GAttN 79.83 £ 0.37 7.83

[Full | GRN [ 8767017 | 0 |

Table 5: Ablation study on OntoNotes 5.0.

Overall, the comparison results on both CoONLL-2003 and
OntoNotes 5.0 well indicate that our proposed GRN can
achieve state-of-the-art NER performance with or without
external knowledge. It demonstrates that, using GRN, CNN-
based models can compete with LSTM-based ones for NER.

Ablation Study

Here we study the impact of each layer on GRN. Firstly, we
analyze the context layer by introducing two baseline mod-
els: (1) GRN w/o context: wiping out the context layer and
building the relation layer on top of the representation lay-
er directly; (2) GRN w/ branchs: removing branches in the
context layer, except the one with kernel size = 3. Then
to analyze the relation layer and the importance of gating
mechanism in it, we compare GRN with: (1) GRN w/o rela-
tion: wiping out the relation layer and directly building the
CREF layer on top of the context feature; (2) DFN (see Eq. 5);
(3) GAttN (see Eq. 7). All compared baselines use the same
experimental settings as GRN. Table 4 and Table 5 report the
experimental results on both datasets, where the last column
shows the absolute performance drops compared to GRN.

As shown in Table 4 and Table 5, when reducing the num-
ber of branches in the context layer, GRN w/o context and
GRN w/ branchs drop significantly, which indicates that
modelling different scales of local context information plays
a crucial role for NER.

Compared with GRN w/o relation, DFN and GALttN, the
proposed GRN defeats them at a substantial margin in terms
of F'; score, which demonstrates that the proposed gated re-
lation layer is beneficial to the performance improvemen-



CoNLL-2003 | OntoNotes 5.0
Training 1.16x 1.15x
Test 1.19x 1.08x

Table 6: Training/test speedup of GRN compared with
CNN-BIiLSTM-CRF.

t. The comparison also reveals that the channel-wise gating
mechanism in GRN is more powerful than the gated atten-
tion approach (i.e., Eq. 7) and the direct fusion approach
(i.e., Eq. 5) under the same experimental settings for NER.

Training/Test Time Comparison

In this section, we further compare the training and test time
costs of the proposed GRN with those of CNN-BiLSTM-
CRF, which is the most basic LSTM-based NER model
achieving high performance. We conduct our experiments
on a physical machine with Ubuntu 16.04, 2 Intel Xeon ES5-
2690 v4 CPUs, and a Tesla P100 GPU. For fair comparison,
we keep the representation layer and the CRF layer the same
for both models, so that the input and output dimensions for
the “BiLSTM layer” in CNN-BiLSTM-CRF would be iden-
tical to those of the “context layer + relation layer” in GRN.
We train both models with random initialization for a total
of 30 epochs, and after each epoch, we evaluate the learned
model on the test set. For both training and test, batch size
is set as 10 as before. And here we use the average train-
ing time per epoch and the average test time to calculate
speedups.

As shown in Table 6, GRN can obtain a speedup of
more than 1.15 during training and around 1.10 during
test on both datasets. The speedup may seem not so sig-
nificant, because the time costs reported here also include
those consumed by common representation layer, CRF lay-
er, etc. For reference, the fast ID-CNN with a CRF layer
(i.e., ID-CNN-CRF) (Strubell et al. 2017) was reported to
have a test-time speedup of 1.28 over the basic BiLSTM-
CRF model on CoNLL-2003. Compared to ID-CNN-CRF,
GRN sacrifices some speedup for better performance, and
the speedup gap between both is still reasonable. We can al-
so see that the speedup on CoNLL-2003 is larger than that
on OntoNotes 5.0, which can be attributed to that the aver-
age sentence length of CoNLL-2003 (~ 14) is smaller than
that of OntoNotes 5.0 (~ 18) and thus the relation layer in
GRN would cost less time for the former. The results above
demonstrate that the proposed GRN can generally bring ef-
ficiency improvement over LSTM-based methods for NER,
via fully exploiting the GPU parallelism.

Word Relation Visualization

Since the proposed GRN aims to boost the NER perfor-
mance by modelling the relations between words, especially
long-term ones, we can visualize the gating output in the re-
lation layer to illustrate the interpretability of GRN. Specif-
ically, we utilize the L2 norm of r;; to indicate the extent of
relations between the word s; and the word s;. Then we fur-
ther normalize the values into [0, 1] to build a heat map. Fig-
ure 4 shows a visualization sample. We can find out that the
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Figure 4: Word relation visualization: the x-axis shows the
sentence and the y-axis shows the entity words in it. Regions
with deeper color means stronger relations between the cor-
responding pair of words.

entity words (y-axis) are more related to other entity words
as well, even though they may be “far away” from each oth-
er in the sentence, like the 1st word “Sun” and the 8th word
“Sidek” in the sample. Note that “Sun” and “Sidek” are not
in an identical receptive field of any CNN used in our ex-
periments, but their strong correlation can still be exploited
with the relation layer in GRN. That concretely illustrates
that, by introducing the gated relation layer, GRN is able to
capture the long-term dependency between words.

Conclusion

In this paper, we propose a CNN-based network, i.e., gated
relation network (GRN), for named entity recognition (N-
ER). Unlike the dominant LSTM-based NER models which
process a sentence in a sequential manner, GRN can pro-
cess all the words concurrently with one forward operation
and thus can fully exploit the GPU parallelism for potential
efficiency improvement. Besides, compared with common
CNNs, GRN has a better capacity of capturing long-term
context information. Specifically, GRN introduces a gated
relation layer to model the relations between any two words,
and utilizes gating mechanism to fuse local context features
into global ones for all words. Experiments on CoNLL-2003
English NER and Ontonotes 5.0 datasets show that, GRN
can achieve state-of-the-art NER performance with or with-
out external knowledge, meaning that using GRN, CNN-
based models can compete with LSTM-based models for N-
ER. Experimental results also show that GRN can generally
bring efficiency improvement for training and test.
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