
FANDA: A Novel Approach to Perform Follow-up Query Analysis

Qian Liu†∗, Bei Chen§, Jian-Guang Lou§, Ge Jin♦∗, Dongmei Zhang§
†Beihang University, Beijing, China
§Microsoft Research, Beijing, China
♦Peking University, Beijing, China

qian.liu@buaa.edu.cn; {beichen, jlou, dongmeiz}@microsoft.com; elvisking@pku.edu.cn

Abstract

Recent work on Natural Language Interfaces to Databases
(NLIDB) has attracted considerable attention. NLIDB al-
low users to search databases using natural language instead
of SQL-like query languages. While saving the users from
having to learn query languages, multi-turn interaction with
NLIDB usually involves multiple queries where contextual
information is vital to understand the users’ query intents.
In this paper, we address a typical contextual understand-
ing problem, termed as follow-up query analysis. In spite
of its ubiquity, follow-up query analysis has not been well
studied due to two primary obstacles: the multifarious na-
ture of follow-up query scenarios and the lack of high-quality
datasets. Our work summarizes typical follow-up query sce-
narios and provides a new FollowUp dataset with 1000 query
triples on 120 tables. Moreover, we propose a novel ap-
proach FANDA, which takes into account the structures of
queries and employs a ranking model with weakly supervised
max-margin learning. The experimental results on FollowUp
demonstrate the superiority of FANDA over multiple base-
lines across multiple metrics.

1 Introduction
Natural Language Interfaces to Databases (NLIDB) relieve
users from the burden of learning about the techniques be-
hind the queries. They allow users to query databases using
natural language utterances, which offers a better interactive
experience compared to conventional approaches. By using
semantic parsing techniques, utterances are automatically
translated to executable forms (e.g. Structured Query Lan-
guage or SQL) to retrieve answers from databases. The ma-
jority of the previous studies on NLIDB assumes that queries
are context-independent and analyzes them separately. How-
ever, if we want to make NLIDB systems conform to users’
mental models, it is vital to take contextual information into
account. As users often pose new queries based on the past
turns during a multi-turn interaction with the NLIDB sys-
tem in a conversation. For example, given a query utterance,
“Show the sales in 2017.”, the user can simply say “How
about 2018?” instead of the complete query “Show the sales
in 2018.”. In fact, Bertomeu et al. (2006) point out that, in

∗Work done during an internship at Microsoft Research.
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

their Wizard-of-Oz experiment, up to 74.58% queries follow
immediately after the question they are related to.

In this paper, we focus on immediate follow-up queries,
and we formulate the follow-up query analysis problem
here. Consider a context-independent question and a ques-
tion immediately following it, respectively named as prece-
dent query and follow-up query. Generally speaking, the
follow-up query, like “How about 2018?” in the above ex-
ample, would be too ambiguous to be parsed into executable
SQL by itself. Therefore, follow-up query analysis aims to
generate a fused query, which resolves the ambiguity of the
follow-up query in the context of its precedent query. Com-
pared to the follow-up query, the fused query reflects users’
intent explicitly and facilitates better downstream parsing.
In reality, there are various scenarios for follow-up queries,
which can make the problem challenging. Setlur et al. (2016)
introduce the scenarios of single queries in their realistic
system, inspired by which, we summarize typical scenarios
of follow-up queries in Table 1. For instance, the follow-
up query “Compare it with Bill Collins.” aims to perform a
comparison, and “Show their number.” belongs to the sce-
nario of calculation and statistics.

Several attempts have been made to analyze follow-up
queries in specific datasets. For example, in the air travel
domain, the ATIS dataset collects user queries, including
follow-up ones, and their corresponding SQL from a real-
istic flight planning system (Dahl et al. 1994). Using this
dataset, Miller et al. (1996) employ a fully statistical model
with semantic frames; Zettlemoyer and Collins (2009) train
a semantic parser using context-independent data and gen-
erate context-dependent logical forms; and Suhr, Iyer, and
Artzi (2018) present a relatively complex sequence-to-
sequence model. While the ATIS dataset is realistic, it is
limited to a particular domain. All these methods are spe-
cific to it and hard to transfer across datasets. More recently,
the Sequential Question Answering (SQA) dataset is pro-
posed along with a search-based method (Iyyer, Yih, and
Chang 2017). However, SQA focuses on relatively simple
follow-up scenarios, where the answer to follow-up queries
is always a subset of the answer to the precedent query.

While some of the previous efforts somehow follow the
idea of semantic parsing methods, typical analysis scenar-
ios, such as compare, group and sort, are not covered in
ATIS or SQA. The lack of public high-quality and richer

Scenario Example

Analytics
Precedent : In 1995, is there any network named CBC?
Follow-up : Any TSN?
Fused : In 1995, is there any network named TSN?

Compare
Precedent : How much money has Smith earned?
Follow-up : Compare it with Bill Collins.
Fused : Compare money Smith earned with Bill Collins.

Calc & Stats
Precedent : List all universities founded before 1855.
Follow-up : Show their number.
Fused : Show the number of all universities founded before 1855.

Extremum
Precedent : Which stadium has the most capacity?
Follow-up : Which get the highest attendance?
Fused : Which stadium get the highest attendance?

Filter
Precedent : How many roles are from studio paramount?
Follow-up : List all titles produced by that studio.
Fused : List all titles produced by studio paramount.

Group
Precedent : Show the industry which has the most companies?
Follow-up : Show in different countries.
Fused : Show the industry which has the most companies in different countries.

Sort
Precedent : Show all chassis produced after the year 1990.
Follow-up : Sort them by year.
Fused : Show all chassis produced after the year 1990 and sort by year.

Search
Precedent : What position did Sid O’Neill play?
Follow-up : Which players else are in the same position?
Fused : Which players play in the position of Sid O’Neill excluding Sid O’Neill?

Table 1: Typical follow-up scenarios.

datasets makes the problem even more challenging. Taking
all the aforementioned limitations into account, we build a
new dataset and present a well-designed method for natural
language follow-up queries. Our major contributions are:

• We build a new dataset named FollowUp 1,which con-
tains 1000 query triples on 120 tables. To the best of our
knowledge, it is the first public dataset that contains vari-
ous kinds of follow-up scenarios.

• We propose a novel approach, Follow-up ANalysis for
DAtabases (FANDA), to interpret follow-up queries.
FANDA considers the structures of queries and employs
a ranking model with weakly supervised learning. It is
parser-independent and can transfer across domains.

• We conduct experimental studies on the FollowUp
dataset. Multiple baselines and metrics are utilized to
demonstrate promising results of our model.

2 Follow-up Query Dataset
We create FollowUp dataset with the purpose of offering a
high-quality dataset for research and evaluation. We utilize
tables from WikiSQL dataset (Zhong, Xiong, and Socher
2017), as they are realistic extracted from the web. Tables
with identical columns are joined, from which we randomly
select 120 tables with at least 8 rows and 1 numerical col-
umn. Data is collected by crowdsourcing of 8 workers, using
the format of the triple (precedent query, follow-up query,
fused query). The collection is completed through two
phases. Firstly, workers write context-independent prece-
dent queries according to the tables. To avoid monotonous

1Available at https://github.com/SivilTaram/FollowUp

queries, we provide several generic prompts to workers such
as “Require sort with an obvious order.”, as Pasupat and
Liang (2015). Secondly, given precedent queries, workers
write follow-up queries and the equivalent fused queries.
We fastidiously provide 10 examples for each follow-up sce-
nario, so that workers can imitate the examples to write dif-
ferent kinds of follow-up scenarios.

FollowUp dataset contains 1000 triples on 120 tables with
a vocabulary of size about 2000. All the example triples
in Table 1 are from the proposed FollowUp dataset, which
has great diversity in follow-up scenarios. Instead of SQL,
we collect fused queries in natural language because SQL
queries require workers equipped with more expertise. Natu-
ral language queries also allow methods for follow-up query
analysis to be independent of the semantic parser. Further-
more, this kind of annotation format is embraced by several
works on interactive question answering (Raghu et al. 2015;
Kumar and Joshi 2016; 2017).

3 Follow-up Analysis for Database
In this section, we present a novel approach FANDA, by
which the semantics of follow-up queries can be interpreted
with precedent query. Taking the precedent query x and the
follow-up query y as inputs, our goal is to obtain a complete
fused query z. It has the same meaning with the follow-up
query y and can be processed by a downstream semantic
parser all alone. Note that x, y and z are all natural lan-
guage utterances. As the fused query z always overlaps a
great deal with the precedent and follow-up queries, it is nat-
ural to consider sequence-to-sequence based models. How-
ever, they are uninterpretable and require lots of training
data, giving no consideration to the semantic structures of

Show the average of sales by brand in the year 2018

𝓢
candidate set

Intent:Refine

Show the sum of sales by brand in the year 2018 How about the average

Show the 𝐴𝑔𝑔of 𝐶𝑜𝑙 by 𝐶𝑜𝑙 in the 𝐶𝑜𝑙 𝑉𝑎𝑙 How about the 𝐴𝑔𝑔

B
id
irectio

n
al

LSTM
-C
R
F

O O 𝑆𝑒𝑙𝑒𝑐𝑡𝐵 𝑆𝑒𝑙𝑒𝑐𝑡𝐼 𝑆𝑒𝑙𝑒𝑐𝑡𝐼 O 𝑆𝑒𝑙𝑒𝑐𝑡𝐵 O O 𝐺𝑟𝑜𝑢𝑝𝐵 𝑊𝐵 𝑅𝑒𝑓𝑖𝑛𝑒𝐵 𝑅𝑒𝑓𝑖𝑛𝑒𝐼 𝑅𝑒𝑓𝑖𝑛𝑒𝐼 𝑆𝑒𝑙𝑒𝑐𝑡𝐵

...

Queries

Anonymization

Generation

... ...

Show the sum of sales by brand in the year 2018

𝑆𝑒𝑙𝑒𝑐𝑡 𝐺𝑟𝑜𝑢𝑝 𝑊1 𝑆𝑒𝑙𝑒𝑐𝑡
Fusion

Fused Query 𝑧

How about the average

𝐴𝑔𝑔 𝐶𝑜𝑙 𝐴𝑔𝑔

...

R
an

k
in

g
 M

o
d

el

A segment sequence

with highest score

Show the 𝑆𝑒𝑙𝑒𝑐𝑡 by 𝑆𝑒𝑙𝑒𝑐𝑡 in the 𝐺𝑟𝑜𝑢𝑝 𝑊1 How about the 𝑆𝑒𝑙𝑒𝑐𝑡

Show the 𝑆𝑒𝑙𝑒𝑐𝑡 by 𝐺𝑟𝑜𝑢𝑝 in the 𝑊1 How about the 𝑆𝑒𝑙𝑒𝑐𝑡

O O 𝑆𝑒𝑙𝑒𝑐𝑡𝐵 𝑆𝑒𝑙𝑒𝑐𝑡𝐼 𝑆𝑒𝑙𝑒𝑐𝑡𝐼 O 𝑆𝑒𝑙𝑒𝑐𝑡𝐵 O O 𝐺𝑟𝑜𝑢𝑝𝐵 𝑊𝐵 𝐴𝑝𝑝𝑒𝑛𝑑𝐵 𝐴𝑝𝑝𝑒𝑛𝑑𝐼𝐴𝑝𝑝𝑒𝑛𝑑𝐼 𝑆𝑒𝑙𝑒𝑐𝑡𝐵

O O 𝑆𝑒𝑙𝑒𝑐𝑡𝐵 𝑆𝑒𝑙𝑒𝑐𝑡𝐼 𝑆𝑒𝑙𝑒𝑐𝑡𝐼 O 𝑆𝑒𝑙𝑒𝑐𝑡𝐵 O O 𝑊𝐵 𝑊𝐼 𝐴𝑝𝑝𝑒𝑛𝑑𝐵 𝐴𝑝𝑝𝑒𝑛𝑑𝐼𝐴𝑝𝑝𝑒𝑛𝑑𝐼 𝑆𝑒𝑙𝑒𝑐𝑡𝐵

O O 𝑆𝑒𝑙𝑒𝑐𝑡𝐵 𝑆𝑒𝑙𝑒𝑐𝑡𝐼 𝑆𝑒𝑙𝑒𝑐𝑡𝐼 O 𝑆𝑒𝑙𝑒𝑐𝑡𝐵 O O 𝑊𝐵 𝑊𝐼 𝑅𝑒𝑓𝑖𝑛𝑒𝐵 𝑅𝑒𝑓𝑖𝑛𝑒𝐼 𝑅𝑒𝑓𝑖𝑛𝑒𝐼 𝑆𝑒𝑙𝑒𝑐𝑡𝐵

𝒘
symbol sequence

𝑺𝒆𝒈
a set of segment

sequences

Follow-up Query 𝑦Precedent Query 𝑥

𝐺
𝑟𝑜
𝑢
𝑝

𝑂
𝑟𝑑
𝑒𝑟

𝑊
1

𝑆
𝑒𝑙
𝑒
𝑐𝑡

𝑊
1

𝐺
𝑟𝑜
𝑢
𝑝
𝑊
1

𝑂
𝑟𝑑
𝑒𝑟

𝑊
1

𝑆
𝑒𝑙
𝑒
𝑐𝑡

𝑆
𝑒𝑙
𝑒
𝑐𝑡

S
h

o
w

 t
h

e
b

y
in

 t
h

e
H

o
w

 a
b

o
u

t
th

e
𝑆
𝑒𝑙
𝑒
𝑐𝑡

1
2

 c
o
m

b
in

at
io

n
 d

et
ai

ls

Figure 1: Illustration of FANDA.

queries. In fact, x and y always have conflicting semantic
structures. For example, given “Show the sales in 2017.”
and “How about 2018 ?”, “2018” conflicts with “2017”,
and only “2018” should be kept. Therefore, in FANDA,
we carefully consider two-level structures: symbol-level and
segment-level. Symbols are for words, and segments are for
phrases related to SQL clauses. Three components, shown as
yellow boxes in Figure 1, are devised to obtain the new fused
query: (1) Anonymization. Symbols are well-designed to
simplify the queries, producing the symbol sequences. (2)
Generation. Segments are presented with compositional de-
duction rules, producing the best segment sequence. (3) Fu-
sion. Fusing x and y using the relationships among two-level
structures, producing the fused query z.

3.1 Anonymization
In query utterances, the words can be divided into two types:
analysis-specific words and rhetorical words. Analysis-
specific words indicate the parameters of SQL clauses ex-
plicitly, while rhetorical words form the sentence patterns.
As shown in Figure 1, in the precedent query “Show
the sum of sales by brand in the year 2018”, the words
“sum”, “sales”, “brand”, “year” and “2018” are likely
to be analysis-specific words, while the others are rhetori-
cal words. As shown in Table 2, we predefine 8 types of
symbol for different analysis-specific words. Given a query,
anonymization is to recognize all analysis-specific words in
it, and replace them with the corresponding symbols to con-
struct a symbol sequence. Following the example in Fig-
ure 1, the symbol sequence corresponding to x should be
“Show the Agg of Col by Col in the Col V al”.

The symbols Col and V al are table-related, while the
others are language-related. For table-related symbols, the
analysis-specific words can be found from the correspond-
ing table of each query. Note that all the numbers and dates
belong to V al. Replacing column names and cell values by

Symbol Meaning Examples
Col Column Name sale, country
V al Cell Value 2018, Australia
Agg Aggregation sum, maximum, count
Com Comparison more, later, before
Dir Order Direction descending, ascending
Per Personal Pronoun it, he, them
Pos Possessive Pronoun its, his, their
Dem Demonstrative that, those, other

Table 2: Symbols for analysis-specific words.

Col and V al is the key to equip FANDA with the abil-
ity to transfer across tables. For language-related symbols,
{Per, Pos,Dem} are for pronouns, while the others are for
different kinds of SQL operators.Agg corresponds to aggre-
gation function, Com stands for comparison operator, and
Dir indicates the direction of ORDERYBY. The meanings
of language-related symbols are limited to a narrow space,
so it is viable to enumerate the most common analysis-
specific words empirically. For example, Pos ∈ {their, its,
his, her} and Agg ∈ {average, sum, count, maximum, · · · }.
Both of the precedent query x and the follow-up query y
are anonymized, and the resulting symbol sequences are de-
noted by x̂ and ŷ respectively. 2

3.2 Generation
The symbol of an analysis-specific word reflects its intrinsic
semantics, but ignores the content around it. Supposing we
have parsed the query “Show the sum of sales by brand in the
year 2018” into a SQL statement. Although both “brand”
and “year” are with the same symbol Col, they belong to

2If an analysis-specific word belongs to multiple symbols, sev-
eral symbol sequences will be obtained. For example, “those” can
be Per or Dem.

Segment Rule Segment Rule
Select [Agg + [V al]] + Col Group Col
Order [Dir] + Col P1 Per
W1 [Col] + [Com] + V al P2 Pos
W2 Col + Com+ Col P3 Dem+ Col

Table 3: Segment types and compositional deduction rules.
Square brackets indicate optional symbols.

different SQL clauses. Along with the adjacent V al “2018”,
“year” forms a clause WHERE year = 2018. As there are
rhetorical words like “by” around “brand”, it forms a clause
GROUPBY brand. Hence, inspired by SQL clauses, we de-
sign the structure segment to combine symbols and capture
the effect of rhetorical words. Each segment can be deduced
by one or more adjacent 3 symbols according to the com-
positional deduction rule. Table 3 shows the well-defined 8
types of segments, along with their compositional deduc-
tion rules. W and P stand for Where and Pronoun re-
spectively. Concatenating the symbol sequences x̂ and ŷ as
a whole, the goal of generation is to obtain the correct seg-
ment sequence for it. However, there are multiple ways to
combine symbols, making it problematic to acquire the cor-
rect segment sequence. Therefore, it is cast into a ranking
problem. Firstly, symbols are combined to generate all pos-
sible segment sequences. Then, a ranking model is built to
score these segment sequences and pick the best one as out-
put.

The compositional deduction rules originate from SQL
clause syntax. For example, in Figure 1, “sum of sales (Agg
of Col)” can make up a Select segment, relevant to a SQL
clause SELECT SUM(sales). There can also be multiple
choices. “year (Col)” can be Select, Group and Order
alone, or be W1 together with “2018 (V al)”. To make the
rules more robust, we leave out the order of symbols. For in-
stance, both ([Dir],Col) and (Col, [Dir]) can be composed
into segment Order.

As the precedent query has a complete structure, the com-
positional deduction rules can be applied directly. However,
ellipsis exists in the follow-up query, so all the symbols in
the first 5 rules become optional. Just as the follow-up case
“How about the average” in Figure 1, segment Select can
be deduced by a single Agg without Col. Moreover, sym-
bols in different queries cannot combine. Concatenating x̂
and ŷ, we can generate multiple segment sequences and ob-
tain the set Seg. For the examples in Figure 1, there are 12
resulting segment sequences in Seg, as shown in the left blue
dashed box. Then, a ranking model is built to pick the best
segment sequence in Seg, which will be introduced in detail
in Section 4.

3.3 Fusion
Based on the symbol sequence and the best segment se-
quence, the fused query z can be obtained. Breaking down
the best segment sequence into two parts, one part corre-

3Adjacent means that there is nothing but rhetorical words be-
tween two symbols and their distance in word level is less than a
window size (4 in our experiments).

In 1995 is there any network named CBC,

Any TSN

Show all networks in that year

𝑊1 𝑆𝑒𝑙𝑒𝑐𝑡 𝑊1

𝑊1

𝑃3𝑆𝑒𝑙𝑒𝑐𝑡

Precedent:

Follow-up:

Precedent:

Follow-up:

Precedent Fusion:

In 1995, is there any network

named TSN

Follow-up Fusion:

Any TSN

Precedent Fusion:

In 1995, is there any networks

named CBC

Follow-up Fusion:

Show all networks in 1995

In 1995 is there any network named CBC,

𝑊1 𝑆𝑒𝑙𝑒𝑐𝑡 𝑊1

Figure 2: Two fusion cases.

sponds to x, and the rest corresponds to y. There are two
steps to accomplish the fusion. The first is to find conflict-
ing segment pairs between the two parts. Conflicting means
segments have the same or incompatible semantics. Gener-
ally speaking, segments of the same type conflict with each
other. For instance, the two Select segments conflict in the
second case of Figure 2. However, there are particular cases.
For W1, segments conflict only if their inner symbols V al
are in the same column. It is the structured characteristic of
tables that leads to incompatible semantics among these W1

segments. As shown in the first case of Figure 2, instead
of “1995”, “TSN” only conflicts with “CBC”, for they are
both in column “Network”. For pronouns related segments,
P1, P2 and P3, we empirically design some semantic con-
flicting rules to resolve them, without considering ambigui-
ties. For instance, P3 (Dem+Col) conflicts with W1 which
describes the same column, such as “that year” and “1995”
in Figure 2. P1 (Per) conflicts with all words except those
already in conflicting pairs, resulting in nested queries in z.

The second step is to perform fusion on these conflict-
ing segment pairs. Generally, we fuse two segments by re-
placing one with the other. As indicated by different arrow
directions in Figure 2, we replace “CBC” with “TSN”, and
replace “that year” with “1995”. When there is no pronoun,
the replacement is symbol-level. Taking the example in Fig-
ure 1, “sum of sales (Agg of Col)” and “average (Agg)”
are both Select segments and conflict with each other. Then
only Agg “sum” is replaced by “average”. Although re-
placement can be applied in most scenarios, it is not suit-
able for scenarios of compare, where the conflicting seg-
ments are presented for side-by-side comparison. Consider a
query sequence “How much money has Smith earned? How
about Bill Collins?”, “Smith” should be replaced by “Bill
Collins”. However, given “How much money has Smith
earned? Compare with Bill Collins.”, “Bill Collins” should
be added to “Smith”. To distinguish the two different situa-
tions, we define two intents for follow-up queries: Append
for compare and Refine for others. Thus, the output of
ranking model turns into the best segment sequence and in-
tent. There are various methods to perform intent classifica-
tion, and we choose to regard them as two special segments.
Finally, precedent fusion and follow-up fusion are obtained.
We pick the follow-up fusion as output z if it is different
from the follow-up query. Otherwise, we choose the prece-

dent fusion, as shown in the blue dotted boxes in Figure 2.

4 Ranking Model
As mentioned, in the process of generation, a ranking model
is employed to pick the best segment sequence from Seg.
In this section, we introduce how the ranking model works,
followed by its learning process with weak supervision.

Intent As previously stated, every follow-up query has an
intent. We regard the two intent, Refine and Append, as
special segments. The intent of a follow-up query is related
to its sentence pattern, which we believe contains all the
rhetorical words before the first analysis-specific word. As
in Figure 1, the sentence pattern “How about the” is la-
beled as intent. Specifically, if there is no word before the
first analysis-specific word, the intent is set as Refine.

Mapping Inspired by named entity recognition (Sang
2002), we regard segment sequence ranking as the problem
of tag sequence ranking. For simplicity, {W1, W2} are uni-
fied into W and {P1, P2, P3} are unified into P . An ad-
ditional segment O, designed for Others, is employed for
words without existing segments. Moreover, O can also be
deduced by the symbols {Per, Pos, Dem} in the situation
where the pronouns are ambiguous, such as “that” used as
a conjunction. Employing the IOB (Inside, Outside, Begin-
ning) format (Ramshaw and Marcus 1999), we map Seg into
a set of tag sequences termed candidate set S.

One segment sequence usually maps to two tag se-
quences. As shown in Figure 1, the first two tag se-
quences are both from the first segment sequence, but
have different intent tags (RefineB , RefineI , RefineI)
and (AppendB , AppendI , AppendI). The one with higher
score represents the final intent of the follow-up query.

Ranking Let w = (w1, w2, · · · , wN) denote the concate-
nation of symbol sequences x̂ and ŷ. The candidate set S =
{s1, s2, · · · , sK} contains tag sequence candidates, and the
tag sequence can be denoted as sk = (tk1 , t

k
2 , · · · , tkN). Our

goal is to find the best candidate s∗, that is:

s∗ = arg max
s∈S

g(s|Θ), (1)

where g(·|Θ) is a score function given parameter set Θ.
To this end, we perform tag sequence candidates ranking
using a bidirectional LSTM-CRF model (Huang, Xu, and
Yu 2015) with weakly supervised max-margin learning. For
each wi(i = 1, · · · , N), the model computes a hidden state
hi = [

−→
h i;
←−
h i], then the forward hidden state is:
−→
h i =

−−−−→
LSTM

(
φ(wi);

−→
h i−1

)
, (2)

where φ is an embedding function initialized using Glove
(Pennington, Socher, and Manning 2014). Let T denote the
number of tags, and fi denote the T -dimensional network
score vector for wi, which can be computed as:

fi = hiW, (3)

where W is the learned matrix. Let A denote the T×T tran-
sition matrix of CRF layer, and the entry Auv is the proba-
bility of transferring from tag u to v. Let θ denote the param-
eters of network in LSTM. Given Θ = {A,W, θ}, the score

function for candidate sk is defined as the sum of two parts:
transition score by CRF and network score by bidirectional
LSTM, which can be formulated as:

g(sk|Θ) =

N∑
i=1

(Atki−1t
k
i

+ fi[t
k
i]), (4)

where tki is the corresponding tag of wi in candidate sk.

Weakly Supervised Learning Finally, we introduce how
the bidirectional LSTM-CRF model is learned. As men-
tioned in Section 2, it is too expensive to annotate SQL, as
well as tags. Hence, we utilize the gold fused query in natu-
ral language to learn, leading to the weak supervision.

For each tag sequence candidate sk ∈ S, we can perform
fusion based on its corresponding segment sequence and in-
tent (Section 3.3) , and obtain a natural language query zk.
Let z∗ denote the gold fused query. To compare zk and z∗,
we process them by anonymization (Section 3.1), while the
pronouns are ignored. Then we check their symbols. If they
have the same symbols with the same corresponding words,
we call them symbol consistent and put sk in the positive set
P; otherwise, they are symbol inconsistent and sk is put in
the negative set N . As we can see, S = P ∪ N . However,
the tag sequences in P are not all correct. After fusion and
anonymization, the sequences with wrong tags may result in
symbol consistence by chance. Only one tag sequence in S
may be correct, and the correct one is always in P . As sym-
bol consistence is the requirement of correctness on tags.
Therefore, we calculate the scores of all tag sequences in S,
and select the highest ones from P and N :

ŝp = arg max
s∈P

g(s|Θ), ŝn = arg max
s∈N

g(s|Θ). (5)

Then a max-margin learning method is employed to encour-
age a margin of at least ∆ between ŝp and ŝn. Considering
various lengths of different inputs, normalization factors are
added to the scores. The hinge penalty is formulated as:

max(0,∆− g(ŝp|Θ)

|ŝp|
+
g(ŝn|Θ)

|ŝn|
), (6)

where ∆ > 0 is a hyperparameter.

5 Experiments
We evaluate our methods on the proposed FollowUp dataset,
and split the 1000 triples following the sizes 640/160/200
in train/development/test. All the query utterances are pre-
processed by anonymization (Section 3.1). In the process of
anonymization, dates and numbers are extracted for V al us-
ing Spacy4, and person entities are recognized to handle per-
sonal pronouns. Moreover, for recognition of Col and Val,
a simple matching algorithm is applied without considering
synonyms.

We use three metrics to compare the two natural language
queries: the output queries of our methods and the gold fused
queries from the dataset. (1) Symbol Accuracy. It is the
proportion of the output queries that are symbol consistent

4https://spacy.io/

Model Symbol Acc (%) BLEU (%)
D

ev
SEQ2SEQ 0.63 ± 0.00 21.34 ± 1.14
COPYNET 17.50 ± 0.87 43.36 ± 0.54
S2S+ANON 18.75 ± 0.95 41.22 ± 0.33
COPY+ANON 25.50 ± 2.47 51.45 ± 0.93
FANDA 49.00 ± 1.28 60.14 ± 0.98

Te
st

CONCAT 22.00 ± – 52.02 ± –
E2ECR 27.00 ± – 52.47 ± –
SEQ2SEQ 0.50 ± 0.22 20.72 ± 1.31
COPYNET 19.30 ± 0.93 43.34 ± 0.45
S2S+ANON 18.80 ± 1.77 38.90 ± 2.45
COPY+ANON 27.00 ± 4.32 49.43 ± 1.11
FANDA 47.80 ± 1.14 59.02 ± 0.54

– Intent 35.30 ± 0.44 55.01 ± 0.86
– Ranking 24.30 ± 6.70 52.92 ± 2.24
+ Pretrain 48.20 ± 1.02 59.87 ± 0.43

Table 4: The results of symbol accuracy and BLEU scores.

(mentioned in Section 4) with the gold fused ones. It is used
to measure the retention of critical information, but without
considering the order of symbols. (2) BLEU. It automati-
cally assigns a score to each output query based on how
similar it is to the gold fused query (Papineni et al. 2002).
(3) Execution Accuracy. To further evaluate the validity
of the output queries, we parse them into SQL and eval-
uate the execution accuracy manually. Specifically, we use
COARSE2FINE (Dong and Lapata 2018), the state-of-the-
art semantic parser on WikiSQL, to parse all the 200 gold
fused queries in the test set, and take the 103 successful ones.
Then the execution accuracy of the 103 corresponding out-
put queries is calculated. The other 97 triples are excluded
due to the incapability of the parser.

Our baselines include: (1) CONCAT: a simple method
that directly concatenates precedent and follow-up queries;
(2) E2ECR: an end-to-end neural coreference resolution
method. We perform evaluation using an already trained
model provided by (Lee et al. 2017) as it requires dif-
ferent training data; (3) SEQ2SEQ: sequence-to-sequence
model with attention (Bahdanau, Cho, and Bengio 2015);
(4) COPYNET: sequence-to-sequence model with copying
mechanism (Gu et al. 2016). For SEQ2SEQ and COPY-
NET, the input are the concatenation of the precedent and
follow-up queries, and the features include word embed-
dings, part-of-speech tags, table information and so on;
(5) S2S+ANON: SEQ2SEQ with anonymized inputs; (6)
COPY+ANON: COPYNET with anonymized inputs. For
S2S+ANON and COPY+ANON, inputs are anonymized us-
ing Col and V al. For example, the utterance “In 1995, is
there any network named CBC? Any TSN?” is anonymized
as “In Val#1, is there any Col#1 named Val#2? Any Val#3?”.

5.1 Follow-up Results
Table 4 shows symbol accuracies and BLEU scores on both
development and test sets, where we run each experiment
five times and report the averages. FANDA–Intent means
FANDA equips all follow-up queries with intent Refine
without the intent classification; FANDA–Ranking is to ex-

0 10 20 30 40 50

of Iteration

0.30

0.35

0.40

0.45

L
os

s

FAnDa+Pretrain

FAnDa

0 10 20 30 40 50

of Iteration

20

30

40

50

S
y
m

b
ol

A
cc

(%
)

FAnDa+Pretrain

FAnDa

Figure 3: Convergence process on development set.

Model Execution Accuracy (%)
CONCAT 25.24
E2ECR 27.18
COPY+ANON 40.77
FANDA 60.19

Table 5: The results of execution accuracies.

clude the ranking model and select a segment sequence from
Seg randomly; and FANDA+Pretrain is to annotate the tags
of 100 triples from train set and pre-train the bidirectional
LSTM-CRF with supervised learning. We can observe that
FANDA significantly outperforms all the baselines, which
demonstrates the effectiveness of our model. S2S+ANON
and COPY+ANON get better results than SEQ2SEQ and
COPYNET respectively, which demonstrates the importance
of anonymization. The process of anonymization in FANDA
is well-designed and indispensable. Moreover, FANDA–
Intent performs worse than FANDA, which shows the rea-
sonability of distinguishing different intents. The bad perfor-
mance of FANDA–Ranking with a large standard deviation
demonstrates the necessity of the ranking model. Unsurpris-
ingly, FANDA+Pretrain performs the best with the help of
manual annotations. As shown in Figure 3, pre-training with
supervision can speed up the convergence, while the weakly
supervised FANDA has the competitive results.

Symbol accuracy is more convincing than BLEU, as the
correctness of symbols is a prerequisite of correct execution.
Table 5 reports the execution accuracies on 103 test triples.
Due to the workload of checking the executable results man-
ually, we only include baselines CONCAT, E2ECR, and the
best baseline COPY+ANON. Results demonstrate the superi-
ority of FANDA over baselines in understanding context and
interpreting the semantics of follow-up queries. It also shows
that FANDA is parser-independent and can be incorporated
into any semantic parser to improve the context understand-
ing ability cost-effectively.

5.2 Closer Analysis
Figure 4 shows the partial transition matrix A of CRF layer
in the ranking model. We observe that transition score from
TagB to TagI is evidently higher than others, suggesting
that CRF layer has learned which combinations of tags are
more reasonable (Tag ∈ {Select,W,Group, P,Order}).
Figure 5 shows the evolution of candidate scores in S of a
specific case, as training iteration progresses. In the coordi-
nate system, each point represents a candidate. To scale the
scores from different iterations into a unified space, we nor-

No Case Analysis

1

Precedent : What is the result, when the home team score is 2.4.6? Follow-up : What is the date?
Gold Fusion : What is the date, when the home team score is 2.4.6?
COPY+ANON : What is the date, the home team score is 2.4.6?
FANDA : What is the date, when the home team score is 2.4.6?

2

Precedent : Which is the draw number of Lowry? Follow-up : How about Laura?
Gold Fusion : Which is the draw number of Laura?
COPY+ANON : Which is the draw number of Lowry?
FANDA : Which is the draw number of Laura?

3

Precedent : What are the names when elevation is feet? Follow-up : Of those, whose GNIS feature is 1417308?
Gold Fusion : Of names when elevation is feet, whose GNIS feature is 1417308?
COPY+ANON : What are the names when elevation is 1417308, whose GNIS feature is feet?
FANDA : What are the names when elevation is feet whose GNIS feature is 1417308?

Table 6: Cases analysis of COPY+ANON and FANDA.

S
el

ec
t B

S
el

ec
t I

W
B

W
I

G
ro

u
p

B
G

ro
u

p
I

P
B

P
I

O
rd

er
B

O
rd

er
I

O

SelectB

SelectI

WB

WI
GroupB
GroupI

PB

PI

OrderB

OrderI

O

−2

−1

0

1

2

3

Figure 4: Transition matrix in CRF layer.

−5 0 5

−5

0

5

Iteration 1

−5 0 5

−5

0

5

Iteration 5

−5 0 5

−5

0

5

Iteration 9

−5 0 5

−5

0

5

Iteration 13

−5 0 5

−5

0

5

Iteration 17

−5 0 5

−5

0

5

Iteration 21

0.2

0.4

0.6

0.8

1.0

N P

Figure 5: The evolution of candidate scores.

malize them to range [0, 1]. In Iteration 1, FANDA assigns
different but similar scores to all candidates inP andN with
random initialization. From Iteration 5 to 21, the score distri-
bution becomes increasingly skewed. The growing gap be-
tween the highest score and others verifies the effectiveness
of max-margin learning. And from Iteration 13 to the end,
the candidate with the highest score remains unchanged, in-
dicating the stability of our weakly supervised learning.

Finally, we analyze three real cases in Table 6 and show
the results of the generative model COPY+ANON and our
model FANDA. In case 1, both two models perform well.
COPY+ANON puts “date” in the position of “result” ac-
cording to the same context “what is the”, indicating that
generative models work well in the situation where a sub-
stantial overlap exists between precedent query and follow-
up query. FANDA can also deal with the situation, as bidi-

rectional LSTM-CRF assigns “result” and “date” as Select
segment, and then “result” is replaced with “date”.

However, COPY+ANON performs worse than FANDA
mainly in two situations. The first situation is that there
is no overlap. As in Case 2, COPY+ANON makes a mis-
take of ignoring “Laura”, which should be used to re-
place “Lowry”, indicating the weak reasoning ability of
COPY+ANON. COPY+ANON only uses a learning-based
approach, while FANDA takes one step further by introduc-
ing the table structure to make judgments. The reason why
FANDA replaces “Lowry” with “Laura” is that they are
both in column Artist. The second situation is that there is
an ambiguous overlap. As in Case 3, there is a general word
“is” in front of both “feet” and “1417308”. Influenced
by this, COPY+ANON confuses the positions of “feet” and
“1417308”. FANDA can solve the problem because it re-
gards “elevation is feet” and “GNIS feature is 1417308” as
separate segments.

6 Related Work
From the perspective of semantic parsing, our work is re-
lated to the analysis of context-independent queries, such
as statistical parsing (Popescu et al. 2004; Poon 2013)
and sequence-to-sequence based methods (Jia and Liang
2016; Iyer et al. 2017; Dong and Lapata 2018). Specifi-
cally, Palakurthi et al. (2015) utilize a CRF model to clas-
sify attributes into different SQL clauses, similar to our rank-
ing model. From the perspective of follow-up analysis, there
are multiple researches on context-sensitive conversation,
such as open-domain response generation using neural net-
works (Sordoni et al. 2015), conversation agent using re-
inforcement learning (Shah et al. 2018), contextual ques-
tion understanding for retrieval system (Ren et al. 2017),
and non-sentential utterance resolution in question answer-
ing (Kumar and Joshi 2016; 2017), which is similar to our
baseline S2S+ANON. Our work is also related to corefer-
ence resolution. The recent methods based on deep learn-
ing achieve the state-of-the-art performances (Long, Pasu-
pat, and Liang 2016; Clark and Manning 2016; Lee et al.
2017), from which we choose one as our baseline E2ECR.
Moreover, several interactive visual analysis systems (Setlur
et al. 2016; Dhamdhere et al. 2017; Hoque et al. 2018) take
context into account.

7 Conclusion and Future Work
For the purposes of research and evaluation, we create the
FollowUp dataset that contains various follow-up scenarios.
A novel approach, FANDA, is presented for follow-up query
analysis, which considers the structures of queries and em-
ploys a ranking model with weakly supervised max-margin
learning. The experimental results demonstrate the effective-
ness of our model. For future work, we are interested in ex-
tending our method to multi-turns and multi-tables.

Acknowledgments
We thank Yihong Chen, Börje Karlsson, and the anonymous
reviewers for their helpful comments.

References
Bahdanau, D.; Cho, K.; and Bengio, Y. 2015. Neural ma-
chine translation by jointly learning to align and translate. In
ICLR.
Bertomeu, N.; Uszkoreit, H.; Frank, A.; Krieger, H.-U.; and
Jörg, B. 2006. Contextual phenomena and thematic relations
in database QA dialogues: results from a Wizard-of-Oz ex-
periment. In HLT-NAACL.
Clark, K., and Manning, C. D. 2016. Improving corefer-
ence resolution by learning entity-level distributed represen-
tations. In ACL.
Dahl, D. A.; Bates, M.; Brown, M.; Fisher, W. M.; Hunicke-
Smith, K.; Pallett, D. S.; Pao, C.; Rudnicky, A. I.; and
Shriberg, E. 1994. Expanding the scope of the ATIS task:
The ATIS-3 corpus. In NAACL.
Dhamdhere, K.; McCurley, K. S.; Nahmias, R.; Sundarara-
jan, M.; and Yan, Q. 2017. Analyza: Exploring data with
conversation. In IUI.
Dong, L., and Lapata, M. 2018. Coarse-to-Fine decoding
for neural semantic parsing. In ACL.
Gu, J.; Lu, Z.; Li, H.; and Li, V. O. 2016. Incorporating
copying mechanism in sequence-to-sequence learning. In
ACL.
Hoque, E.; Setlur, V.; Tory, M.; and Dykeman, I. 2018. Ap-
plying pragmatics principles for interaction with visual an-
alytics. IEEE Transactions on Visualization and Computer
Graphics.
Huang, Z.; Xu, W.; and Yu, K. 2015. Bidirectional LSTM-
CRF models for sequence tagging. CoRR.
Iyer, S.; Konstas, I.; Cheung, A.; Krishnamurthy, J.; and
Zettlemoyer, L. 2017. Learning a neural semantic parser
from user feedback. In ACL.
Iyyer, M.; Yih, W.-t.; and Chang, M.-W. 2017. Search-based
neural structured learning for sequential question answering.
In ACL.
Jia, R., and Liang, P. 2016. Data recombination for neural
semantic parsing. In ACL.
Kumar, V., and Joshi, S. 2016. Non-sentential question res-
olution using sequence to sequence learning. In COLING.

Kumar, V., and Joshi, S. 2017. Incomplete follow-up ques-
tion resolution using retrieval based sequence to sequence
learning. In SIGIR.
Lee, K.; He, L.; Lewis, M.; and Zettlemoyer, L. 2017. End-
to-end neural coreference resolution. In EMNLP.
Long, R.; Pasupat, P.; and Liang, P. 2016. Simpler context-
dependent logical forms via model projections. In ACL.
Miller, S.; Stallard, D.; Bobrow, R.; and Schwartz, R. 1996.
A fully statistical approach to natural language interfaces. In
ACL.
Palakurthi, A.; Ruthu, S. M.; Akula, A. R.; and Mamidi, R.
2015. Classification of attributes in a natural language query
into different SQL clauses. In RANLP.
Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2002.
BLEU: a method for automatic evaluation of machine trans-
lation. In ACL.
Pasupat, P., and Liang, P. 2015. Compositional semantic
parsing on semi-structured tables. In ACL-IJCNLP.
Pennington, J.; Socher, R.; and Manning, C. 2014. Glove:
Global vectors for word representation. In EMNLP.
Poon, H. 2013. Grounded unsupervised semantic parsing.
In ACL.
Popescu, A.-M.; Armanasu, A.; Etzioni, O.; Ko, D.; and
Yates, A. 2004. Modern natural language interfaces
to databases: Composing statistical parsing with semantic
tractability. In COLING.
Raghu, D.; Indurthi, S.; Ajmera, J.; and Joshi, S. 2015. A
statistical approach for non-sentential utterance resolution
for interactive QA system. In SIGDIAL.
Ramshaw, L. A., and Marcus, M. P. 1999. Text chunking
using transformation-based learning. ACL.
Ren, G.; Malik, M.; Ni, X.; Ke, Q.; and Bhide, N. 2017.
Conversational/multiturn question understanding. In ICTIR.
Sang, E. F. T. K. 2002. Introduction to the CoNLL-2002
shared task. In COLING.
Setlur, V.; Battersby, S. E.; Tory, M.; Gossweiler, R.; and
Chang, A. X. 2016. Eviza: A natural language interface for
visual analysis. In UIST.
Shah, P.; Hakkani-Tur, D.; Liu, B.; and Tur, G. 2018. Boot-
strapping a neural conversational agent with dialogue self-
play, crowdsourcing and on-line reinforcement learning. In
HLT-NAACL.
Sordoni, A.; Galley, M.; Auli, M.; Brockett, C.; Ji, Y.;
Mitchell, M.; Nie, J.-Y.; Gao, J.; and Dolan, B. 2015. A
neural network approach to context-sensitive generation of
conversational responses. In HLT-NAACL.
Suhr, A.; Iyer, S.; and Artzi, Y. 2018. Learning to map
context-dependent sentences to executable formal queries.
In NAACL.
Zettlemoyer, L. S., and Collins, M. 2009. Learning context-
dependent mappings from sentences to logical form. In
ACL-IJCNLP.
Zhong, V.; Xiong, C.; and Socher, R. 2017. Seq2SQL: Gen-
erating structured queries from natural language using rein-
forcement learning. CoRR.

