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* Efficient audio retrieval with hashing
* Unsupervised hashing algorithms
e Supervised deep hashing
* Experimental setting
* Results

* Conclusions and future work
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* Audio event detection & classification
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Audio Event Detection & Classification

Definition, Human annotation

* “Human-like ability to identify and
relate sounds from audio”
(Gemmeke, et al.)

 Audio event annotations:
* Human annotators
* Provide semantic label to a sound

* Generally follow an ontology or hierarchy
during annotations

* e.g. Google AudioSet ontology
(Gemmeke, et al.)
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© Human sounds

- Human voice

e Whistling

- Respiratory sounds

e Human locomotion

-e [igestive

- Hands

- Heart sounds, heartbear

- Otoacoustic emission

- Human group actions

o Animal sounds

- Domestic animals, pets

working animals

e Wild animals

Wind

Thunderstorm

ENatural sounds

e Livestock. farm animals,

o Sounds of things
- Vehicle

- Lneine

- Domestic sounds, home sounds
- [ell

- Alarm

-0 Mechanisms

-0 Jools

e Fxplosion

e Wood

o (lass

~e Liquid

- Miscellaneous sources

-8 Specific impact sounds

Source-ambiguous
sounds

- (reneric impact sounds

o

-8 Surface comtact

~e Deformable shell



Audio Event Detection & Classification

General machine learning pipeline

* Training/learning

Deep Neural Network (DNN)

Training data: e,
Audio filges with Spectrogram S ~» lLearnto
/features e ® predict the
human . TR

optional p, . )\ » labels
annotated labels (op ) NN Y
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Audio Event Detection & Classification

General machine learning pipeline

» Testing/inference — predicting label of a new sound

Query audio

8/8/2019

Spectrogram

[features
(optional)

Pretrained DNN

1. Bark, 95% confidence
2. Cough, 4% confidence
3. Alarm, 0.1% confidence

4. ..



1. Bark, 95% confidence
2. Cough, 4% confidence
3. Alarm, 0.1% confidence
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Query audio
Any audio

» Testing/inference — predicting label of a new sound
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Distinctive feature
" representation / embedding

1. Bark, 95% confidence
2. Cough, 4% confidence
3. Alarm, 0.1% confidence
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Query audio
Any audio

» Testing/inference — Feature/embedding extraction of a new sound

» Testing/inference — predicting label of a new sound
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Audio Event Detection & Classification

General machine learning pipeline

» Testing/inference — predicting label of a new sound
Pretrained DNN

Query audio 1. Bark, 95% confidence

A AN/ ’ .
Spectrogram AL NN T 2. Cough, 4% confidence

(/fea'turef) o . 3. Alarm, 0.1% confidence
OptIOna ek g iy
4. ..

Distinctive feature

Any audio
" representation / embedding

Spectrogram
[features
(optional)

e.g., publicly available
pretrained DNN
embeddings “VGGish”
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Audio Event Detection & Classification

Applications

* Accessibility
* Microsoft Soundscape, Hearing Al
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Audio Event Detection & Classification

Applications

* Autonomous driving
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Audio Event Detection & Classification

Applications

* Smart cities, crime prevention, é;;
smart home |
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Audio Event Detection & Classification

Applications

* Audio content understanding
and retrieval
* Browsing




Audio Event Detection & Classification

Applications

* Audio content understanding
and retrieval T

audio database

e
g > suitable

<

Listen audio

* Multimedia synthesis |

Automate the process
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Audio Event Detection & Classification

Research Areas

Research
Area

Task

VGGish: Hershey, Shawn, et al. "CNN architectures for large-scale audio classification.” |

LWeak: Kumar, Anurag, Maksim Khadkevich, and Christian Figen. "Knowledge transfer from weakly labeled audio using convolutional neural network for sound
N LYPT e iAot 13
events and scene CCE ICADON, LULS



Audio Event Detection & Classification

Research Areas

Research Better Feature Embeddings
Area
Task Learning powerful DNN
audio embeddings

* Well-explored

* Google’s VGGish
Facebook’s TLWeak

VGGish: Hershey, Shawn, et al. "CNN architectures for large-scale audio classification.” IEEE |CASSP, 2017

LWeak: Kumar, Anurag, Maksim Khadkevich, and Christian Fugen. "Knowledge transfer from w 1.4
&858 s, e 13
aUents and scenes."” IEEI P 2018



Audio Event Detection & Classification

Research Areas

Research Better Feature Embeddings Hierarchical Audio Events
Area
Task Learning powerful DNN * Explore AE label hierarchy
audio embeddings * Back-off to coarse class
* Well-explored  Past work on bi-level hierarchy

* Google’s VGGish * Not explored for arbitrary
* Facebook’s TLWeak hierarchy

VGGish: Hershey, Shawn, et al. "CNN architectures for large-scale audio classification.’

TLWeak: Kuma Anurag, Maksim Khadkevich, and Christian Fugen. "Knowledge transfer from wea Wy ybeled audio using convolutional neural network for sound
8/8/3019 B 13
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Audio Event Detection & Classification

Research Areas

Research Better Feature Embeddings Hierarchical Audio Events Efficient retrieval and
Area ranking

Task Learning powerful DNN * Explore AE label hierarchy * Fast retrieval /
audio embeddings * Back-off to coarse class similarity search
* Well-explored * Past work on bi-level hierarchy Not well explored for
* Google’s VGGish * Not explored for arbitrary audio events
* Facebook’s TLWeak hierarchy
VGGish: Hershey, Shawn, et a CNN architectures tor large-scale audio classifica

&l"»’v.‘«k; Kumar, Anurag, Maksim Khadkevich, and Christian Figen, "Knowledge transfer from weakly labeled audic using convolutional neural network for sound
events and ene FEE ICASSH 118



Audio Event Detection & Classification

Research Areas

Research Better Feature Embeddings Hierarchical Audio Events Efficient retrieval and
Area ranking

Task Learning powerful DNN * Explore AE label hierarchy * Fast retrieval /
audlo embeddings * Back-off to coarse class similarity search
* Well-explored * Past work on bi-level hierarchy Not well explored for
* Google’s VGGish * Not explored for arbitrary audio events
* Facebook’s TLWeak hierarchy

* Challenges in efficient retrieval and ranking:

* Millions of sounds in the database

* No established meaning of “distance” between sound types or sound events
* High dimensional feature representations of sounds or DNN embeddings

* Computation of distance can be highly expensive

VGGish: Hershey, Shawn, et al. "CNN architectures for large-scale audi

ILWeak: Kumar, Anurag, Maksim Khadkevich, and Christian Fugen. "Knowledge transfer from weakly labeled audic using convolutional neural network for sound
8787580 skt ' 13
SVETILS LoD ICADDr



Agenda

* Audio retrieval and ranking

8/8/2019
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Audio Retrieval and Ranking

High-Level View

Retrieved and ranked results

e )

Query audio

| Fixed Retrieval
dimensional and ranking >
embedding module

Exhaustive distance
computation 6

v

Audio

embedding
database
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Audio Retrieval and Ranking

High-Level View

Retrieved and ranked results

Q )

Query audio

Fixed Retrieval
dimensional and ranking >
embedding module

Exhaustive distance

computation G b
Audio Optimize as much as possible

embedding
database

» Quantization, Hashing™
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Audio Retrieval and Ranking

Problem Formulation

* Goal: Efficient distance computation

* Method: Approximate nearest neighbors
(ANN) search

* Simple example of Quantization
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Audio Retrieval and Ranking

Problem Formulation

* Goal: Efficient distance computation Quantization

* Method: Approximate nearest neighbors
(ANN) search

# codewords: K

e Simple example of Quantization . NG codatedetii B logi K




Audio Retrieval and Ranking

Problem Formulation

* Goal: Efficient distance computation Quantization

* Method: Approximate nearest neighbors
(ANN) search )

* Simple example of Quantization : NG lalesgtiB= logs K

ANN search

d(ci,cj) 2 lut(i,j)

K-by-K look-up
table




Audio Retrieval and Ranking

Problem Formulation

* Goal: Efficient distance computation Quantization

* Method: Approximate nearest neighbors
(ANN) search )

* Simple example of Quantization : NG dodelenelii B = logi K

* Algorithms:

* Unsupervised:
(2 * No labels of audio required ANN search

* Cannot incorporate human knowledge/semantic
@ meaning

d(ci,cj) 2 lut(i,j)

K-by-K look-up
table




Audio Retrieval and Ranking

Problem Formulation

* Goal: Efficient distance computation Quantization

* Method: Approximate nearest neighbors
(ANN) search )

* Simple example of Quantization : NP dodelengiB = logi X

* Algorithms:

* Unsupervised:
() * No labels of audio required ANN search

* Cannot incorporate human knowledge/semantic
@ meaning

d(ci,c‘j) 2 lut(i,))

* Supervised:

@ * Exploits human knowledge, preserves data pattern in K-by-K look-up
hash codes x table

@ * Labels of audio required (at least a few examples from
the database)




* Audio retrieval and ranking
* Literature review
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Efficient Retrieval and Ranking

Literature review

Acronym Title / conference Authors / Organization Summary

PQ Product quantization for nearest Jegou, Herve, ... Cordelia | Unsupervised quantization algorithm,

(Unsupervised) | neighbor search / IEEE PAMI Schmid / INRIA Rennes inspired by Vector Quantization and

divide & conquer

CNNH Supervised Hashing for Image Rongkai Xia, ..., Shuicheng | Stage 1: Learns binary hash codes.

(Supervised) Retrieval via Image Representation | Yan / NUS Singapore Stage 2: Trains a DNN to fit the codes and
Learning / AAAIl 2014 also class labels.

DNNH Simultaneous Feature Learning Hanjiang Lai, ..., Simultaneous feature learning and hash

(Supervised) and Hash Coding with Deep Neural | Shuicheng Yan / NUS coding optimized by the triplet loss.
Networks / CVPR 2015 Singapore

DQN, DTQ Deep Quantization Network for Yue Cao, ..., Jingdong Joint similarity learning and quantization.

(Supervised) Efficient Image Retrieval / AAAI Wang Formal control over quantization error.
2016 Tsinghua University, DTQ replaces the pairwise loss with triplet
Deep Triplet Quantization, ACM China, and Microsoft loss.
Multimedia 2018 Research Asia
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* Efficient audio retrieval with hashing
* Unsupervised hashing algorithms
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Efficient Audio Retrieval with Hashing

Preliminary

* Nearest Neighbor search with Euclidean distance
* N =#samples in the database
* D = feature dimension
* Nearest neighbor of a query x: argmin dist(x, y;) vVi=1,..,N
* Complexity: O(ND)
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Efficient Audio Retrieval with Hashing

Preliminary

* Nearest Neighbor search with Euclidean distance

* N =#samples in the database
* D = feature dimension

* Nearest neighbor of a query x: argmin dist(x, y;) Vi=1,..,N
* Complexity: O(ND)
* Example
* N =#samples in the database =1M
* D = feature dimension = 1000

e Complexity: =0(1B)
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Efficient Audio Retrieval with Hashing

Preliminary

* Nearest Neighbor search with Euclidean distance

* N =#samples in the database
* D = feature dimension

* Nearest neighbor of a query x: argmin dist(x,y;) Vi=1,..,N
* Complexity: O(ND)

* Example et o f
* N =# samples in the database =1M di::enr;ioov:’\r;lits : alis
* D = feature dimension = 1000 y

* Complexity: =0(1B)
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Efficient Audio Retrieval with Hashing

Preliminary

* Nearest Neighbor search with Euclidean distance

* N =#samples in the database
* D = feature dimension

* Nearest neighbor of a query x: argmin dist(x, y;) vVi=1,..,N
* Complexity: O(ND)

* Example p
* N =# samples in the database =1M 3:::;;2?0\'::;?5/”@58 !
* D = feature dimension = 1000
e Complexity: =0(1B)

* We will achieve via hashing: ~ 0(9M)
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Unsupervised Hashing Algorithms

Preliminary — Vector Quantization (VQ)

* Goal: Sample =2 Codeword ‘
D I—

Original feature VQ
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Unsupervised Hashing Algorithms

Preliminary — Vector Quantization (VQ)

* Goal: Sample = Codeword +
* Method: D | X
* Step 1: K-Mean clustering: &
Centroids = codewords "

e Step 2: Quantization: Sample =~ Closest Original feature
centroid

8/8/2019 21



Unsupervised Hashing Algorithms

Preliminary — Vector Quantization (VQ)

* Goal: Sample =2 Codeword .
* Method: O Y=
* Step 1: K-Mean clustering: ]
Centroids = codewords -
e Step 2: Quantization: Sample =~ Closest Original feature
centroid

* K centroids/codewords =2 log, K bits
for each vector

* e.g., for K=8 centroids, we need 3 bits
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Unsupervised Hashing Algorithm

Product Quantization (PQ)

* Motivation:

* Vector Quantization (VQ) cannot
support exponentially large
number of codewords
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Unsupervised Hashing Algorithms

Preliminary — Vector Quantization (VQ)

* Goal: Sample =2 Codeword .
* Method: O _
e Step 1: K-Mean clustering: _
Centroids = codewords -
e Step 2: Quantization: Sample =~ Closest Original feature
centroid

* K centroids/codewords =2 log, K bits
for each vector

* e.g., for K=8 centroids, we need 3 bits
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Unsupervised Hashing Algorithm

Product Quantization (PQ)

* Motivation: +

* Vector Quantization (VQ) cannot
support exponentially large

number of codewords D [ c—)
l \ v
 PQ Algorlthm: Original feature Decomposed into
* Decompose the space into a M subspaces

Cartesian product of low-
dimensional subspaces

* Quantize each subspace separately
— using VQ
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Unsupervised Hashing Algorithm

Product Quantization (PQ)

* Motivation: +

* Vector Quantization (VQ) cannot ¥a
support exponentially large
number of codewords D [ —) va
\ ;
l VQ
* PC) Algorithm: Original feature Decomposed into
* Decompose the space into a M subspaces

Cartesian product of low-
dimensional subspaces

* Quantize each subspace separately
— using VQ

» M subspaces, each of dimension D, space = D/M
» Set, Koypspace CENtroids per subspace

» Typical, Ksypspace = 256

» Effective codebook, C = {C; X C;, X C3 X +++ X Cy,}
»> Effective codebook size, K = (Ksypspace)™

8/8/2019 22



Euclidean =2 VQ =2 PQ =2 DQN
_

Comparison

Exhaustive distance
computation complexity 2 O(KD) O(NM + KsubspaceD)

Effective # codewords — K (Keipace) ?

Supports exponentially

Most . Retains data
@ Pros Simple large number of SR
accurate similarity
codewords
Cons Expensive excaonnneczwttf:lFpI(;:t e Canndt IErn dats NECOS SO
@ P P ylarg pattern in hash codes labeled data

K= high error
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Unsupervised Hashing Algorithm

Product Quantization (PQ)

* Motivation:

* Vector Quantization (VQ) cannot
support exponentially large
number of codewords

* PQ Algorithm:

 Decompose the space into a
Cartesian product of low-
dimensional subspaces

* Quantize each subspace separately
— using VQ

8/8/2019

A

l il

Original feature

=

Decomposed into
M subspaces

» M subspaces, each of dimension Dy, spqce = D/M
» Set, Koypspace CENtroids per subspace

» Typical, Koypspace = 256

» Effective codebook, C = {C; X C;, X C3 X +++ X Cy,}
»> Effective codebook size, K = (Ksypspace)™
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Euclidean =2 VQ =2 PQ =2 DQN
_

Comparison

Exhaustive distance
computation complexity ) O(KD) O(NM + KsubspaceD)

Effective # codewords = K (Komopace) ?

Supports exponentially

@ Most : Retains data
Pros Simple large number of S
accurate similarity
codewords
Cons Expensive excaonnne(:\tt;s:l::)plcz;:t e Caundt [Etaip dats ISECOs SolE
@ P P ylarg pattern in hash codes labeled data

K= high error
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Unsupervised Hashing Algorithm

Product Quantization (PQ)

* Motivation: +

* Vector Quantization (VQ) cannot vl
support exponentially large
number of codewords D [ c—) Vo
\ ‘
l VQ
e PQ AlgOrithmZ Original feature Decomposed into
* Decompose the space into a M subspaces
Cartesian product of low- : :
dimensional subspaces > M subspaces, each of dimension D¢, pspace = D/M
* Quantize each subspace separately 36 Bsunggaas SENHCINS Berstbagare

» Typical, Ksypspace = 256
» Effective codebook, C = {C; X C;, X C3 X +++ X Cy,}
» Effective codebook size, K = (Kypspace)”

— using VQ
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Euclidean =2 VQ =2 PQ =2 DQN
_

Comparison

Exhaustive distance
computation complexity 2 0(kD) O(NM + KsubspaceD)

Effective # codewords == K (Keapace) ?

Supports exponentially

@ Most : Retains data
Pros Simple large number of S
accurate similarity
codewords
Cons Expensive excaonnne(iwtt;s:lFplcz?\:t e Caung: feri Sats FESCS SOIE
@ P P ylarg pattern in hash codes labeled data

K= high error
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Comparison

Exhaustive distance

Euclidean 2 VQ =2 PQ - DQN
_

O(NM + K D
computation complexity G, gl (NM + KsubspaceD)
Effective # codewords - K (Kemopace) ?
Most . Hppesexperdentially Retains data
@ Pros Simple large number of S
accurate similarity
codewords
Cons Expensive excaonnne(:\tt?;rplzit e canch IETaIn Gats YECHS SOIE
@ P P : ylarg pattern in hash codes labeled data
K= high error
N = # samples in the database =1M
D = feature dimension = 1000
M = # of subspaces =8
# centroids per subspace, K¢, pspace = 256
= Mlog,Kgypspace = 64 bits hash code
Effective Kin PQ, K = (Ksypspace)” = 256°
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Euclidean =2 VQ =2 PQ - DQN

Exhaustive distance
computation complexity

Effective # codewords

@ Pros

@ Cons

Comparison

0(2568 X 103)
intractable O(b.3M)

B (Ksubspace)M
Most . Supports exponentially
Simple large number of
accurate
codewords

Cannot support
Expensive exponentially large
K= high error

Cannot retain data
pattern in hash codes

8/8/2019

N = # samples in the database =1M
D = feature dimension = 1000
M = # of subspaces =8

# centroids per subspace, K¢, pspace = 256

= Mlog,Kgypspace = 64 bits hash code
Effective Kin PQ, K = (Ksypspace)” = 256°

Retains data
similarity

Needs some
labeled data



High-Level View- Recap

Retrieved and ranked results

i )

Query audio

Fixed Retrieval
dimensional and ranking >
embedding module

Exhaustive distance
computation @

v

Audio

embedding
database

8/8/2019 24



High-Level View- Recap

Retrieved and ranked results

e )

Query audio

Fixed Retrieval
dimensional and ranking >
embedding module

Exhaustive distance
computation 6

T

Audio Optimize as much as possible
» Quantization, Hashing

embedding
database
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Efficient Audio Retrieval with Hashing

Store Hash Codes instead of float embeddings

Retrieved and ranked results

(& )

Query audio

Retrieval
and ranking >
embedding module

Exhaustive distance
computation G

|
v

Codewords
| Audio Product

» Quantizationon —  »
full database Codewords

Codewords

embedding
database
Codewords

Done offline
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Efficient Audio Retrieval with Hashing

Store Hash Codes instead of float embeddings

Retrieved and ranked results

Q )

Query audio

Fixed Retrieval
dimensional and ranking >
embedding module

Exhaustive distance
| computation @

I
v
Codewords \
Product

Codewords * Product Quantization
* O(NM+K*D)

Audio
embedding

» Quantizationon —— »
full database Codewords

database
Codewords

Done offline
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* Efficient audio retrieval with hashing

e Supervised deep hashing
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Query audio
Fixed Retrieval

dimensional § and ranking
embedding module

Exhaustive distance
computation

Codewords

Supervised  Generate

Part of Aud
embedding database gl a1 »codes for full —»

Wi Iabis Learning datapase Codewords

Audio Database can

Codewords

Codewords

embedding keep increasing
8/8/2019 Done offline database

&

)

Retrieved and
ranked results
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Efficient Audio Retrieval with Hashing

Paradigm of Supervised Hashing for Retrieval

(= )

’”W Retrieved and
ranked results
P

Query audio
Fixed Retrieval

dimensional j and ranking >
embedding module

B W N =

Exhaustive distance @
computation

Codewords \
@l W sypervised  Generate

Part of Audio
emquding-_database —» Hash »codes for full —»

il Learning datapase Codewords

Audio
embedding

8/8/2019 Done offline database

Codewords « Supervised hashing algorithm

s

. 0()?

Codewords

Database can

keep increasing
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Supervised Deep Hashing

Deep Quantization Network (DQN)

 Contributions:

* Combines feature learning and hashing together
* Has a formal control over quantization error (earlier methods did not)

m — ] ...

VGGish/TLWeak

8/8/2019

512 256

pairwise
cosine-loss
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Deep Quantization Network (DQN)

 Contributions:

* Combines feature learning and hashing together
* Has a formal control over quantization error (earlier methods did not)
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Supervised Deep Hashing

Deep Quantization Network (DQN)
* Contributions:

* Combines feature learning and hashing together
* Has a formal control over quantization error (earlier methods did not)

Pairwise similarity

; ; , Retains data
0SS,

similarity

(92
-
N
N
u
(o))

Codebook 4 l
000 001 010011100101 110 111

. _ Hash
Quantize lz© Code
7 000 001010011100 101 110 111

K

000 001010011100 101 110111

M\mi

VGGish/TLWeak

s

quantization

Audio pairs
sij = 1 = same class

Extract
Sij =—1=2 different features MLP

classes

g/8/2019 28



Supervised Deep Hashing

Deep Quantization Network (DQN)
* Contributions:

* Combines feature learning and hashing together
* Has a formal control over quantization error (earlier methods did not)
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Supervised Deep Hashing

Deep Quantization Network (DQN)
* Contributions:

* Combines feature learning and hashing together
* Has a formal control over quantization error (earlier methods did not)
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Euclidean =2 VQ =2 PQ =2 DQN
. Comparison

Comparison

| Euidan | __vo | ___PQ____| DN ____

Exhaustive distance O(NM + KsypspaceD
computation complexity ILND) L) ONM + KsupspaceD) + DNN(x))
Effective # codewords - K (Kaibsnace) (Ksivsnace):

Supports exponentially

@ Most . Retains data
Pros Simple large number of e
accurate similarity
codewords
Cannot support :
@ Cone EvhEneiva = onentiallpplar 5 Cannot retain data Needs some labeled
P P L pattern in hash codes data

K= high error

DNN(x) = forward
prop. for one sample
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Deep Quantization Network (DQN)
* Contributions:

* Combines feature learning and hashing together
* Has a formal control over quantization error (earlier methods did not)
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Supervised Deep Hashing

Deep Quantization Network (DQN)
* Contributions:

* Combines feature learning and hashing together
* Has a formal control over quantization error (earlier methods did not)
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Euclidean =2 VQ =2 PQ =2 DQN

Comparison
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Experimental Setting

* DCASE 2018 Task-2:
e Test: 1600 audio files
* Train: 9473 audio files
* Number of audio classes: 41
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* DCASE 2018 Task-2:

e Test: 1600 audio files
* Train: 9473 audio files
* Number of audio classes: 41
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Experimental Setting

* DCASE 2018 Task-2:

e Test: 1600 audio files
* Train: 9473 audio files
* Number of audio classes: 41
acoustic_guitar Cello Scissors Cowbell
e ESC-50:
* Test: 400
* Train: 1600

e Number of audio classes: 50
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Experimental Setting

Features / pretrained embeddings

* VGGish:
* Network: Deep CNN, VGG
* Feature/embedding Dimension: 128
* Training data: Weakly labeled 70M training videos (5.24 million hours)!

* TLWeak:
* Network: Deep CNN
* Feature/embedding Dimension: 1024
* Training data: Google’s AudioSet, balanced training
e State-of-the-art on AudioSet
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Evaluation

Mean Average Precision (mMAP@R)

* mean Average Precision@R:
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Evaluation

Mean Average Precision (mMAP@R)

\ b T

N g
\\\ \-_a\\
\ \\ \\\\--‘\
\'\-‘ \\ R
* Mean over all queries * % of positive retrievals * Number of retrieved
that are correct items

* Different applications
might have different
requirement

* Properties:
»0 <mAP@R <1
» Depends on ranking/ordering of the retrieved samples
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* Efficient audio retrieval with hashing

e Results
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DCASE Results, mAP@database size

Comparison between different algorithms

TLWeak 1024

VGG 128

8/8/2019

Training

Unsupervised
(Full database for
training)

Supervised (~10% of
database for training)

Training

Unsupervised

(Full database for
training)

Supervised (~10% of
database for training)

Algorithm
SH

ITQ
AGH

PQ
DQN

Algorithm
SH
ITQ

AGH

PQ

DQN

bit_8
8.14%
8.34%
9.40%

15.06%
39.07%

9.23%
10.10%
13.37%
16.12%

33.84%

bit_16
10.97%
12.03%
13.03%
16.15%

44.24%

11.34%
12.18%
15.04%
16.34%

38.93%

bit_24
11.93%
14.17%
15.13%
16.30%

45.50%

12.18%
14.25%

15.52%
16.23%

39.68%

bit_32
12.84%
15.52%
15.35%
16.39%

45.77%

12.85%
14.61%
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16.49%
16.36%

46.83%
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15.64%

15.41%
15.65%

41.43%
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DCASE Results, mAP@database size

Comparison between different algorithms
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Comparison between different algorithms
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Vary training dataset size
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DCASE Results

MAP@R for different # retrieved items
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* Conclusions and future work
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Conclusions and Future Works

Suggestions are welcome!

* Contributions:
* First attempt for efficient audio retrieval
» Saves millions of operations in nearest neighbor search
* Small amount of labeled data can boost the performance by absolute 30%
* Validated on multiple datasets and features

* Future works:

* Non-exhaustive search for even faster retrieval
* “The Inverted Multi-Index” algorithm (Babenko et. al.)
e Hashing for cross-modal retrieval (Elizalde et. al.)

* Hierarchical audio event hashing and retrieval
* Hash codes that preserves ontology information
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DCASE Results, mAP@database size
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Experimental Setting

Features / pretrained embeddings

VGGish/TLWeak

* VGGish:
* Network: Deep CNN, VGG
* Feature/embedding Dimension: 128
* Training data: Weakly labeled 70M training videos (5.24 million hours)!

* TLWeak:
* Network: Deep CNN
* Feature/embedding Dimension: 1024
* Training data: Google’s AudioSet, balanced training
e State-of-the-art on AudioSet
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DCASE Results, mAP@database size

Comparison between different algorithms
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