
Arpan Gujarati,
Björn B. Brandenburg

Sameh Elnikety,
Yuxiong He Kathryn S. McKinley

Swayam
Distributed Autoscaling for
Machine Learning as a Service

1

Machine Learning as a Service (MLaaS)

Data Science &
Machine Learning

Amazon Machine Learning

Machine Learning

Google Cloud AI

2

Machine Learning as a Service (MLaaS)

Data Science &
Machine Learning

Amazon Machine Learning

Machine Learning

Google Cloud AI

+ =
Trained
Model

Untrained
model

Dataset

1. Training

+ =
Trained
Model

2. Prediction

Query
Answer

2

Machine Learning as a Service (MLaaS)

+ =
Trained
Model

2. Prediction

Query
Answer

Models are already trained and available for prediction

This work

2

Swayam

inside the MLaaS infrastructure

Distributed autoscaling

of the compute resources

needed for prediction serving + =

Trained
Model

2. Prediction

Query
Answer

3

Prediction serving (application perspective)

MLaaS Provider

Image
classifier

"cat"

image

Application / End User

4

Lots of trained models!

MLaaS Provider Finite compute resources
"Backends" for prediction

Prediction serving (provider perspective)

5

Lots of trained models!

MLaaS Provider Finite compute resources
"Backends" for prediction Application / End User

(1) New prediction
request for the

pink model

(2) A frontend receives
the request

Multiple request
dispatchers "Frontends"

Prediction serving (provider perspective)

5

Lots of trained models!

MLaaS Provider Finite compute resources
"Backends" for prediction Application / End User

(1) New prediction
request for the

pink model

(3) The request is
dispatched to an

idle backend

(2) A frontend receives
the request

(4) The backend fetches
the pink model

Multiple request
dispatchers "Frontends"

Prediction serving (provider perspective)

5

Lots of trained models!

MLaaS Provider Finite compute resources
"Backends" for prediction Application / End User

(1) New prediction
request for the

pink model

(3) The request is
dispatched to an

idle backend

(2) A frontend receives
the request

(4) The backend fetches
the pink model (5) The request

outcome is predicted

(6) The response is
sent back through

the frontend

Multiple request
dispatchers "Frontends"

Prediction serving (provider perspective)

5

Lots of trained models!

MLaaS Provider Application / End UserApplication / End User

Multiple request
dispatchers "Frontends"

Finite compute resources
"Backends" for prediction

Prediction serving (objectives)

6

Lots of trained models!

MLaaS ProviderMLaaS Provider Application / End UserResource efficiency

Low latency, SLAs

Application / End UserApplication / End User

Multiple request
dispatchers "Frontends"

Finite compute resources
"Backends" for prediction

Prediction serving (objectives)

6

Static partitioning of trained models

7

MLaaS ProviderMLaaS Provider

Static partitioning of trained models
The trained models
partitioned among
the finite backends

7

MLaaS ProviderMLaaS Provider Application / End User

Multiple request
dispatchers "Frontends"

Static partitioning of trained models

No need to fetch and
install the pink model

The trained models
partitioned among
the finite backends

7

MLaaS ProviderMLaaS Provider Application / End User

Multiple request
dispatchers "Frontends"

Problem: Not all models are
used at all times

Static partitioning of trained models

No need to fetch and
install the pink model

The trained models
partitioned among
the finite backends

7

MLaaS ProviderMLaaS Provider Application / End User

Multiple request
dispatchers "Frontends"

Problem: Not all models are
used at all times

Problem: Many more models than backends,
high memory footprint per model

Static partitioning of trained models

No need to fetch and
install the pink model

The trained models
partitioned among
the finite backends

7

MLaaS Provider

Static partitioning of trained models
MLaaS Provider

Multiple request
dispatchers "Frontends"

Problem: Not all models are
used at all times

Problem: Many more models than backends,
high memory footprint per model

No need to fetch and
install the pink model

The trained models
partitioned among
the finite backends

Application / End UserResource efficiency

Low latency, SLAs

Static partitioning is infeasible

8

Classical approach: autoscaling

The number of active backends
are automatically scaled up or

down based on load

Time

Ac

tiv
e

ba
ck

en
ds

fo

r t
he

 p
in

k
m

od
el Request load for

the pink model

9

Classical approach: autoscaling

The number of active backends
are automatically scaled up or

down based on load

Time

Ac

tiv
e

ba
ck

en
ds

fo

r t
he

 p
in

k
m

od
el Request load for

the pink model

Enough backends to guarantee
low latency
Active backends over time is
minimized for resource efficiency

With ideal autoscaling ...

9

Autoscaling for MLaaS is challenging [1/3]

10

Autoscaling for MLaaS is challenging [1/3]

Lots of trained models!

MLaaS Provider Finite compute resources
"Backends" for prediction

(4) The backend fetches
the pink model

(5) The request
outcome is predicted

Multiple request
dispatchers "Frontends"

10

Autoscaling for MLaaS is challenging [1/3]

Lots of trained models!

MLaaS Provider Finite compute resources
"Backends" for prediction

(4) The backend fetches
the pink model

(5) The request
outcome is predicted

Multiple request
dispatchers "Frontends"

Provisioning
Time (4)

Execution
Time (5)>>

(~ a few seconds) (~ 10ms to 500ms)

Challenge

Predictive autoscaling to
hide the provisioning latency

Requirement

10

MLaaS architecture is
large-scale, multi-tiered

Frontends

Backends [VMs, containers]

Hardware
broker

Autoscaling for MLaaS is challenging [2/3]

11

MLaaS architecture is
large-scale, multi-tiered

Frontends

Backends [VMs, containers]

Hardware
broker

Autoscaling for MLaaS is challenging [2/3]

Challenge

Fast, coordination-free,
globally-consistent autoscaling

decisions on the frontends

Requirement

Multiple frontends with
partial information about

the workload

11

"99% of requests must
complete under 500ms"

Strict, model-specific SLAs
on response times

"99.9% of requests must
complete under 1s"

"[B] Tolerate up to 25%
increase in request rates

without violating [A]"

"[A] 95% of requests
must complete under

850ms"

Autoscaling for MLaaS is challenging [3/3]

12

"99% of requests must
complete under 500ms"

Strict, model-specific SLAs
on response times

"99.9% of requests must
complete under 1s"

No closed-form solutions to
get response-time distributions

for SLA-aware autoscaling

Challenge

Accurate waiting-time and
execution-time distributions

Requirement
"[B] Tolerate up to 25%

increase in request rates
without violating [A]"

"[A] 95% of requests
must complete under

850ms"

Autoscaling for MLaaS is challenging [3/3]

12

}Provisioning
Time (4)

Execution
Time (5)>>

(~ a few seconds) (~ 10ms to 500ms)

Challenges

Multiple frontends with

partial information about

the workload

No closed-form solutions to
get response-time distributions

for SLA-aware autoscaling

We address these challenges

by leveraging specific

ML workload characteristics
and design an analytical model
for resource estimation
that allows distributed and
predictive autoscaling

Swayam: model-driven distributed autoscaling

13

Outline

1. System architecture, key ideas

2. Analytical model for resource estimation

3. Evaluation results

14

System architecture

15

Application / End User

Application / End User

Application / End User

Application / End User

Hardware
broker

Frontends Global pool
of backends

Backends dedicated
for the pink model

Backends dedicated
for the blue model

Backends
dedicated for the

green model

System architecture

15

Application / End User

Application / End User

Application / End User

Application / End User

Hardware
broker

Frontends Global pool
of backends

Backends dedicated
for the pink model

Backends dedicated
for the blue model

Backends
dedicated for the

green model

System architecture

1. If load decreases, extra backends go back to the global pool (for resource efficiency)
2. If load increases, new backends are set up in advance (for SLA compliance)

Objective: dedicated set of backends should dynamically scale

15

Application / End User

Application / End User

Application / End User

Application / End User

Hardware
broker

Frontends

Backends dedicated
for the pink model

System architecture
Let's focus on the pink model

1. If load decreases, extra backends go back to the global pool (for resource efficiency)
2. If load increases, new backends are set up in advance (for SLA compliance)

Objective: dedicated set of backends should dynamically scale

15

Key idea 1: Assign states to each backend

16

cold

warm

In the
global pool

Dedicated to a
trained model

Key idea 1: Assign states to each backend

16

cold

warm

In the
global pool

Dedicated to a
trained model in-use

not-in-use

Haven't executed
a request for a

while

Maybe executing a
request

Key idea 1: Assign states to each backend

16

cold

warm

In the
global pool

Dedicated to a
trained model in-use

not-in-use

busy

idle

Haven't executed
a request for a

while

Maybe executing a
request

Waiting for a
request

Executing a
request

Key idea 1: Assign states to each backend

16

cold

warm

In the
global pool

Dedicated to a
trained model in-use

not-in-use

busy

idle

Haven't executed
a request for a

while

Maybe executing a
request

Waiting for a
request

Executing a
request

Dedicated, but not used
due to reduced load

Can be safely
garbage collected

(scale-in)

Key idea 1: Assign states to each backend

... or easily
transitioned to an in-
use state (scale-out)

16

cold

warm

In the
global pool

Dedicated to a
trained model in-use

not-in-use

busy

idle

Haven't executed
a request for a

while

Maybe executing a
request

Waiting for a
request

Executing a
request

Dedicated, but not used
due to reduced load

Can be safely
garbage collected

(scale-in)

Key idea 1: Assign states to each backend

... or easily
transitioned to an in-
use state (scale-out)

How do frontends know which dedicated backends to use, and which to not use?

16

Backends dedicated
for the pink model

Key idea 2: Order the dedicated set of backends

1 2 3 4 65

1110987 12

17

Backends dedicated
for the pink model

Key idea 2: Order the dedicated set of backends

1 2 3 4 65

1110987 12

If 9 backends are sufficient
for SLA compliance ...

17

Backends dedicated
for the pink model

Key idea 2: Order the dedicated set of backends

1 2 3 4 65

1110987 12

= warm in-use busy/idle
= warm not-in-use

Backends dedicated
for the pink model

1 2 3 4 65

1110987 12

If 9 backends are sufficient
for SLA compliance ...

backends 10-12 transition
to not-in-use state

frontends use backends 1-9

17

Backends dedicated
for the pink model

Key idea 2: Order the dedicated set of backends

1 2 3 4 65

1110987 12

= warm in-use busy/idle
= warm not-in-use

Backends dedicated
for the pink model

1 2 3 4 65

1110987 12

If 9 backends are sufficient
for SLA compliance ...

backends 10-12 transition
to not-in-use state

frontends use backends 1-9

How do frontends know how many
backends are sufficient?

17

Frontends

Key idea 3: Swayam instance on every frontend

Incoming
requests

Swayam
instance

computes globally consistent minimum #
backends necessary for SLA compliance

Backends dedicated
for the pink model

1 2 3 4 65

1110987 12

= warm in-use busy/idle
= warm not-in-use

18

Outline

1. System architecture, key ideas

2. Analytical model for resource estimation

3. Evaluation results

19

Making globally-consistent decisions

What is the minimum # backends
required for SLA compliance?

at each frontend (Swayam instance)

20

Making globally-consistent decisions

What is the minimum # backends
required for SLA compliance?

at each frontend (Swayam instance)

1. Expected request execution time
2. Expected request waiting time
3. Total request load

20

Making globally-consistent decisions

} leverage ML workload
characteristics

What is the minimum # backends
required for SLA compliance?

at each frontend (Swayam instance)

1. Expected request execution time
2. Expected request waiting time
3. Total request load

20

Determining expected request execution times

Studied execution traces of 15
popular services hosted on
Microsoft Azure's MLaaS platform

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300 350 400
N

or
m

al
iz

ed
 F

re
qu

en
cy

 (%
)

Service Times (ms)

Trace 1

Data from trace (bin width = 10)

21

Determining expected request execution times

Studied execution traces of 15
popular services hosted on
Microsoft Azure's MLaaS platform

‣ Fixed-sized feature vectors

‣ Input-independent control flow

‣ Non-deterministic machine & OS

events main sources of variability

Variation is low

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300 350 400
N

or
m

al
iz

ed
 F

re
qu

en
cy

 (%
)

Service Times (ms)

Trace 1

Data from trace (bin width = 10)

21

Determining expected request execution times

Studied execution traces of 15
popular services hosted on
Microsoft Azure's MLaaS platform

‣ Fixed-sized feature vectors

‣ Input-independent control flow

‣ Non-deterministic machine & OS

events main sources of variability

Variation is low

Modeled using log-normal distributions

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300 350 400
N

or
m

al
iz

ed
 F

re
qu

en
cy

 (%
)

Service Times (ms)

Trace 1

Data from trace (bin width = 10)

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300 350 400
N

or
m

al
iz

ed
 F

re
qu

en
cy

 (%
)

Service Times (ms)

Trace 1

Data from trace (bin width = 10)
Fitted lognormal distribution

21

Determining expected request waiting times

load balancing (LB)

22

Determining expected request waiting times

load balancing (LB)

 0
 100
 200
 300
 400
 500
 600
 700

 30 40 50 60 70 80 90 100

W
ai

tin
g

Ti
m

e
(m

s)

#Backends

Threshold (350ms)

22

Determining expected request waiting times

load balancing (LB)

 0
 100
 200
 300
 400
 500
 600
 700

 30 40 50 60 70 80 90 100

W
ai

tin
g

Ti
m

e
(m

s)

#Backends

Threshold (350ms)

 0
 100
 200
 300
 400
 500
 600
 700

 30 40 50 60 70 80 90 100

W
ai

tin
g

Ti
m

e
(m

s)

#Backends

Threshold (350ms)
Global Scheduling

Partitioned Scheduling

Global and partitioned
perform well, but there are
implementation tradeoffs

22

Determining expected request waiting times

load balancing (LB)

 0
 100
 200
 300
 400
 500
 600
 700

 30 40 50 60 70 80 90 100

W
ai

tin
g

Ti
m

e
(m

s)

#Backends

Threshold (350ms)

 0
 100
 200
 300
 400
 500
 600
 700

 30 40 50 60 70 80 90 100

W
ai

tin
g

Ti
m

e
(m

s)

#Backends

Threshold (350ms)
Global Scheduling

Partitioned Scheduling

 0
 100
 200
 300
 400
 500
 600
 700

 30 40 50 60 70 80 90 100

W
ai

tin
g

Ti
m

e
(m

s)

#Backends

Threshold (350ms)
Global Scheduling

Partitioned Scheduling
Join-Idle-Queue

JIQ doesn't result
in good tail waiting

times

Global and partitioned
perform well, but there are
implementation tradeoffs

22

Determining expected request waiting times

load balancing (LB)

 0
 100
 200
 300
 400
 500
 600
 700

 30 40 50 60 70 80 90 100

W
ai

tin
g

Ti
m

e
(m

s)

#Backends

Threshold (350ms)

 0
 100
 200
 300
 400
 500
 600
 700

 30 40 50 60 70 80 90 100

W
ai

tin
g

Ti
m

e
(m

s)

#Backends

Threshold (350ms)
Global Scheduling

Partitioned Scheduling

 0
 100
 200
 300
 400
 500
 600
 700

 30 40 50 60 70 80 90 100

W
ai

tin
g

Ti
m

e
(m

s)

#Backends

Threshold (350ms)
Global Scheduling

Partitioned Scheduling
Join-Idle-Queue

 0
 100
 200
 300
 400
 500
 600
 700

 30 40 50 60 70 80 90 100

W
ai

tin
g

Ti
m

e
(m

s)

#Backends

Threshold (350ms)
Global Scheduling

Partitioned Scheduling
Join-Idle-Queue

Random Dispatch

JIQ doesn't result
in good tail waiting

times

Global and partitioned
perform well, but there are
implementation tradeoffs

Random dispatch
gives much better tail

waiting times

22

Determining expected request waiting times

load balancing (LB)

 0
 100
 200
 300
 400
 500
 600
 700

 30 40 50 60 70 80 90 100

W
ai

tin
g

Ti
m

e
(m

s)

#Backends

Threshold (350ms)

 0
 100
 200
 300
 400
 500
 600
 700

 30 40 50 60 70 80 90 100

W
ai

tin
g

Ti
m

e
(m

s)

#Backends

Threshold (350ms)
Global Scheduling

Partitioned Scheduling

 0
 100
 200
 300
 400
 500
 600
 700

 30 40 50 60 70 80 90 100

W
ai

tin
g

Ti
m

e
(m

s)

#Backends

Threshold (350ms)
Global Scheduling

Partitioned Scheduling
Join-Idle-Queue

 0
 100
 200
 300
 400
 500
 600
 700

 30 40 50 60 70 80 90 100

W
ai

tin
g

Ti
m

e
(m

s)

#Backends

Threshold (350ms)
Global Scheduling

Partitioned Scheduling
Join-Idle-Queue

Random Dispatch

JIQ doesn't result
in good tail waiting

times

Global and partitioned
perform well, but there are
implementation tradeoffs

Random dispatch
gives much better tail

waiting times

22

We use a LB policy based
on random dispatch!

in the near future, to account
for high provisioning times

Determining the total request load

23

}
in the near future, to account

for high provisioning times

Determining the total request load

Frontends

Hardware
broker

L

Since the broker spreads
requests uniformly among

each frontends

L' = L/F

F Total # frontends
L'

L'

Total request rate

23

}
in the near future, to account

for high provisioning times

Determining the total request load

Frontends

Hardware
broker

L

L' = L/F

F
L'

L'

‣Predicts L' for near future
Each Swayam instance

Depends on the time to
setup a new backend

23

}
in the near future, to account

for high provisioning times

Determining the total request load

Frontends

Hardware
broker

L

L' = L/F

F
L'

L'

‣Predicts L' for near future

Determined from
broker / through a

gossip protocol

Each Swayam instance

‣Given F, computes L = F x L'

23

Making globally-consistent decisions

What is the minimum # backends
required for SLA compliance?

at each frontend (Swayam instance)

1. Expected request execution time
2. Expected request waiting time
3. Total request load

24

SLA-aware resource estimation
For each

trained model

Response-Time
Threshold

Service Level

Burst Threshold

RTmax

SLmin

U

n = min # backends

25

SLA-aware resource estimation
For each

trained model

Response-Time
Threshold

Service Level

Burst Threshold

RTmax

SLmin

U

n = min # backends

Waiting Time Distribution

Execution Time Distribution

Response Time Modeling

Load

SLmin
percentile

response time
< RTmax?

n = 1 n++

No

Yes
x U

25

SLA-aware resource estimation
For each

trained model

Response-Time
Threshold

Service Level

Burst Threshold

RTmax

SLmin

U

n = min # backends

Waiting Time Distribution

Execution Time Distribution

Response Time Modeling

Load

SLmin
percentile

response time
< RTmax?

n = 1 n++

No

Yes
x U

Closed-form expression for
percentile response time

(see the appendix)

Convolution

25

SLA-aware resource estimation
For each

trained model

Response-Time
Threshold

Service Level

Burst Threshold

RTmax

SLmin

U

n = min # backends

Waiting Time Distribution

Execution Time Distribution

Response Time Modeling

Load

SLmin
percentile

response time
< RTmax?

n = 1 n++

No

Yes
x U

Amplified based on
the burst threshold

25

SLA-aware resource estimation
For each

trained model

Response-Time
Threshold

Service Level

Burst Threshold

RTmax

SLmin

U

n = min # backends

Waiting Time Distribution

Execution Time Distribution

Response Time Modeling

Load

SLmin
percentile

response time
< RTmax?

n = 1 n++

No

Yes
x U

Initialization

Retry, as long as
not SLA compliant

25

Compute percentile
response time for n

Frontends

Incoming
requests

Swayam
instance

computes globally consistent minimum #
backends necessary for SLA compliance

Backends dedicated
for the pink model

1 2 3 4 65

1110987 12

= warm in-use busy/idle
= warm not-in-use

26

Swayam Framework

Outline

1. System architecture, key ideas

2. Analytical model for resource estimation

3. Evaluation results

27

Evaluation setup

• Prototype in C++ on top of Apache Thrift

➡ 100 backends per service

➡ 8 frontends

➡ 1 broker

➡ 1 server (for simulating the clients)

28

Evaluation setup

• Prototype in C++ on top of Apache Thrift

➡ 100 backends per service

➡ 8 frontends

➡ 1 broker

➡ 1 server (for simulating the clients)

• Workload

➡ 15 production service traces (Microsoft Azure MLaaS)

➡ Three-hour traces (request arrival times and computation times)

➡Query computation & model setup times emulated by spinning

28

SLA configuration for each model

• Response-time threshold RTmax = 5C
➡C denotes the mean computation time for the model

• Desired service level SLmin = 99%

➡ 99% of the requests must have response times under RTmax

• Burst threshold U = 2x
➡ Tolerate increase in request rate by up to 100%

• Initially, 5 pre-provisioned backends

29

Baseline: Clairvoyant Autoscaler (ClairA)

➡ It knows the processing time of each request beforehand
➡ It can travel back in time to provision a backend

➡ "Deadline-driven" approach to minimize resource waste

30

Baseline: Clairvoyant Autoscaler (ClairA)

• ClairA1 assumes zero setup times, immediate scale-ins

➡Reflects the size of the workload

➡ It knows the processing time of each request beforehand
➡ It can travel back in time to provision a backend

➡ "Deadline-driven" approach to minimize resource waste

30

Baseline: Clairvoyant Autoscaler (ClairA)

• ClairA1 assumes zero setup times, immediate scale-ins

➡Reflects the size of the workload

• ClairA2 assumes non-zero setup times, lazy scale-ins

➡ Swayam-like

➡ It knows the processing time of each request beforehand
➡ It can travel back in time to provision a backend

➡ "Deadline-driven" approach to minimize resource waste

30

Baseline: Clairvoyant Autoscaler (ClairA)

• ClairA1 assumes zero setup times, immediate scale-ins

➡Reflects the size of the workload

• ClairA2 assumes non-zero setup times, lazy scale-ins

➡ Swayam-like

• Both ClairA1 and ClairA2 depend on RTmax, but not on SLmin and U

➡ It knows the processing time of each request beforehand
➡ It can travel back in time to provision a backend

➡ "Deadline-driven" approach to minimize resource waste

30

Resource usage vs. SLA compliance

31

Resource usage vs. SLA compliance

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
es

ou
rc

e
us

ag
e

(n
or

m
al

iz
ed

)

Trace IDs

ClairA1
ClairA2

Swayam (frequency of SLA compliance)

31

Resource usage vs. SLA compliance

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
es

ou
rc

e
us

ag
e

(n
or

m
al

iz
ed

)

Trace IDs

ClairA1
ClairA2

Swayam (frequency of SLA compliance)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
es

ou
rc

e
us

ag
e

(n
or

m
al

iz
ed

)

Trace IDs

ClairA1
ClairA2

Swayam (frequency of SLA compliance)

31

Resource usage vs. SLA compliance

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
es

ou
rc

e
us

ag
e

(n
or

m
al

iz
ed

)

Trace IDs

ClairA1
ClairA2

Swayam (frequency of SLA compliance)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
es

ou
rc

e
us

ag
e

(n
or

m
al

iz
ed

)

Trace IDs

ClairA1
ClairA2

Swayam (frequency of SLA compliance)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
es

ou
rc

e
us

ag
e

(n
or

m
al

iz
ed

)

Trace IDs

ClairA1
ClairA2

Swayam (frequency of SLA compliance)

31

Resource usage vs. SLA compliance

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
es

ou
rc

e
us

ag
e

(n
or

m
al

iz
ed

)

Trace IDs

ClairA1
ClairA2

Swayam (frequency of SLA compliance)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
es

ou
rc

e
us

ag
e

(n
or

m
al

iz
ed

)

Trace IDs

ClairA1
ClairA2

Swayam (frequency of SLA compliance)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
es

ou
rc

e
us

ag
e

(n
or

m
al

iz
ed

)

Trace IDs

ClairA1
ClairA2

Swayam (frequency of SLA compliance)

97
%

98
%

64
%

95
%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0% 87

%

91
%

89
%

97
%

Frequency of SLA
Compliance

31

Resource usage vs. SLA compliance

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
es

ou
rc

e
us

ag
e

(n
or

m
al

iz
ed

)

Trace IDs

ClairA1
ClairA2

Swayam (frequency of SLA compliance)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
es

ou
rc

e
us

ag
e

(n
or

m
al

iz
ed

)

Trace IDs

ClairA1
ClairA2

Swayam (frequency of SLA compliance)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
es

ou
rc

e
us

ag
e

(n
or

m
al

iz
ed

)

Trace IDs

ClairA1
ClairA2

Swayam (frequency of SLA compliance)

97
%

98
%

64
%

95
%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0% 87

%

91
%

89
%

97
%

Swayam performs much
better than ClairA2 in terms of

resource efficiency

31

Resource usage vs. SLA compliance

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
es

ou
rc

e
us

ag
e

(n
or

m
al

iz
ed

)

Trace IDs

ClairA1
ClairA2

Swayam (frequency of SLA compliance)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
es

ou
rc

e
us

ag
e

(n
or

m
al

iz
ed

)

Trace IDs

ClairA1
ClairA2

Swayam (frequency of SLA compliance)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
es

ou
rc

e
us

ag
e

(n
or

m
al

iz
ed

)

Trace IDs

ClairA1
ClairA2

Swayam (frequency of SLA compliance)

97
%

98
%

64
%

95
%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0% 87

%

91
%

89
%

97
%

Swayam is resource
efficient but at the cost of

SLA compliance
31

Resource usage vs. SLA compliance

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
es

ou
rc

e
us

ag
e

(n
or

m
al

iz
ed

)

Trace IDs

ClairA1
ClairA2

Swayam (frequency of SLA compliance)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
es

ou
rc

e
us

ag
e

(n
or

m
al

iz
ed

)

Trace IDs

ClairA1
ClairA2

Swayam (frequency of SLA compliance)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
es

ou
rc

e
us

ag
e

(n
or

m
al

iz
ed

)

Trace IDs

ClairA1
ClairA2

Swayam (frequency of SLA compliance)

97
%

98
%

64
%

95
%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0% 87

%

91
%

89
%

97
%

Swayam is resource
efficient but at the cost of

SLA compliance
31

Resource usage vs. SLA compliance

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
es

ou
rc

e
us

ag
e

(n
or

m
al

iz
ed

)

Trace IDs

ClairA1
ClairA2

Swayam (frequency of SLA compliance)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
es

ou
rc

e
us

ag
e

(n
or

m
al

iz
ed

)

Trace IDs

ClairA1
ClairA2

Swayam (frequency of SLA compliance)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
es

ou
rc

e
us

ag
e

(n
or

m
al

iz
ed

)

Trace IDs

ClairA1
ClairA2

Swayam (frequency of SLA compliance)

97
%

98
%

64
%

95
%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0% 87

%

91
%

89
%

97
%

Swayam seems to perform poorly
because of a very bursty trace

31

Summary
• Perfect SLA, irrespective of the input workload, is too expensive

➡ in terms of resource usage (as modeled by ClairA)

32

Summary
• Perfect SLA, irrespective of the input workload, is too expensive

➡ in terms of resource usage (as modeled by ClairA)

• To ensure resource efficiency, practical systems

➡ need to trade off some SLA compliance

➡while managing client expectations

32

Summary
• Perfect SLA, irrespective of the input workload, is too expensive

➡ in terms of resource usage (as modeled by ClairA)

• To ensure resource efficiency, practical systems

➡ need to trade off some SLA compliance

➡while managing client expectations

• Swayam strikes a good balance, for MLaaS prediction serving

➡ by realizing significant resource savings

➡ at the cost of occasional SLA violations

32

Summary
• Perfect SLA, irrespective of the input workload, is too expensive

➡ in terms of resource usage (as modeled by ClairA)

• To ensure resource efficiency, practical systems

➡ need to trade off some SLA compliance

➡while managing client expectations

• Swayam strikes a good balance, for MLaaS prediction serving

➡ by realizing significant resource savings

➡ at the cost of occasional SLA violations

• Easy integration into any existing request-response architecture

32

Thank you. Questions?

33

