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ABSTRACT
Programs that reward people for referring their friends are
increasingly being used to raise awareness about important
topics. With a fixed budget for referral incentives, a natural
goal for such referral programs is to maximize the number
of people reached. Unlike a typical influence maximization
problem, however, the social network of potential adopters
is unknown apriori. Further, people’s response to a refer-
ral incentive can depend on various factors such as their
preference for the content, size of their social network, and
their estimated value for sharing. Therefore, we introduce
an incentive-aware variant of the influence maximization
problem and formalize it under an online learning setting.
Given the lack of initial information about the social net-
work or how people respond to referral incentives, we use
an explore-exploit strategy and present a contextual bandit
agent CoBBI that optimizes the incentives for each user by
learning from the results of its past actions. We demonstrate
the effectiveness of CoBBI on data from a real-world referral
program for raising land rights’ awareness among farmers.
Compared to a wide range of baselines, we find that CoBBI
is consistently more cost-effective, across a wide range of
influence probabilities and people’s response to incentives.

CCS CONCEPTS
• Human-centered computing → Social content shar-
ing; • Information systems → Incentive schemes; • Com-
puting methodologies → Online learning settings.
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1 INTRODUCTION
Raising awareness about a topic or an intervention is impor-
tant for almost all global health and public welfare projects.
In some projects, the goal is to promote a beneficial practice,
such as encouraging regular washing of hands to prevent
disease [1]. For others, the goal is to draw attention to an
available intervention, such as a vaccination or campaign
that people may benefit from [15]. While not sufficient for
behavioral change, delivering correct and timely information
to people is a necessary first step. However, reaching out to
people can be expensive and time-intensive especially when
the target recipients are in low-resource or remote commu-
nities. During the Ebola outbreak in Liberia, for example,
the per-person expenditure to spread awareness about Ebola
was more than the daily wage of most people in the coun-
try [9, 23].

Motivated by the importance of spreading awareness and
the relative inefficiency of doing it through manual outreach,
phone-based solutions have been proposed that can deliver
the desired information to people instantly and often at low
cost. To alleviate the need for knowing every person’s phone
number beforehand, many of these solutions have a peer-to-
peer referral component that allows a message to be spread
from a small set of initial people to many hundreds. For ex-
ample, one solution is “Learn2Earn” [30] that awards mobile
phone talktime to any person who listens to the message
and answers questions correctly, and subsequently a refer-
ral bonus talktime for every person whom they refer to do
the same. As in word-of-mouth marketing for commercial
products [5], peer referrals can enable a wide reach. In a
deployment in India, the Learn2Earn referral system spread
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awareness about land rights to 17000 farmers in 45 days,
starting from an initial set of just a few hundred farmers [30].

To repeat the success of such peer-based awareness cam-
paigns, a natural question is how to set incentives for peer
referral. Since awareness programs typically have a limited
budget for referral incentives, we consider the following
question: how to design incentives to maximize reach of a
particular message given a fixed budget? An intuitive answer
is to reward each referral with a fixed incentive, as in the
Learn2Earn system. However, all referrals are not equal. Re-
ferring one’s first friend is different from referring one’s nth
friend, and referring a friend in a close-knit community is
different from referring someone from a hard-to-reach com-
munity. These differences indicate the value of customizing
referral incentives based on context.

Deciding a custom incentive, however, is difficult in public
awareness campaigns for two main reasons. First, unlike
much of research in computer science on social influence
maximization [4, 14, 31], the underlying social network of
people is unknown. Second, unlike work in economics on
social referrals, people’s response to referrals is typically
unknown apriori.
In this paper, we address these practical constraints in

referral programs by introducing the Incentive-aware Influ-
ence Maximization problem. This formulation assumes that
different people have different response functions to incen-
tives, and that the social network of referrers is unknown
apriori, rather it will be incrementally discovered as referrals
are made. We decide referral incentives using an explore-
exploit paradigm where our proposed algorithm learns an
optimal incentive payout for a referral based on the results
of its past actions. That is, our algorithm adapts to people’s
response functions by offering initial incentives randomly
and then awarding future incentives based on how people
responded to past incentives. Specifically we present a con-
textual bandit-based [2, 6, 19] algorithm where past history
of each referrer and the state of the discovered social network
is modeled as context. Given the current context, the algo-
rithm outputs whether to offer an incentive to a potential
referrer. We call our proposed solution CoBBI (Contextual
Bandit Based Incentives).
We evaluate CoBBI using data from a deployment of the

Learn2Earn system. We compare it to six baseline policies,
ranging from simple policies that assign fixed payments to
naive versions of an explore-exploit policy. First, we show
that simple strategies to customize incentives work for some
scenarios, but fail when we consider different ways in which
people can respond to incentives. Since CoBBI learns peo-
ple’s responses by exploring, it adapts well to different re-
sponse functions and influence probabilities. Second, CoBBI
is cost-effective: among the policies that reach the maximum

number of people, it has the highest ratio of number of peo-
ple influenced to money spent on referrals. Finally, we show
how one can tune the tradeoff between reach and cost in
CoBBI by changing its bandit reward function.

2 RELATEDWORK
Peer-to-peer referral programs are an important mechanism
for spreading awareness and driving product adoption [22,
28]. For example, companies like Dropbox, Uber, and Verizon
have used such referrals to grow the adoption of their ser-
vices. Dropbox, for instance, offers an additional 500 MB of
storage for every friend a user refers [21]. Referral programs
are also useful for non-profit organizations in public welfare,
e.g., to enable timely dissemination of critical information
to relevant communities [11, 15, 37]. When a person refers
someone, we say that the person influences them and call
the overall process the influence process or simply diffusion.
A common feature of such referral programs is that peo-

ple are incentivized, often monetarily, for each referral that
they make. Given the scale of these programs, an important
question is to decide an incentive payout for each referral,
in order to maximize the number of people reached within
a given budget. This goal, however, is tricky to achieve be-
cause very little is known about the potential referrers and
referees before a campaign is started. Each individual may
have a different marginal cost for taking the effort to make
a referral, and these costs are hard to estimate in advance.
Thus, different people may respond in different, unknown
ways to the same incentive. Further, little information about
the target population’s social network is known in advance,
making this problem more challenging than the traditional
influence maximization problems studied over social net-
works. To tackle this problem, our work builds upon two
streams of work: optimizing the set of initial seed nodes and
designing optimal referral incentives.

Social network-based influence maximization. Given a
social network, Kempe et al. [14] provided a constant-ratio
approximation algorithm to find initial “seed” sets of nodes
to optimally spread influence in a social network. This was
followed by many speed-up techniques over several years
[4, 31, 36]. Subsequently, Golovin et. al. [10] extended the
approach to include settings where seed nodes can be se-
lected adaptively after observing results of previous selec-
tions. These algorithms, however, make the simplifying as-
sumption that all individuals have the same response to a
given incentive.
A related question, then is to find an optimal incentive

payout strategy when people’s response to incentives—their
response functions—can be heterogeneous. When response
functions are assumed to be step-functions based on a cost
threshold, Lobel et al. [21] and Singer et al. [29] provide a
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characterization of the problem in a game theoretic setup.
Lobel et al. describe a game between people and the refer-
ral program where optimal incentives can be computed if
individuals’ cost to refer their friends are known. In practice,
however, it is unclear how to estimate the cost for each refer-
ral, which may differ for individuals. As a solution, Singer et
al. consider asking the referrers directly about their cost to
refer their friends and design a mechanism to elicit truthful
disclosure of incentive thresholds. However, asking people
may not be practical in most referral programs.

Influencemaximization over anunknownnetwork.The
above algorithms depend on full knowledge of the under-
lying social network. Recent work relaxes this assumption
by assuming dynamic networks that can change over time
[32, 40] or uncertainty in the edges of a given network [35].
Still, these approaches do not address the fundamental prob-
lem in referral programs where we have zero knowledge of
the underlying social network.
Thus, while incentives matter in diffusion processes re-

gardless of the social network [18], deciding a good incentive
mechanism becomes critical in settings where the network
is unknown. Through field experiments, Vasistha et al. [33]
show how static incentives lead to more referrals than a
standard lottery system, and Pickard et al. [24] show how
recursive incentives can lead to successful mobilization for
a task. In general, however, the effectiveness of an incen-
tive program depends on a number of factors, including tie
strength [27], referee’s value for the content [39], and sensi-
tivity of content being referred [17]. As a result, optimizing
incentive payouts for arbitrary response functions and par-
tially known social networks remains an open problem.

Given the lack of any apriori information, we will consider
an online learning solution to this problem. That is, rather
than making any assumptions about the nature of the social
network or people’s response functions, we will learn these
from the observed data as referrals are made. To account for
the various factors that can affect people’s response func-
tions, we will associate each referral with a set of features
called the context. In the next section, we formally define our
learning problem. Then in Section 4, we present CoBBI, our
contextual bandit-based algorithm.

3 BACKGROUND AND PROBLEM FORMULATION
Let us define the incentive-aware influence maximization
(IAIM) problem. We motivate our formulation through the
Learn2Earn system and then use behavioral considerations
to make it practical.

Problem Definition
Consider the problem of spreading mass awareness in low-
resource communities. We assume that an informational

message has been chosen and converted to a digital form (e.g.,
a voice recording). Given a fixed budget, we would like to use
peer referrals to spread the message to the maximum number
of people. As a specific example, the Learn2Earn system [30]
uses voice recording of a message and wraps it around an
Interactive Voice Response (IVR) system. Users call a toll-free
number to access the IVR system, which then plays out the
message and asks people to answer a few multiple-choice
questions using their keypad. These questions are designed
to verify that the user paid attention to the message. Finally, a
user can share the Learn2Earn phone number to their friends
by using a unique referral code. For each friend who calls
the Learn2Earn system and enters their referral code, the
user receives an INR 10 talktime on their phone.
Our insight is that optimizing the referral incentive in-

volves maximizing the causal influence of an incentive in
encouraging a person to share the message with others. That
is, we would like to pay incentive only for the referrals that
would not have happened without the incentive. For referrals
that would have happened anyway, incentives are less use-
ful, except perhaps to accelerate the process of referral. For
instance, if people in a community are already sharing the
message at high rates, it may not be useful to offer additional
incentives. Instead, one may offer incentives to parts of the
community where it is the hardest to spread the message.
Similarly, one may want to pay more to a person who refers
someone from a remote community, than when they refer
someone who is connected to many other people and thus
likely to find out about the system through other means. To
capture a user v’s context, we define a feature vector Φ(v, t ),
where t refers to time. This user context can include details
of past referrals by v , number of previous payment offers
made to v , and so on.
In addition to the base rate of influence spread, causal

influence of referral incentives also depends on how people
respond to the incentives. Different people can respond dif-
ferently to a monetary incentive. Some may be motivated
to share more, some may be unaffected, while some others
may be even discouraged to share. The latter is plausible
when people spread information as a part of building and
sharing their social capital, and the introduction of mone-
tary incentives may dissuade them, acting as a “repugnant”
transaction [26]. For example, in an altruistic setting such
as a referral program for a medically effective drug, people
may be willing to refer their friends without any monetary
incentive. However, being offered money might decrease the
chances of referral (i.e., they might not want their friends to
know that they are being paid for it). Thus, understanding
how people respond to incentives is important. We define
the (unobserved) response function of an individual v to
an incentive by Rv = дv (I ), which characterizes how the
individual v’s sharing activity responds to the incentive I .
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Formally, let G (V ,E) be the underlying social network
with nodesv ∈ V and edges e ∈ E. At any point, an influence
maximizing agent can only access the observed part of the
social network due to the referrals that have been made. For
each new referral, the agent decides how much incentive
should it award. More generally, the agent learns a policy P
for awarding incentives based on the current context Φ(v, t )
of a referrer v . Under such a setting, the goal is to devise
an incentive payout policy P that maximizes the spread of
content under a fixed budget.
We define the effectiveness of a payout policy FT (P) as

the average number of people successfully influenced per
unit of monetary incentive by following P for T time steps
in the diffusion process. To benchmark the effectiveness of a
payout scheme, we consider an oracle that knows both the
social networkG and the response functions Rv ∀v ∈ V . Let
P∗ be the optimal payout scheme that this oracle outputs.
Define the regret of any payout scheme P at time T as RTP =
FT (P∗) − FT (P). Then, the IAIM Problem can be defined as:

Problem 1. IAIM Problem. Given as input time T , and
context Φ(v, t ) for every potential referrer, the goal of the IAIM
problem is to learn an optimal payout scheme functionP which
minimizes regret against an oracle schemeP∗ afterT time steps
in the diffusion process, i.e., argminP FT (P∗) − FT (P).

Considerations for Incentive Design
In practice, implementing an influence maximization system
using referral incentives involves three additional questions:
how much to pay, when to pay, and whom to pay.

Howmuch to pay.Current systems such as Learn2Earn pay
out a fixed monetary incentive for each referral. As we dis-
cussed above, it can be beneficial to customize the incentive
based on the observed social network and response functions
of individuals. However, having variable incentives can be
confusing for users of the system and introduce concerns of
differential payouts for the same referral task. It also adds ad-
ditional complexity to program management since program
officials need to know the exact dynamic incentive payouts
to address users’ queries on (failed) transaction payouts.
Therefore, even if guidelines can be fixed, a complex in-

centive structure will be difficult to communicate with all
users. While it is mathematically appealing, for behavioral
and program management reasons, we focus our attention
to cases where the incentive amount is kept fixed.

When to pay. If the incentive amount is fixed, how would
we then customize incentives? One way of customizing in-
centive payments is to change how often people are paid
the same incentive. Paying some people more frequently
than others can be shown mathematically to be equivalent to
changing people’s incentive payouts, within a multiplicative

constant. In addition, based on behavioral research on loss
aversion [13], we expect that changing frequency of pay-
ment, rather than the payment amount itself, can be a more
acceptable way to customize incentives. It has the added
advantage of being simple in its implementation.

A related problem to “when to pay” is in deciding when to
disclose the incentive: before or just after a referral is made?
Disclosing and paying the incentive just after is simpler
and expects that the payout will motivate the user to refer
more in the future. The alternative is to disclose an “offer
to pay” first and communicate to the user a time period for
which the payout offer is valid, and then pay conditional on
whether the user referred another person in that time period.
For a policy that pays an incentive for every referral, this
distinction does not matter since users know apriori that
they will receive a fixed incentive per referral. However, if
we are choosing a specific subset of referrals for incentive
payout, then this distinction can be important. Announcing
the offer earlier sets expectations for the user and possibly
also motivates them to refer someone. In comparison, when
users are notified and paid after a particular referral, they do
not know whether they will receive the incentive payout for
any of their next referrals. Assuming that knowledge of an
incentive payout in advance motivates people to refer, we
focus on the strategy of offering to pay before a referral and
then conditionally paying based on the referral made.

Whom to pay. Finally, we restrict our attention to the set-
ting where the referrer is paid an incentive. It is possible
that both the referrer and referee receive an incentive (i.e.,
double-sided incentives), or that only the referee receives
the incentive. We leave these alternatives for future work.

Based on the above considerations, we define the incentive
policy as an “offer to pay” scheme: a functionP

(
v,Φ(v, t )

)
→

{0, 1} that is called for each known user at time t and decides
whether to offer an incentive payout or not. Note that the
payout decision need not be the same for everyone; it can
vary based on the user’s context features Φ(v, t ). We now
propose a practical version of the IAIM problem.

Problem 2. Practical IAIM Problem.Given as input time
T , and context Φ(v, t ) for every potential referrer, the goal of
the IAIM problem is to learn an optimal “offer to pay” scheme
function P that chooses the referrers to which a fixed pay-
out will be offered, and that minimizes regret against an ora-
cle scheme P∗ after T time steps in the diffusion process, i.e.,
argminP FT (P∗) − FT (P).

4 COBBI: CONTEXTUAL BANDIT OPTIMIZER
Without oracle access to the underlying social network or
people’s response functions to incentives, there is little infor-
mation to decide whom to offer an incentive payout. Initially,
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one might imagine choosing referrers at random since no
better information is available. If people respond identically
to incentives, it should be possible to learn whether offering
to pay an incentive has a positive effect on the number of
referrals, compared to the alternative of no incentives. This
simple exploration strategy (similar to an A/B test) can be
generalized using the multi-armed bandit problem [34]. That
is, we can use a continous intermixing of exploration and
exploitation: we employ the best known incentive policy
but every once in a while, select people randomly to learn
if those people respond more favorably to incentives. This
strategy, known as an ϵ-greedy multi-armed bandit, works
well for a variety of decision optimization problems [16].

However, a key complication in referral programs is that
people’s response to incentives is not a universal function;
but rather a mixture of many diverse responses. Therefore,
instead of thinking about a single optimal decision for every-
one, it is more suitable to think about optimal decisions for
different kinds of people who might be in different stages of
the referral process. In other words, the right incentive de-
pends on the context of each referrer, which includes factors
such as the number of people already referred, the expected
number of friends of a user, their value for incentives, and
so on. Such a setting requires an extended version of a multi-
armed bandit that can decide an optimal incentive for each
referrer’s context. We summarize the workings of a contex-
tual bandit below and then describe how we use it to develop
CoBBI, our online learning agent for the IAIM problem.

Contextual Bandits
In the contextual bandit problem [2, 6, 19], an agent repeat-
edly takes one of K actions in response to an observed con-
text, and obtains a reward for the chosen action. Specifically,
the agent collects rewards for actions taken over a sequence
of rounds; in each round, the agent chooses an action on the
basis of (i) context (or features) for the current round, and (ii)
feedback, in the form of rewards obtained in previous rounds.
Contextual bandit problems are found in many applications
such as online recommendation and clinical trials [3, 20, 25].
Note that the feedback is incomplete: in any given round, the
agent observes the reward only for the chosen action; it does
not observe the reward for other actions. In our IAIM setting,
we can observe the result of offering to pay to a person or
not, but never both. Thus, random exploration in providing
a payment offer can help in discovering the causal influence
of offering to pay on future referrals.

Specifically, a contextual bandit tries to learn the distribu-
tion of rewards for each context-action pair; however, instead
of learning a separate reward distribution for each context-
action pair, it tries to generalize the reward distribution over
the space of context vectors. LetA be a finite set of K actions,
X be a space of possible contexts (e.g., a feature space). Let

RA+ := {r ∈ RA : r (a) ⩾ 0 ∀a ∈ A} be the set of non nega-
tive reward vectors. A contextual bandit policy π learns a
function that outputs a decision given any context vector as
input. Whenever the CB policy makes a decision, it receives a
reward from the environment, signalling whether the action
was effective. Over multiple rounds of actions, these rewards
help the policy to optimize its decisions for achieving the
maximum reward.
In the i.i.d. contextual bandit setting, the context/reward

pairs (xt , rt ) ∈ X × [0, 1]A over all rounds t = 1, 2, .. are ran-
domly drawn independently from a distribution D. In any
round t , the agent first observes the context xt , then chooses
an action at ∈ A, and finally receives the reward rt (at ) ∈
[0, 1] for the chosen action. The observable record of inter-
action resulting from round t is the tuple (xt ,at , rt (at )) ∈
X ×A × [0, 1]. Let R (π ) := E(x,r )∼D[r (π ,x )] denote the ex-
pected instantaneous reward of a policy π ∈ Π, and let π∗ :=
arдmaxπ ∈ΠR (π ) be a policy that maximizes the expected
reward (the optimal policy). Let Reд(π ) := R (π∗) − R (π ) de-
note the expected (instantaneous) regret of a policy π ∈ Π
relative to the optimal policy. Then the (empirical cumula-
tive) regret of an agent after T rounds is defined as follows:
T∑
t=1

(
rt (π∗ (xt )) − rt (at )

)
.

Our goal is to find an algorithm whose regret with respect
to the optimal policy is minimized. In the simplest contextual
bandit algorithm, ϵ-greedy, the agent chooses to take the
current best action with probability 1 − ϵ , and chooses to
explore a random action with probability ϵ . We refer the
reader to Langford and Zhang [19] for theoretical guarantees
of the contextual bandit algorithm. Next, we explain how we
map the IAIM problem into a contextual bandit.

CoBBI
CoBBI, our online learning agent consists of two different
components: a context-generation engine, and the IAIM ban-
dit. The context generation engine interacts with the world
to maintain the best possible belief about the current state
of the social network and the ongoing diffusion process in
that network. The context-generation engin then parses this
information into a context vector, which is then given to the
IAIM bandit. The IAIM bandit looks at this context vector
and decides whether to offer an incentive payout.

Context-Generation Engine. First, we describe the con-
text space X for the IAIM problem. The context space X is
composed of two disjoint spaces, X = Xnet ∪ Xdif f , where
Xnet consists of context information related to the current
knowledge of the ground-truth social network andXdif f con-
sists of context information related to the current knowledge
about the diffusion process. Note that in the beginning, the
social network is completely unknown, and hence Xnet = ϕ
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in the first round. As more and more referrals occur, the
context generation engine builds up its understanding of
the social network structure through the observed referral
network, and uses this understanding to create the context
sub-vector Xnet . Possible features in Xnet can be the the
number of people referred by the user, the number of second-
degree referral connections, etc. Similarly, possible features
in Xdif f can be the age, sex or location of the referrer, the
number of times the referrer has been offered payment, etc.

The IAIM Bandit. The practical IAIM problem can be mod-
eled as a contextual bandit. The proposed IAIM bandit takes
a context vector X for a given individual at any time T and
outputs whether he/she should be offered an incentive pay-
out. In other words, the IAIM bandit serves as a dynamically
updating payout agent, with a binary decision on whether to
offer payment. For simplicity, we use the ϵ-greedy algorithm
for learning the decision policy.

A critical choice for optimizing the bandit policy is the re-
ward function, that maps <context, action> pairs to a reward
between 0 and 1. A simple way is to assign a reward of 1 if the
agent offered to pay a person and the person referred, and 0
if they did not. However, we would also need to consider the
case when the agent decided not to offer to pay. If the person
still refers someone, what should the agent’s reward be? At
first, it might seem as if the agent made a wrong prediction.
However, going back to the causal influence definition from
Section 3, if the person shares when the agent did not of-
fer them any incentive, then that indicates that they would
have shared anyways and thus the agent made the correct
decision of not offering any incentive. Additionally, when
the agent does not offer any incentive and the person does
not share, we consider it as a neutral outcome. Thus, the
correct reward ordering between the four different outcomes
is: agent does not offer and person refers, agent offers and
person refers, agent does not offer and person does not refer,
agent offers and person does not refer.

However, when we consider rewards for multiple referrals,
things get complicated. If a person refers once without an
incentive offer, maybe they could have referred multiple
times if they were given an incentive offer? As a possible
solution, we propose separate reward functions for the cases
when an incentive is offered or not (µ = 0.1 is a parameter).

roffered = 0.5x ; rnotoffered = (0.5 − µ )x (1)

These reward function ensure the ordering above when the
number of referrals (x ) by a person is 1, and then generalize
the relationship for any number of referrals.

CoBBI’sWorkflow.We assume that an awareness program
has initiated a social referral process by selecting and influ-
encing some seed individuals from the underlying social

network. First, CoBBI is invoked at each round for each in-
fluenced person. CoBBI uses its context-generation engine
to create a context vector for an influenced person v . Then,
CoBBI uses its IAIM bandit to decide whether to offer an
incentive payout to the person v . After this step, v tries to
refer the awareness message to their network connections
in response to the incentive offer. If v is successful in refer-
ring and the IAIM bandit had offered an incentive, then they
receive a payout for each referral. Based on this, the bandit’s
reward is updated as per Equation 1 and the process repeats.
Since the context consists of information about the in-

ferred state of the social network, subsequent contexts in the
IAIM problem are not necessarily i.i.d., and hence, CoBBI’s
policies are not guaranteed to be optimal. Still, as we show
in the next sections, CoBBI learns effective payout policies
for the practical settings encountered in referral programs.

5 EVALUATION SETUP
The ideal evaluation will be a randomized controlled trial
where we test incentives based on CoBBI and compare with
baseline policies. However, running such an experiment is
non-trivial since it involves interventions on a social network
and thus has spillover effects [8]. To partially control for the
spillover, one could run different policies at different times
on the same community (which may have exposure bias), or
run different policies in different communities at the same
time (which may have selection bias). Before running such
a complex experiment, we would like to estimate how well
CoBBI may perform. Thus, in this section, we utilize data
from a Learn2Earn deployment and diffusion simulations to
evaluate CoBBI against a wide range of baseline policies.

Configurations: Social influence model
We use data from a Learn2Earn awareness campaign on farm-
ers’ land rights conducted in a rural community in India [30].
We obtain a referral network over 3116 users that led to a
total of 2826 referrals. We repurpose this referral network
as a proxy for a new underlying, unobserved social network
over which a different referral program can occur. While we
acknowledge that the observed referral network is a subset
of the true social network of the farmers’ community, it still
corresponds to real-world connections and thus provides a
realistic network to conduct our simulations. Therefore, for
our evaluation, we will treat this network as the maximum
realizable network and the IAIM goal is to initiate a new
referral program and reach as many people as possible under
a given budget for incentive payouts.

To model transfer of content, we use a variant of the inde-
pendent cascade model [14]. We first assume that an initial
set of seed nodes are provided from which the referrals start
(e.g., they could be randomly sampled). Subsequently, the
social influence process proceeds in discrete time periods or
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rounds, which can be thought of as days in the real-world
setting. In each round, each node tries to refer their net-
work connections with probability p, known as the influence
probability. An influence probability of p (v,w ) = 0.5 on an
edge (v,w ) denotes that if node v is already exposed to the
message, it refers nodew with p = 0.5. In the standard inde-
pendent cascademodel, all nodes that are influenced at round
t get a single chance to influence their un-influenced neigh-
bors at time t +1. If they fail to spread influence in this single
chance, they don’t spread influence to their neighbors in
future rounds. Our model is different in that we assume that
nodes get multiple chances to influence their un-influenced
neighbors. If they succeed in influencing a neighbor at a
given time step t ′, they stop influencing that neighbor for all
future time steps. Otherwise, if they fail in step t ′, they try
to influence again in the next round. This variant of indepen-
dent cascade has been shown to empirically provide a better
approximation to real influence spread [7, 37, 38]. Further,
we assume that nodes that are influenced at a certain time
step remain influenced for all future time steps, which is
well-suited for referral programs aimed for mass awareness
or product adoption. Based on the above setup, we construct
the following influence model configurations.
• Constant-Prob. The influence probability is constant for
all individuals in the social network. That is, each person is
assumed to exert the same effort to spread a given message.
We choose a conservative value, p = 0.1.
• Random-Prob. Influence probabilities of individuals are
chosen uniformly at random. To ensure the same mean as
above, probabilities are chosen randomly from (0, 0.2].
• Friends-Prob. Influence probability is a monotonically
increasing function of the number of friends (n) of a per-
son. We use p = siдmoid (

loд (n)−µloд (n )
σloд (n )

), where log(n) is
standardized using its mean (µ) and standard deviation (σ ).
Like the probabilities above, p is bounded by 0.2.

Configurations: People’s response functions
As described in Section 3, we assume that the influence proba-
bilities can change due to an incentive offer. This corresponds
to a situation where an incentive payout may motivate an
individual to change their efforts at sharing, and thus the re-
sultant influence probability. Specifically, each person v ∈ V
has an influence probability pv and we define a parame-
ter η that controls how much pv is affected by an offer to
pay incentive. Thus, η controls the response function of an
individual. We consider three different response functions
motivated by behavioral assumptions from Section 3.
• Increasing response functions.Much of past work on
influence maximization assumes an increasing response
function, where an individual’s influence probability in-
creases when offered an incentive payout. Thus, whenever

a person v is offered an incentive, their influence probabil-
ity to their friends becomes pv + η.
• Decreasing response functions.Next, we considermono-
tonically decreasing response functions that model peo-
ple’s behavior in altruistic scenarios where an incentive
offer may decrease an individual’s referral efforts, as dis-
cussed in Section 3. Here, the influence probability be-
comes pv − η when v is offered an incentive for referral.
• Idiosyncratic response functions. Finally, we evaluate
CoBBI’s performance on idiosyncratic response functions.
This class of response functions models people’s behavior
as completely unpredictable, which has recently received
support with regards to social media [12]. To sample such
idiosyncratic responses, we sample influence probabilities
uniformly at random in the range [pv − η,pv + η] for each
individual who has been offered an incentive to refer.

Policies: Baseline methods
We compare our proposed contextual bandit-based agent,
CoBBI with the following baseline methods.
• NoPay: Never offer to pay an incentive.
• AlwaysPay: Always offer to pay an incentive for a refer-
ral.
• RandomPay: Offer to pay individuals who are randomly
selected according to some probability (default=0.5).
• Pay>=5: Offer to pay individuals once they have shared
the message to atleast five of their friends.
• Pay<=5: Offer to pay individuals each time they share the
message, but upto a maximum of five of their referrals.
• PayMultipleOf5: Offer to pay individuals once they have
shared the message to {5, 10, 15...} people.
• PayFriendsLen: Offer to pay depending on the number of
friends an individual has. This policy has a partial knowl-
edge of the network, and hence not realistic. However, we
include this method to compare CoBBI’s performance to a
method that has additional knowledge of the network.

These methods range from the simple to complicated, and
are motivated by intuitive strategies to award incentives.

Context Feature Specification for CoBBI
As explained in Section 4, CoBBI relies on two sets of context
features—Xnet relating to the network, and Xdif f relating
to diffusion characteristics. For our Learn2Earn network,
Xnet is the number of friends influenced so far, and Xdif f
is the number of times an offer to pay is made by a policy.
Note that in practice, available context features may exceed
the basic ones listed above, and can be easily included. For
example, features like age, sex or location of nodev1 may play
an important role in determining his/her optimal incentive
payout and should be included in Xdif f .
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Figure 1: Comparing CoBBI to baseline policies under the Constant-Prob configuration. CoBBI achieves highest efficiency on
giving out incentive offers and the total amount paid across increasing, decreasing and idiosyncratic response functions. For
the decreasing response function and the NoPay policy, no payment was made and thus PaymentEfficiency is undefined.

Evaluation Metrics
To summarize the evaluation setup for a single simulated
referral campaign, a fixed number (50) of seed nodes are
chosen at random and provided as input. Next, influence
starts spreading in the social network according to our influ-
ence model. At each round, for each person v that has been
exposed to the message, the incentive offer policy decides
whether to offer an incentive to v . If v has been offered an
incentive, the influence probabilities p (e ) on all edges e adja-
cent to node v are updated dynamically (in accordance with
Rv , the response function of v). Further, if v is successful at
referring his network connections, he receives an incentive
payout per referral. The process continues until all nodes
are influenced or the budget is exceeded. We set the budget
as 6232 payouts in total, double the number of nodes in the
network for an average of 2 payouts per node.

Based on the evaluation setup above, we deploy CoBBI and
baseline policies on the Learn2Earn network data. All results
reported are averages for 10 simulated referral campaigns
for each <configuration, policy> pair. We set the response
parameter (η = 0.1) and the bandit reward (µ = 0.1) as
defaults. The influence process for all campaigns saturated by
50 rounds; for completeness we show results for 200 rounds.
We evaluate incentive policies on the following metrics:

• PercentInfluence: Percentage of nodes in the network
that received the message.
• NumOfferToPay: Total number of times an offer to refer-
ral payment was made.
• NumAmountPaid: Total amount of money spent.
• OfferToPayEfficiency: PercentInfluence/NumOfferToPay.
• PaymentEfficiency: PercentInfluence/NumAmountPaid.

6 SIMULATION RESULTS
We now report on the effectiveness of CoBBI on three con-
figurations from the last section, and discuss its sensitivity
to people’s response functions and its own reward function.

CoBBI obtains high efficiency
Figure 1 shows summary results for the simulated awareness
campaigns on the Constant-Prob configuration. First, let us
consider the increasing response function, shown in the top
panel. The X-axis shows increasing rounds of the diffusion
process (our notion of time) and the Y-axis shows evaluation
metrics: percentage of nodes reached, number of times a
policy offered to pay, total amount paid, offer-to-pay effi-
ciency and payment efficiency. We find that CoBBI matches
the maximum number of nodes reached by any of the base-
line policies. Further, the CoBBI incurs substantially lower
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Figure 2: Evaluation metrics for comparing CoBBI and base-
line policies under the Random-Prob configuration.

cost among all the baselines that pay incentives: number of
incentives offers is 6 times lower than the lowest baseline,
and incentive amount paid is 10 times lower. Offer-to-Pay
efficiency of CoBBI is nearly 2, indicating that its incentive
offers lead to nearly 2 referrals on average, whereas the same
for other baselines is less than 0.5. Similarly, CoBBI’s pay-
ment efficiency is over 8 times the nearest baseline. Among
the baselines, policies that pay rarely (NoPay and PayMulti-
pleOf5) perform the best. Under this configuration, CoBBI
learns that payments may not always be required to encour-
age referrals, even with an increasing response function.
When we look at the second panel of Figure 1 on de-

creasing response functions, CoBBI outperforms all other
baselines that pay. The best strategy under a decreasing re-
sponse function is NoPay, to not pay at all. RandomPay and
PayFriendsLen also reach the maximum number of people
influenced, but at a cost of making unnecessary incentive
offers. Offer-to-Pay efficiency for CoBBI is 9, compared to
0.01 forRandomPay and PayFriendsLen respectively. We do
not report PaymentEfficiency since all methods incur zero
payment (no referrals happen when people are provided an
incentive offer). The bottom panel of Figure 1 shows the
setting with idiosyncratic response functions. Here we find
similar results to the positive response function case: CoBBI
matches baseline algorithms in reaching the maximum per-
centage of people, but does so slower than the paying base-
lines. However, it leads to a substantially higher efficiency
(nearly 10 times for Offer-to-Pay) than those baselines.
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Figure 3: Evaluation metrics for comparing CoBBI and base-
line policies under the Friends-Prob configuration.

Next, we consider the Random-Prob configuration where
each person has a different, random propagation probabil-
ity (Figure 2). We find a similar story: incentive offers by
CoBBI can match the highest number of people reached by
other policies, but do so at a slower rate than those policies.
Especially for decreasing response functions, in terms of
efficiency of offer-to-pay decisions and total amount spent,
CoBBI outperforms these policies. Similarly, in the case of id-
iosyncratic response functions, while CoBBI reaches slightly
fewer people than other policies (5%), its Offer-to-Pay effi-
ciency is much higher (25 times) than other baselines.
The above two configurations show that CoBBI is able

to adapt based on people’s response functions. Even when
people have different propagation probabilities, CoBBI uses
bandit exploration to estimate the number of incentive offers
needed to reach the maximum number of people, and thus
spends the least amount of money among the policies that
reach those many people. That said, we find that CoBBI can
be too conservative for some settings. Figure 3 shows the
third configuration where a person’s propagation probabil-
ities are set proportional to their number of friends. Since
most (86%) of the people have only one friend in the net-
work, this implies that the propagation probability is low
(P=0.01) for most people, and only a few outliers have high
probability ( 0.2). CoBBI is unable to model the effect of these
outliers and can reach only two-thirds of the people reached
by AlwaysPay, RandomPay and PayFriendsLen. It still has
the highest efficiency (1.5-4 times) among these baselines as
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Figure 4: Sensitivity of CoBBI and baseline policies to η, the
change in influence probability due to an incentive offer un-
der the Friends-Prob configuration.

shown in Figure 3, but loses out due to being conservative
in offering incentives.

Sensitivity to people’s response functions
To investigate further for the Friends-Prob configuration, we
now look at the sensitivity of CoBBI’s performance to differ-
ent values of η, the strength of the response function (Figure
4). For all policies, number of people reached decreases when
the response function to incentives is negative, and increases
when the response function has a positive relationship with
incentive offers. When η is negative, CoBBI matches the best
policy, RandomPay, in the number of people reached. When
η is positive, RandomPay reaches more people. In all cases, as
we saw before, CoBBI is the most cost-effective: it spends the
least money and achieves the highest offer-to-pay efficiency
(2-4 times more effective).

Impact of the CoBBI’s reward function
While CoBBI generalizes well to different response func-
tions, it does make a tradeoff between reducing incentive
expenses and reaching the maximum number of people.
This tradeoff is controlled by the reward function for the
contextual bandit from Equation 1. The default parameter
(µ = 0.1) is set so that no referral without an incentive offer
is slightly worse than a referral under an incentive offer,
but can be tweaked. Figure 5 (right panel) shows how the
efficiency of CoBBI changes as we change this parameter:
higher µ leads to higher efficiency and lower number of peo-
ple reached, and vice-versa for lower µ. This effect is consis-
tent for different strengths of the response function, ranging
from η = {−0.9,−0.5,−0.1, 0.1, 0.5, 0.9}. Interestingly, we
find a similar tradeoff in other baseline policies, such as Ran-
domPay, which can be parameterized by the probability of
offering an incentive. When we change this probability from
its default of 0.5 to a lower value (Figure 5, left panel), we
see that its efficiency increases.

To summarize, we learned that CoBBI ismore cost-effective
than other baseline approaches under a wide set of propa-
gation probability configurations and response functions.
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Figure 5: Impact of CoBBI’s reward (cost) parameter µ on
the tradeoff between increasing reach and minimizing the
amount paid, for the Random-Prob configuration.

Moreover, a key advantage of CoBBI is that it is able to adapt
its payout to different response settings, as we saw for the de-
creasing and idiosyncratic response functions where policies
such as RandomPay reach fewer number of people. While
we saw that some baselines can reach more people in the
Friends-Prob configuration, CoBBI still achieves a higher cost
efficiency; its tradeoff can be tuned in practice by changing
the reward function.

7 DISCUSSION & FUTUREWORK
Even as referral programs have become increasingly popular
for spreading information, prior models for influence maxi-
mization do not consider heterogeneity in people’s response
to incentives and partial knowledge about the structure of so-
cial networks. Therefore, we introduced the Influence-Aware
Influence Maximization (IAIM) problem that captures these
realities and presented a contextual bandit-based algorithm
for finding an optimal incentive payout scheme.

While wemodeled our solution to be faithful to constraints
in a real-world referral program, there are limitations to our
work. First, we assumed that a person’s response to incen-
tives depends only on the most recent incentive offer which
ignores the effect of past incentives. Second, properties of
successive referrals depend upon each other and thus the
referral contexts received by CoBBI are not i.i.d., thereby
violating the conditions for algorithmic guarantees for con-
textual bandits. Consideringmore stateful response functions
and algorithms, and doing field experiments with referral
programs will be useful future work.

ACKNOWLEDGMENTS
We thankWilliamThies for providing access to the Learn2Earn
data and for his guidance throughout this work. We also
thank Colin Scott and Devansh Mehta for their inputs.



Optimizing Peer Referrals COMPASS ’19, July 3–5, 2019, Accra, Ghana

REFERENCES
[1] Frances E Aboud and Daisy R Singla. 2012. Challenges to changing

health behaviours in developing countries: a critical overview. Social
science & medicine 75, 4 (2012), 589–594.

[2] Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li,
and Robert Schapire. 2014. Taming the monster: A fast and simple al-
gorithm for contextual bandits. In International Conference on Machine
Learning. 1638–1646.

[3] Ashwinkumar Badanidiyuru, John Langford, and Aleksandrs Slivkins.
2014. Resourceful contextual bandits. In Conference on Learning Theory.
1109–1134.

[4] Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan
Lucier. 2014. Maximizing Social Influence in Nearly Optimal Time.
In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA ’14). SIAM, 946–957.

[5] Francis A Buttle. 1998. Word of mouth: understanding and managing
referral marketing. Journal of strategic marketing 6, 3 (1998), 241–254.

[6] Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. 2011. Contextual
bandits with linear payoff functions. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics.

[7] Jean-Philippe Cointet and Camille Roth. 2007. How Realistic Should
Knowledge Diffusion Models Be? Journal of Artificial Societies and
Social Simulation 10, 3 (2007), 5.

[8] Dean Eckles, Brian Karrer, and Johan Ugander. 2017. Design and
analysis of experiments in networks: Reducing bias from interference.
Journal of Causal Inference 5, 1 (2017).

[9] Amaya M Gillespie, Rafael Obregon, Rania El Asawi, Catherine Richey,
Erma Manoncourt, Kshiitij Joshi, Savita Naqvi, Ade Pouye, Naqibullah
Safi, Ketan Chitnis, et al. 2016. Social mobilization and community
engagement Central to the Ebola Response in West Africa: lessons for
future public health emergencies. Global Health: Science and Practice
4, 4 (2016), 626–646.

[10] Daniel Golovin and Andreas Krause. 2011. Adaptive Submodularity:
Theory and Applications in Active Learning and Stochastic Optimiza-
tion. Journal of Artificial Intelligence Research 42 (2011), 427–486.

[11] Sonya Grier and Carol A Bryant. 2005. Social marketing in public
health. Annu. Rev. Public Health 26 (2005), 319–339.

[12] Tianran Hu, Eric Bigelow, Jiebo Luo, and Henry Kautz. 2017. Tales of
Two Cities: Using Social Media to Understand Idiosyncratic Lifestyles
in Distinctive Metropolitan Areas. IEEE Transactions on Big Data 3, 1
(2017), 55–66.

[13] Daniel Kahneman, Jack L Knetsch, and Richard H Thaler. 1991. Anom-
alies: The endowment effect, loss aversion, and status quo bias. Journal
of Economic perspectives 5, 1 (1991), 193–206.

[14] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the
spread of influence through a social network. In Proceedings of the
ninth ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM, 137–146.

[15] David AKim, Alison RHwong, Derek Stafford, DAlexHughes, A James
O’Malley, James H Fowler, and Nicholas A Christakis. 2015. Social
network targeting to maximise population behaviour change: a cluster
randomised controlled trial. The Lancet 386, 9989 (2015), 145–153.

[16] Levente Kocsis and Csaba Szepesvári. 2006. Bandit based Monte-Carlo
Planning. In Machine Learning: ECML 2006. Springer, 282–293.

[17] Laura J Kornish and Qiuping Li. 2010. Optimal referral bonuses with
asymmetric information: Firm-offered and interpersonal incentives.
Marketing Science 29, 1 (2010), 108–121.

[18] Gabriel E Kreindler and H Peyton Young. 2014. Rapid innovation
diffusion in social networks. Proceedings of the National Academy of
Sciences 111, Supplement 3 (2014), 10881–10888.

[19] John Langford and Tong Zhang. 2008. The epoch-greedy algorithm
for multi-armed bandits with side information. In Advances in neural
information processing systems. 817–824.

[20] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. 2010. A
contextual-bandit approach to personalized news article recommenda-
tion. In Proceedings of the 19th international conference on World wide
web. ACM, 661–670.

[21] Ilan Lobel, Evan Sadler, and Lav R Varshney. 2016. Customer referral
incentives and social media. Management Science (2016).

[22] Victor Naroditskiy, Sebastian Stein, Mirco Tonin, Long Tran-Thanh,
Michael Vlassopoulos, and Nicholas R Jennings. 2014. Referral incen-
tives in crowdfunding. In Second AAAI Conference on Human Compu-
tation and Crowdsourcing.

[23] United Nations OCHA. 2014. Ebola virus disease outbreak: overview
of needs and requirements. UN (2014). https://www.unocha.org/sites/
dms/CAP/Ebola_outbreak_Sep_2014.pdf

[24] Galen Pickard, Wei Pan, Iyad Rahwan, Manuel Cebrian, Riley Crane,
Anmol Madan, and Alex Pentland. 2011. Time-critical social mobiliza-
tion. Science 334, 6055 (2011), 509–512.

[25] Lijing Qin, Shouyuan Chen, and Xiaoyan Zhu. 2014. Contextual com-
binatorial bandit and its application on diversified online recommen-
dation. In Proceedings of the 2014 SIAM International Conference on
Data Mining. SIAM, 461–469.

[26] Alvin E Roth. 2008. What have we learned from market design?
Innovations: Technology, Governance, Globalization 3, 1 (2008).

[27] Gangseog Ryu and Lawrence Feick. 2007. A penny for your thoughts:
Referral reward programs and referral likelihood. Journal of Marketing
71, 1 (2007), 84–94.

[28] Philipp Schmitt, Bernd Skiera, and Christophe Van den Bulte. 2011.
Referral programs and customer value. Journal of Marketing 75, 1
(2011).

[29] Yaron Singer. 2012. How towin friends and influence people, truthfully:
influence maximization mechanisms for social networks. In Proceed-
ings of the fifth ACM international conference on Web search and data
mining. ACM, 733–742.

[30] Saiganesh Swaminathan, Indrani Medhi Thies, Devansh Mehta, Ed-
ward Cutrell, Amit Sharma, and William Thies. 2019. Learn2Earn: Us-
ing Mobile Airtime Incentives to Bolster Public Awareness Campaigns.
Technical Report (2019). http://billthies.net/learn2earn-paper.pdf

[31] Youze Tang, Xiaokui Xiao, and Yanchen Shi. 2014. Influence maxi-
mization: Near-Optimal Time Complexity meets Practical Efficiency.
In Proceedings of the 2014 ACM SIGMOD international conference on
Management of data. ACM, 75–86.

[32] Guangmo Tong,WeiliWu, Shaojie Tang, andDing-ZhuDu. 2017. Adap-
tive influence maximization in dynamic social networks. IEEE/ACM
Transactions on Networking (TON) 25, 1 (2017), 112–125.

[33] Aditya Vashistha, Edward Cutrell, and William Thies. 2015. Increasing
the reach of snowball sampling: The impact of fixed versus lottery
incentives. In Proceedings of the 18th ACM Conference on Computer
Supported Cooperative Work & Social Computing. ACM, 1359–1363.

[34] Joannes Vermorel and Mehryar Mohri. 2005. Multi-armed bandit algo-
rithms and empirical evaluation. In European conference on machine
learning. Springer, 437–448.

[35] Amulya Yadav, Hau Chan, Albert Xin Jiang, Haifeng Xu, Eric Rice, and
Milind Tambe. 2016. Using social networks to aid homeless shelters:
Dynamic influence maximization under uncertainty. In Proceedings of
the 2016 International Conference on Autonomous Agents & Multiagent
Systems. 740–748.

[36] A Yadav, L Marcolino, E Rice, R Petering, H Winetrobe, H Rhoades, M
Tambe, and H Carmichael. 2015. Preventing HIV Spread in Homeless
Populations Using PSINET. In Proceedings of the Twenty-Seventh Con-
ference on Innovative Applications of Artificial Intelligence (IAAI-15).

https://www.unocha.org/sites/dms/CAP/Ebola_outbreak_Sep_2014.pdf
https://www.unocha.org/sites/dms/CAP/Ebola_outbreak_Sep_2014.pdf
http://billthies.net/learn2earn-paper.pdf


COMPASS ’19, July 3–5, 2019, Accra, Ghana Ramaravind Kommiya Mothilal, Amulya Yadav, and Amit Sharma

[37] Amulya Yadav, Bryan Wilder, Eric Rice, Robin Petering, Jaih Craddock,
Amanda Yoshioka-Maxwell, Mary Hemler, Laura Onasch-Vera, Milind
Tambe, and Darlene Woo. 2017. Influence maximization in the field:
The arduous journey from emerging to deployed application. In Pro-
ceedings of the 16th Conference on Autonomous Agents and MultiAgent
Systems. 150–158.

[38] Qiuling Yan, Shaosong Guo, and Dongqing Yang. 2011. Influence
Maximizing and Local Influenced Community Detection based on

Multiple Spread Model. In Advanced Data Mining and Applications.
Springer, 82–95.

[39] Dan Zhou and Zhong Yao. 2015. Optimal Referral Reward Considering
Customer’s Budget Constraint. Future Internet 7, 4 (2015), 516–529.

[40] Honglei Zhuang, Yihan Sun, Jie Tang, Jialin Zhang, and Xiaoming Sun.
2013. Influence maximization in dynamic social networks. In Data
Mining (ICDM), 2013 IEEE 13th International Conference on. IEEE.


	Abstract
	1 Introduction
	2 Related Work
	3 Background and Problem Formulation
	Problem Definition
	Considerations for Incentive Design

	4 CoBBI: Contextual Bandit Optimizer
	Contextual Bandits
	CoBBI

	5 Evaluation Setup
	Configurations: Social influence model
	Configurations: People's response functions
	Policies: Baseline methods
	Context Feature Specification for CoBBI
	Evaluation Metrics

	6 Simulation Results
	CoBBI obtains high efficiency 
	Sensitivity to people's response functions
	Impact of the CoBBI's reward function

	7 Discussion & Future Work
	Acknowledgments
	References

