
Fast Approximation of Empirical Entropy via Subsampling
Chi Wang

wang.chi@microsoft.com

Microsoft Research

Redmond, Washington

Bailu Ding

badin@microsoft.com

Microsoft Research

Redmond, Washington

ABSTRACT
Empirical entropy refers to the information entropy calculated from

the empirical distribution of a dataset. It is a widely used aggrega-

tion function for knowledge discovery, as well as the foundation of

other aggregation functions such as mutual information. However,

computing the exact empirical entropy on a large-scale dataset

can be expensive. Using a random subsample, we can compute an

approximation of the empirical entropy efficiently. We derive proba-

bilistic error bounds for the approximation, where the error bounds

reduce in a near square root rate with respect to the subsample

size. We further study two applications which can benefit from the

error-bounded approximation: feature ranking and filtering based

on mutual information. We develop algorithms to progressively

subsample the dataset and return correct answers with high proba-

bility. The sample complexity of the algorithms is independent of

data size. The empirical evaluation of our algorithms on large-scale

real-world datasets demonstrates up to three orders of magnitude

speedup over exact methods with almost no error.

ACM Reference Format:
Chi Wang and Bailu Ding. 2019. Fast Approximation of Empirical Entropy

via Subsampling. In The 25th ACM SIGKDD Conference on Knowledge Discov-
ery and Data Mining (KDD ’19), August 4–8, 2019, Anchorage, AK, USA. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3292500.3330938

1 INTRODUCTION
Data scientists often query a large dataset for an aggregated answer

during data exploration. As the data volume has been growing

rapidly in the past decade, computing such an aggregated answer

over large-scale datasets can be expensive. Subsampling is an attrac-

tive technique to speed up aggregation queries over Big Data [7].

Instead of computing an exact answer using the full data, which

is slow and expensive, using subsampling can provide an approx-

imate and fast answer with a random subset of the data. A slew

of new data exploration algorithms and systems in the Big Data

era [21, 32, 38, 40] show that subsampling can be used to sharply re-

duce the processing cost while maintaining guarantees on accuracy

using theoretical error bound analysis.

In this work, we study the case of approximating a new aggrega-

tion function that is prevalent in data mining: empirical entropy.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’19, August 4–8, 2019, Anchorage, AK, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6201-6/19/08. . . $15.00

https://doi.org/10.1145/3292500.3330938

Information entropy for a discrete random variable X with probabil-

ity mass function P(X) is defined as H (X) = E[− log P(X)]. When

calculating the entropy from a large dataset, the most typical ap-

proach is to use the empirical distribution of X . We refer to the

entropy calculated with this approach as empirical entropy. Empiri-

cal entropy is used in a wide variety of knowledge discovery tasks.

For example, Entropy/IP [12] computes empirical entropy of each

bit in 3.5 billion IPv6 addresses to discover Internet address struc-

ture. Decision tree learning heavily relies on entropy-based splitting

criterion evaluation [3, 30]. In addition, entropy-based aggregation

functions such as mutual information have also been used as cri-

teria for feature selection and feature transformation [20, 24, 28],

objectives of clustering [4], and test criteria for graphical model

structure learning [6].

Given a large dataset D, computing the exact empirical entropy

HD is expensive. Fortunately, for many downstream tasks in data

exploration, an error-bounded approximation of empirical entropy

is often sufficient. For example, if the downstream task needs to

compare the empirical mutual information of two variables with

a threshold [20], we can compute the lower bound and the upper

bound of the empirical mutual information based on the error-

bounded approximation of empirical entropy, and it is sufficient

to know if the lower bound is above the threshold or the upper

bound is below the threshold. To compare two empirical mutual

information values, it is sufficient to know if the lower bound of

one of them is higher than the upper bound of the other.

We aim to analytically bound the difference between HD and

the empirical entropy HS calculated from a random subset S of

D, without actually computing HD . The error bounds reduce as

the size of the subsample increases. Note that our goal is different

from the long existing effort of information entropy estimation, i.e.,
using D to estimate the true entropy of an underlying distribution,

assuming that D consists of independent samples generated from

that distribution [1, 19, 26, 27, 35, 36, 39]. Their primary focus is to

address the scarcity of observations and unbounded support size,

and their method is not applicable to our problem as we consider

subsampling from a finite datasetD, regardless of howD is obtained.

See Section 6 for more discussion about related work.

In this work, we make the following contributions:

•We derive probabilistic bounds for empirical entropy based on

approximation using a random subsample, where the probabilistic

bounds for the approximation error reduce in a near square root

rate with respect to the subsample size. (Section 3)

•We study two representative applications that benefit from the

error-bounded approximation of empirical entropy: feature ranking

and filtering queries based on mutual information. We develop

algorithms to progressively sample data and return correct answers

with high probability based on the error bounds. We further prove

that their sample complexity is independent of data size. (Section 4)

https://doi.org/10.1145/3292500.3330938
https://doi.org/10.1145/3292500.3330938

•We empirically evaluate our algorithms with large-scale real-

world datasets. Our methods achieve up to 1000× speedup over

exact methods with almost no error. (Section 5)

2 PRELIMINARIES
In this section, we first give an overview of empirical entropy and

entropy-based aggregation functions, including mutual informa-

tion, conditional entropy, variation of information, and conditional

mutual information. We then introduce a specific concentration

inequality in our problem context, which will be used to develop

theoretical results in Section 3.

2.1 Entropy for a Single Variable
Consider a sequence D of N elements, corresponding to the ob-

servations of a random discrete variable X . X takes integer values

from 1 to c , or we say the support of X is [c]. Let ni be the number

of elements in D with value i ∈ [c]. We have N =
∑c
i=1 ni . The

empirical entropy HD (X) is defined as:

HD (X) = −
c∑
i=1

ni
N

log

ni
N

(1)

Let S be a random subsample of D of sizeM . Letmi be the number

of elements in S with value i ∈ [c]. We have M =
∑c
i=1mi . The

empirical entropyHS (X) over the subsample S is:

HS (X) = −
c∑
i=1

mi
M

log

mi
M

(2)

Our goal is to useHS (X) to approximateHD (X). In the following

sections, we will omit the random variable X when there is no

ambiguity.

2.2 Multivariate Entropy-based Aggregations
Th definition of empirical entropy can be generalized to multiple

discrete variables. For example, for two discrete variables X1 and

X2, with support [c1] and [c2] respectively, D is a sequence of N
pairs of observed values for these two variables. We denote the

number of pairs in D with value i for X1 and value j for X2 as

ni, j , and N =
∑c1
i=1

∑c2
j=1 ni, j . The empirical entropy HD (X1,X2)

is defined as:

HD (X1,X2) = −

c1∑
i=1

c2∑
j=1

ni, j

N
log

ni, j

N
(3)

With multivariate empirical entropy, we can define a number of

entropy-based aggregation functions. The empirical mutual infor-
mation of two variables ID (X1,X2) is defined as:

ID (X1,X2) = HD (X1) +HD (X2) − HD (X1,X2) (4)

The empirical conditional entropy of X2 given X1 is defined as:

HD (X2 |X1) = HD (X1,X2) − HD (X1) (5)

The empirical variation of information betweenX1 andX2 is defined

as:

VID (X1,X2) = HD (X1) +HD (X2) − 2ID (X1,X2) (6)

The empirical conditional mutual information of X1 and X2 given

X3 is defined as:

ID (X1,X2 |X3) = HD (X1 |X3) +HD (X2 |X3) − HD (X1,X2 |X3) (7)

2.3 Concentration Inequality
Hoeffding’s inequality [16] and McDiarmid’s inequality [25] are

two common concentration inequalities used in probabilistic bound

analysis. Since the entropy function cannot be expressed as a mean

of samples, Hoeffding’s inequality does not apply. Since we con-

sider sampling from a finite population D without replacement,

McDiarmid’s inequality is neither applicable. The main theoretical

gadget we employ in this work is a concentration inequality de-

veloped by El-Yaniv and Pechyony [11] for a transductive learning

problem. Part of our contribution is to identify the applicability of

this concentration inequality to empirical entropy approximation.

We restate the inequality for our problem context, which will be

used to derive the probabilistic error bounds of our approximation.

A random subsample S of sizeM can be obtained in the following

process. First, we shuffle the sequence D randomly. Second, we

take the firstM elements from the shuffled sequence. We index all

the elements in D from 1 to N . The shuffling process corresponds

to a permutation of integers 1 to N (denoted as IN
1
). We define

Z ≜ (Z j)Nj=1 as the random permutation vector where the variable

Z j ∈ [N] indicates the index of the j-th element in the shuffled

sequence. The subsample S(Z) consists of the M elements from

D with indices {Z j }
M
j=1. Now we can define a function f on the

permutations IN
1

as:

f (Z) = f (Z1, . . . ,ZN) = HS (Z)(X) (8)

Let Zi j be a perturbed permutation vector obtained by exchang-

ing Zi and Z j in Z. From Eq. (2), we know that f is symmetric

on Z1, . . . ,ZM as well as ZM+1, . . . ,ZN . Such a function is called

(M,N −M) symmetric permutation function.

Let κ(M,N) = (N − M)2
∑N
j=N−M+1

1

j2 . It can be verified that

κ(M,N) < M (N−M)
N < M . The following lemma is a restatement of

Lemma 2 in [11].

Lemma 2.1. Let Z be a random permutation vector. Let f (Z) be
an (M,N −M)-symmetric permutation function satisfying | f (Z) −
f (Zi j)| ≤ β for all i ∈ IM

1
, j ∈ INM+1. Then

PZ{ f (Z) − EZ[f (Z)] ≥ ϵ} ≤ exp

(
−

ϵ2

2β2κ(M,N)

)
(9)

3 THEORETICAL BOUNDS
Given a random subsample S ⊂ D, |S | = M , we aim to bound the

value of HD (X) with high probability. For a given significance

threshold α ∈ (0, 0.5), we would like to computeHα andHα from

S , such that with probability at least 1 − 2α ,HD (X) ∈ [Hα ,Hα].

The bounds are probabilistic, and [Hα ,Hα] is a confidence inter-
val for HD (X). The confidence intervals of other entropy-based
aggregation functions can be defined similarly.

3.1 Entropy
Theorem 3.1. Given α ∈ (0, 1), with probability at least 1 − α ,

HD ≥ Hα ≜ HS −

√
8(N −M) log 1

α
MN

logM

Given α ∈ (0, 1), with probability at least 1 − α ,

HD ≤ Hα ≜ HS +

√
8(N −M) log 1

α
MN

logM

+ log

(
1 +
(c − 1)(N −M)

M(N − 1)

)
Given α ∈ (0, 0.5), with probability at least 1− 2α ,HD ∈ [Hα ,Hα].

Proof. Our proof makes use of Eq. (9) in Lemma 2.1. Following

Section 2.3, f (Z) = HS (Z) is a (M,N −M) symmetric permutation

function. We first notice that

EZ[f (Z)] = ES [HS]

PZ{ f (Z) − EZ[f (Z)] ≥ ϵ} = PS {HS − ES [HS] ≥ ϵ}
(10)

To apply Eq. (9), we show that | f (Z) − f (Zi j)| can be bounded by

2 logM
M . Without loss of generality, we assume that the i-th element

in D has value 1 and the j-th element in D has value 2. We have

| f (Z) − f (Zi j)| =
���m1

M
log

m1

M
+
m2

M
log

m2

M

−
m1 − 1

M
log

m1 − 1

M
−
m2 + 1

M
log

m2 + 1

M

����
=
1

M
|m1 logm1 +m2 logm2

−(m1 − 1) log(m1 − 1) − (m2 + 1) log(m2 + 1)|

(11)

Let

∆(m1,m2)≜m1 logm1 +m2 logm2

−(m1 − 1) log(m1 − 1) − (m2 + 1) log(m2 + 1)
(12)

∆ is monotonically increasing withm1 and decreasing withm2. So

| f (Z) − f (Zi j)|≤
1

M
max{∆(1,M − 1),∆(M, 0)}

= log
M

M − 1
+
log(M − 1)

M
<

2 logM

M

(13)

Applying Eq. (9) and (10), we have

PS {HS − ES [HS] ≥ ϵ} ≤ exp

(
−

ϵ2M2

8 log
2Mκ(M,N)

)
(14)

The above process can be repeated for −f (Z) = −HS (Z), which
yields:

PS {ES [HS] − HS ≥ ϵ} ≤ exp

(
−

ϵ2M2

8κ(M,N) log2M

)
(15)

To bound HD , we now compute the difference between ES [HS]

andHD . For convenience, we denote pi =mi/M,qi = ni/N . In our

case,mi is the number of value i in sample S , where S is a random

subsample of D. We can characterize mi using a hypergeometric
distribution. Hypergeometric distribution describes the probability

of seeingmi elements with value i inM draws, from a finite popula-

tion of size N that contains ni elements with value i . The variance

ofmi is
Mni (N−ni)(N−M)

N 2(N−1) , and the expectation ofmi is
Mni
N . We

have ES (pi) = qi ,∀i ∈ [c].

HD − ES [HS] = ES

[c∑
i=1
(pi logpi − qi logqi)

]
=ES

[c∑
i=1
(pi logpi − pi logqi + pi logqi − qi logqi)

]
=ES

[c∑
i=1
(pi log

pi
qi
+ (pi − qi) logqi)

]
= ES [dKL(p, q)]

(16)

where dKL refers to the Kullback-Leibler divergence. From Gibbs

and Su [14], we know:

0 ≤ dKL(p, q) ≤ log

(
1 +

M∑
i=1

(pi − qi)
2

qi

)
Taking expectation over it and using Jensen’s inequality [18], we

have:

0 ≤ ES [dKL(p, q)] ≤ ES

[
log

(
1 +

c∑
i=1

(pi − qi)
2

qi

)]
≤ log

(
1 + ES

[c∑
i=1

(pi − qi)
2

qi

])
= log

(
1 +

c∑
i=1

(
E

[
m2

i
M2qi

]
− 2E[pi] + qi

))
= log

(
1 +

c∑
i=1

Var [mi] + E[mi]
2

M2qi
− 1

)
= log

(c∑
i=1
(
(1 − qi)(N −M)

(N − 1)M
+ qi)

)
= log

(
1 +
(c − 1)(N −M)

M(N − 1)

)
≜ b

(17)

Combining Eq. (14)-(17), we have:

PS {HD ≤ HS − ϵ} ≤ exp

(
−

ϵ2M2

8κ(M,N) log2M

)
(18)

PS {HD ≥ HS + ϵ + b} ≤ exp

(
−

ϵ2M2

8κ(M,N) log2M

)
(19)

Setting α = exp

(
− ϵ 2M2

8κ(M,N) log2 M

)
, we have

ϵ =
logM

M

√
−8κ(M,N) logα <

√
8(N −M) log 1

α
MN

logM (20)

Therefore, with probability at least 1 − α ,

HD ≥ HS −

√
8(N −M) log 1

α
MN

logM

Similarly, with probability at least 1 − α ,

HD ≤ HS +

√
8(N −M) log 1

α
MN

logM + log

(
1 +
(c − 1)(N −M)

M(N − 1)

)
By union bound, with probability at least 1 − 2α ,HD ∈ [Hα ,Hα].

□

Discussion. From the theorem, we see that the lower bound de-

pends on α ,N ,M , and the upper bound depends on α ,N ,M and c .
When α ,N and c are fixed, the probabilistic error bounds on both

sides,HD −Hα andHα −HD , decrease in a near square root rate,

O(M−1/2 logM). The tightness of these bounds is an open question.

3.2 Entropy-based Aggregations
Our probabilistic bounds can be easily generalized to other entropy-

based aggregations. Based on the definition of mutual information

in Eq. (4), the bounds for ID (X1,X2) can be simply derived from

union bound:

Iα (X1,X2) = Hα/3(X1) +Hα/3(X2) − Hα/3(X1,X2)

Iα (X1,X2) = Hα/3(X1) +Hα/3(X2) − Hα/3(X1,X2)
(21)

for all α ∈ (0, 1).
Likewise, we have the following bounds for conditional entropy,

variation of information, and conditional mutual information.

Hα (X2 |X1) = Hα/2(X1,X2) − Hα/2(X1)

Hα (X2 |X1) = Hα/2(X1,X2) − Hα/2(X1)

VIα (X1,X2) = Hα/2(X1,X2) − Iα/2(X1,X2)

VIα (X1,X2) = Hα/2(X1,X2) − Iα/2(X1,X2)

Iα (X1,X2 |X3) = Hα/3(X1 |X3) +Hα/3(X2 |X3) − Hα/3(X1,X2 |X3)

Iα (X1,X2 |X3) = Hα/3(X1 |X3) +Hα/3(X2 |X3) − Hα/3(X1,X2 |X3)

4 APPLICATION
Empirical entropy-based aggregation functions are commonly used

as information-theoretic criteria formeasuring feature’s importance

in a variety of applications. For example, mutual information can be

used to measure the relevance of a feature with respect to a target

column for prediction [23]. As another example, mutual information

can also be used to evaluate information gain when adding a feature

as a data split criterion for decision tree learning [30]. In addition,

conditional mutual information is used to measure the redundancy

between features [5]. We observe that, in these applications, the

empirical entropy is used to answer the following primitive queries:

• Ranking. Find the highest entropy-based aggregation score

among a set of scores. For example, in sequential forward feature

selection [37] and decision tree learning [3], an algorithm needs to

repeatedly query which feature has the highest score. Each query

is evaluated on different conditions or subsets. A generalization is

to find top-K scores as used in [20].

• Filtering. Determine whether an entropy-based aggregation

score is above or below a threshold, such that the corresponding

feature can be selected or filtered. For example, Kaul et al. [20] uses

this primitive to preprocess the features and decide which features

are promising for deriving engineered features. The engineered

features are then filtered again based on their mutual information.

To answer both queries exactly, it requires computing all the

scores to rank or filter. To reduce the cost, we can use the approxi-

mation with bounded error to answer the queries while ensuring

the correctness of the answers with high probability.

Next, we will describe two algorithms to answer ranking and

filtering queries respectively, and analyze their theoretical guaran-

tees.

4.1 Ranking
Consider a query asking for the top K scores among C entropy-

based aggregation scores. Without loss of generality, assume each

score is empirical mutual information computed from N pairs of ob-

servations. We denote the C mutual information scores as {Ia }
C
a=1.

The ranking problem is formulated as the following: Given a pos-

itive integer K , return the top-K indices A∗ ⊂ [C], such that

∀a ∈ A∗,∀a′ ∈ [C] \ A∗, Ia ≥ Ia′ .
For each a ∈ [C], computing the exact score Ia requires scanning

N pairs of observations and collecting a count matrix {ni, j } (ref.
Eq. (4)). The exact computation of all the scores requires O(NC) cost.
To reduce the cost and answer the top-K querywith high confidence,

we can leverage subsample-based approximation to differentiate the

top-K from the rest of the scores. If the minimal lower confidence

bound of K scores is higher than the maximal upper confidence

bound of the rest of the scores, we can answer the query with

high confidence. Based on the theoretical results in Section 3, the

larger is the size of the subsample used to approximate a score, the

narrower is the confidence interval for that score. In the meantime,

large subsample size incurs high computational cost, which is what

we aim to avoid in the beginning. So it is most desirable to use

as small subsample size as possible, as long as the top-K scores

can be differentiated from the rest with high probability. Since

such minimal sufficient subsample size is unknown a priori, we
progressively sample the data until the confidence of identifying

top-K is sufficiently high.

We present our fast ranking algorithmEntropyRank (Algorithm 1),

leveraging the confidence intervals derived in Section 3. For each

a ∈ [C], we partition all the N pairs of observations required to

compute Ia into (B + 1) random batches, such that the first batch

is small, and the remaining B batches are of the same size. We use

M(a,x) to represent the count matrix {mi, j } collected from batch

x ,x ∈ [B + 1]. Each batch is a random subsample. For a batch of

sizeM , {mi, j/M} is an approximation of {ni, j/N }.

Let [Ia ,Ia] be the confidence interval for a fixed α . We define

Ĩa (A) =

{
Ia a < A

Ia a ∈ A

That is, Ĩa takes the lower bound if a is in A, and upper bound

otherwise.

EntropyRank starts by loading the first batch and computing

the count matrix M[a] ← M(a, 1) for each a ∈ [C] (line 2). Since
the size of the first batch is small, it is fast to computeM(a, 1). In
each following iteration, it selects an index a∗ to load one more

batch of data (line 5-7). At each iteration, A is the current top-

K indices based on the center of the confidence intervals of each

score (line 5). It is not certain that A is the true top-K , but we
know that the true score for a ∈ [C] falls into the confidence

interval [Ia ,Ia] with high probability. A ′ represents the top-K
indices that can potentially become true top-K . Consider a very
unlucky case: We had overestimated the score for all the indices in

A, and underestimated the score for all the other indices. ThenA ′

Algorithm 1: EntropyRank
Input: K
Output: Top-K indicies A ⊂ [C]

1 for a ∈ [C] do
2 M[a] ← M(a,xa ← 1);

3 Estimate [Ia ,Ia];

4 repeat
5 A ← top-K indices ranked by I + I;

6 A ′ ← top-K indices ranked by Ĩ(A);

7 a∗ ← argmaxa∈A⊕A′(Ia − Ia);

8 xa∗ ← xa∗ + 1;

9 M[a] ← M[a] +M(a∗,xa∗);

10 Update [Ia∗ ,Ia∗];

11 until A = A ′;
12 return A

represents the alternative potential top-K indices (line 6). A ⊕ A ′

(i.e., A ∪A ′ \ (A ∩ A ′)) represents the competing indices, some

of which can be included in A∗ but not all. Among the competing

indices, the algorithm chooses the one with the longest confidence

interval to increase its sample size (line 7). With the additional batch

of data, it updates the count matrixM[a∗] as well as the confidence
interval for a∗ (line 8-10). The algorithm terminates whenA = A ′,

i.e., there is no index in [C] \ A with an upper bound that is higher

than any of the lower bounds of the indices in A (line 11). Finally,

we return A as the top-K indices.

4.2 Filtering
The filtering query follows a similar setup as the ranking query,

except that the goal is to find all the indices with scores above

a threshold. Again using mutual information as an example, the

filtering query is formalized as the following: Given a threshold

η ∈ R, return the indices B∗ ⊂ [C], such that ∀a ∈ B∗,Ia ≥ η, and
∀a′ ∈ [C] \ B∗, Ia′ < η. We aim to answer this query with high

probability of correctness, using subsample-based approximation.

Like the case of ranking, we cannot predetermine the minimal

sample size needed for each a ∈ [C], as the difference between

Ia and η is unknown. We present a progressive subsampling algo-

rithm EntropyFilter, leveraging the confidence intervals derived in

Section 3.

EntropyFilter (Algorithm 2) progressively loads the batches to

approximate each score and determine whether it is below or above

the threshold. If η is below or equal to the current lower bound

of Ia , we have high confidence that Ia can pass the filter (line

9). Likewise, if η is above the current upper bound, we have high

confidence that Ia cannot pass the filter. If neither is true, i.e., η is

contained by the current confidence interval (line 5), the algorithm

samples more data to narrow the confidence interval (line 6-8).

4.3 Analysis
The cost of EntropyRank and EntropyFilter are determined by the

number of batches xa used for each a ∈ [C] when the algorithms

terminate. Let X =
∑C
a=1 xa . The total cost is O(

XN
B). In the worst

Algorithm 2: EntropyFilter
Input: η
Output: Indicies B ⊂ [C] which pass the filter

1 B ← ∅;

2 for a ∈ [C] do
3 M[a] ← M(a,xa ← 1);

4 Estimate [Ia ,Ia];

5 while η ∈ (Ia ,Ia] do
6 xa ← xa + 1;

7 M[a] ← M[a] +M(a,xa);

8 Update [Ia ,Ia];

9 if η ≤ Ia then
10 B ← B ∪ {a}

11 return B

case, all the batches are used for each a ∈ [C], i.e., X = BC , and the

total cost is O(CN).
We prove probabilistic upper bounds of the total cost for the two

algorithms. For simplicity of the analysis, we assume the size of

each batch is a constant much smaller than N .

EntropyRank. We show that the sample size required by each

score is related to the gap between the score and the top-K boundary.

We define:

∆a≜

{
Ia − I[K+1] a ∈ A∗

I[K] − Ia a < A∗
(22)

where I[K] is the K-th largest score. So I[K] and I[K+1] are the

boundaries of the top-K : the indices with score above I[K+1] are

top-K and these with the scores below I[K] are not. Intuitively, the

smaller the gap ∆a is, the harder it is to decide whether a is in A∗.

Theorem 4.1. With probability at least 1 − 2αC , EntropyRank
returns the correct top-K set A∗. With probability at least 1 − 2αBC ,
the total cost O(XN

B) = O(logα−1
∑C
a=1 ∆

−2
a log

2 ∆a).

Proof. The correctness guarantee can be easily proved by union

bound. We focus on proving the upper bound of the cost. During

each iteration, Pr {Ia ≤ Ia ≤ Ia } ≥ 1 − 2α . By union bound, all

the true scores fall into all the corresponding confidence intervals

ever created with probability at least 1 − 2αBC . In the rest of the

proof, we assume that event happens. Under this assumption, the

termination condition A = A ′ ensures that the returned A is the

true top-K indices A∗.

We prove by contradiction thatIa∗−Ia∗ ≥
∆a∗
2

in every iteration.

Assume Ia∗ − Ia∗ <
∆a∗
2
. We discuss the following 4 cases:

(1) a∗ ∈ A∗,a∗ ∈ A \ A ′. ∆a∗ = Ia∗ − I[K+1]. Since A
′ , A∗,

there exists a ∈ A ′ \ A∗. If a ∈ A, Ia ≥ Ia ≥ Ia∗ ≥ Ia∗ − (Ia∗ −

Ia∗) > I[K+1]. If a < A, Ia ≥ Ia − (Ia − Ia) ≥ Ia∗ − (Ia∗ − Ia∗) >

I[K+1]. Both imply a ∈ A∗ as a contradiction.
(2) a∗ ∈ A∗,a∗ ∈ A ′ \ A. ∆a∗ = Ia∗ − I[K+1]. Since A , A

∗
,

there exists a ∈ A \ A∗. If a < A ′, Ia ≥ Ia ≥ Ia∗ ≥ Ia∗ − (Ia∗ −

Ia∗) > I[K+1] which is a contradiction. If a ∈ A ′, we know that

A ′ , A∗, so there exists a′ ∈ A∗ \A ′. If a′ ∈ A, Ia ≥ Ia ≥ Ia′ ≥

Ia∗ > I[K+1] which is a contradiction. If a′ < A, Ia ≥ Ia ≥ Ia′ ≥

Ia′ . Then it implies a ∈ A∗, which is a contradiction.

(3) a∗ < A∗,a∗ ∈ A\A ′. ∆a∗ = I[K]−Ia∗ . SinceA
∗ , A, there

exists a ∈ A∗ \ A. If a ∈ A ′, Ia ≤ Ia ≤ Ia∗ ≤ Ia∗ + (Ia∗ − Ia∗) <

I[K] which is a contradiction. If a < A ′, since A ′ , TrueTopK ,

there exists a′ ∈ A ′ \ A∗. If a′ < A, Ia ≤ Ia ≤ Ia′ ≤ Ia∗ < I[K]

which is a contradiction. If a′ ∈ A, Ia ≤ Ia ≤ Ia′ ≤ Ia′ . Then it

implies a < A∗, which is a contradiction.

(4)a∗ < A∗,a∗ ∈ A ′\A.∆a∗ = I[K]−Ia∗ . SinceA
∗ , A ′, there

exists a ∈ A∗ \A ′. If a ∈ A, Ia ≤ Ia −Ia +Ia ≤ Ia∗ −Ia∗ +Ia∗ <

I[K]. If a < A, Ia ≤ Ia ≤ Ia∗ ≤ Ia∗ −Ia∗ +Ia∗ < I[K]. Both imply

a < A∗, which is a contradiction.

Thus, all the 4 cases lead to contradiction. So Ia∗ − Ia∗ ≥
∆a∗
2
.

That implies ∀a ∈ [C], xa will not increase as soon as

Ia − Ia <
∆a
2

(23)

because for xa to increase, a must be chosen as a∗ in some iteration.

Our approximation error bounds in Section 3 imply there exists

a constant C0 s.t.

Ia − Ia < logm[a]

√
C0 log

1

α
m[a]

(24)

wherem[a] = Nxa
B . From Eq. (23) and (24), we know that xa will

not increase as soon as

logm[a]

√
C0 log

1

α
m[a]

≤
∆a
2

⇔m[a] ≥
4C0 log

2m[a] log 1

α

∆2

a
(25)

Sincem[a] = Nxa
B , we have

xa ≤
16BC0 log

1

α

N∆2

a
log

2
4C0 log

1

α

∆2

a
≤

⌈
16BC0 log

1

α

N∆2

a
log

2
4C0 log

1

α

∆2

a

⌉
(26)

Summing up for all a ∈ [C], we have:

X = O

©­«C +
B log

1

α
N

∑
a∈[C]

∆−2a log
2 ∆a

ª®¬
i.e., the total cost is O(XN

B) = O(logα−1
∑
a∈[C] ∆

−2
a log

2 ∆a). □

EntropyFilter. The sample size required by each score is related

to the gap between the score and the threshold η. We define:

δa = |Ia − η | (27)

Intuitively, the smaller is the gap δa , the harder it is to decide

whether Ia ≥ η.

Theorem 4.2. With probability at least 1 − αC , EntropyFilter
returns the correct answer B∗. With probability at least 1 − αC , the
total cost O(XN

B) = O(logα−1
∑C
a=1 δ

−2
a log

2 δa).

Proof. (Sketch) The correctness guarantee is provable via union

bound. To prove the upper bound of the cost, we first prove that

Table 1: Dataset description

ID Name Rows Columns

1 bls_american-time-use 942073 232

2 cdc_behavioral-risk 506467 394

3 census-american_hus 2972991 226

4 census-american_pus 9412410 279

5 gbonesso_enem-2016 8620630 159

with probability 1 − 2α , xa does not increase as soon as:

Ia − Ia <
δa
2

=
|Ia − η |

2

(28)

To prove that, we notice that Eq. (28) implies either Ia −η > 2(Ia −

Ia) or η − Ia > 2(Ia − Ia). If the former is true, then

η < Ia − 2(Ia − Ia) ≤ 2Ia − Ia ≤ Ia (29)

with probability at least 1 − α . If the latter is true, then

η > Ia + 2(Ia − Ia) ≥ 2Ia − Ia ≥ Ia (30)

with probability at least 1−α . Both imply that the condition in line

5 of Algorithm 2 is false. Therefore, xa will not be further increased

with probability at least 1 − α .
The remainder of the proof is similar to the proof of Theorem 4.1.

□

Discussion. The cost bounds are not used for precomputing the

cost required to answer a query, since ∆ and δ are unknown. Rather,

they are used to show that the upper bounds of the cost are inde-

pendent of the size N of the data. That is a distinguishing character

from the exact method whose complexity grows linearly with N .

5 EXPERIMENTS
In this section, we evaluate our algorithms for two applications:

ranking and filtering by mutual information. By evaluating the

effectiveness of EntropyRank and EntropyFilter in producing fast

and accurate answers, we aim to understandwhether the subsample-

based theoretical bounds are useful in practice.

5.1 Setup
Since approximate answer is most relevant for Big Data scenario,

we use the largest datasets we can find from Kaggle
1
for evalua-

tion. Among all the datasets with tabular format that are publicly

available from Kaggle as of June, 2018, we evaluate our algorithms

on all the large-scale datasets, i.e., datasets with more than half a

million records and more than a hundred columns. Table 1 shows

the information of the datasets. For each dataset, we filtered out all

the columns that are not categorical using heuristics, i.e., removing

columns with more than 10000 distinct values.

To generate the ranking and filtering queries, for each dataset,

we create a test case by randomly choosing a categorical column as

the target variable. We repeat the process 5 times to select 5 target

variables. For ranking queries, we vary K from 1 to 10; and we vary

the threshold η from 0.1 to 0.5 for filtering queries. For each query,

we compute the exact mutual information score with respect to the

1
www.kaggle.com

www.kaggle.com

Table 2: Speedup ratio and sampling rate of EntropyRank
and EntropyFilter vs. Exact per dataset

(a) EntropyRank

Speedup ratio (×) Sampling rate

ID K=1 K=3 K=5 K=10 K=1 K=3 K=5 K=10

1 21.8 13.5 10.2 7.5 5.5% 10% 15% 28%

2 25.1 19.3 17.2 21.0 4.4% 9.2% 9.2% 9.4%

3 17.8 17.2 13.8 10.0 7.2% 8.0% 10% 21%

4 285 142 227 116 0.4% 0.9% 0.9% 1.7%

5 87.2 120 52.1 10.4 2.0% 3.3% 4.8% 8.4%

(b) EntropyFilter

Speedup ratio (×) Sampling rate

ID η=.2 η=.3 η=.4 η=.5 η=.2 η=.3 η=.4 η=.5

1 15.2 21.9 22.9 23.0 4.5% 4.5% 4.5% 4.5%

2 34.9 43.8 42.5 51.8 1.6% 1.5% 1.5% 1.3%

3 29.7 27.0 36.6 36.0 2.7% 2.9% 2.5% 2.5%

4 441 465 446 482 0.1% 0.1% 0.1% 0.1%
5 317 317 320 322 0.2% 0.2% 0.2% 0.2%

target variable for each non-target variable, and rank or filter them

according to K or η. We refer to this baseline approach as Exact.

We implement EntropyRank, EntropyFilter, and Exact in C#. All the

experiments are run on a machine with Intel Xeon CPU E5-2650

v4@2.20GHz, 192GB memory, and 64-bit Windows Server 2016.

We compare the running time between the exact approach and

the subsampling approach. For ranking, we measure the accuracy

of the returned top-K answer by EntropyRank, A, compared to

the true top-K answer from Exact, A∗, i.e.,
|A∩A∗ |

K . For filtering,

we measure the accuracy whether each feature is correctly filtered

by EntropyFilter compared to the true decision made by Exact, i.e.,

1 −
|B⊕B∗ |

C .

5.2 Performance Comparison
Efficiency for ranking. On each dataset, we report the speedup

ratio and sampling rate of EntropyRank per K from 1 to 10. Each

metric is averaged over 5 test cases. Table 2a shows the results for

four representative K values for clarity. EntropyRank computes

the top-1 feature by 285× faster than Exact in the largest dataset

#4, using 0.4% of the data. Overall, the speedup ratio reduces as K
becomes larger, though not monotonically. The gap of the scores be-

tween lower-ranked features is generally smaller, and the sampling

rate increases as analyzed in Theorem 4.1.

Table 3a shows the distribution of the speedup ratios across all

the test cases. For half of the test cases, the ranking is accelerated

by at 27-374× when K = 1, and 10-149× when K = 10.

Efficiency for filtering. Table 2b shows the speedup ratio and

sampling rate of EntropyFilter on each dataset per η from 0.2 to 0.5.

EntropyFilter filters the columns with mutual information by more

than 400× faster than Exact in the largest dataset #4, using 0.1% of

the data.

Table 3: Speedup ratio (×) of EntropyRank and EntropyFilter
vs. Exact at different percentiles, and overall accuracy

(a) EntropyRank

K 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Accuracy

1 10.6 15.4 17.0 22.9 27.0 31.5 39.0 214 274 374 100.0%
3 6.0 8.0 11.0 15.8 16.2 21.6 35.9 97.1 156 380 100.0%
5 3.6 5.8 6.8 9.8 13.7 25.3 26.5 37.4 170 410 100.0%
10 1.8 4.7 6.5 7.5 10.8 13.5 18.9 30.5 128 149 100.0%

(b) EntropyFilter

η 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Accuracy

0.1 19.6 22.6 23.2 29.2 41.9 50.1 121 284 474 1050 99.88%

0.2 14.9 18.7 24.9 33.2 35.1 45.9 307 322 448 585 100.0%
0.3 20.8 22.2 25.1 31.3 34.9 56.5 317 322 454 494 99.99%

0.4 21.7 25.8 25.9 35.6 40.2 55.2 316 356 437 458 99.91%

0.5 22.4 24.9 30.5 39.5 56.3 60.8 316 336 470 513 99.98%

Table 3b shows the distribution of speedup ratios across all the

test cases. For 90% of the test cases, the filtering is accelerated by

20-1050× when η = 0.1, and 22-513× when η = 0.5.

Accuracy. The last column in Table 3 shows the overall accuracy

of EntropyRank and EntropyFilter. EntropyRank makes no single

mistake in all the test cases with 100% accuracy, and the accuracy

of EntropyFilter is very close to 100%. This validates Theorem 4.1

and 4.2 which guarantee the result is correct with high probability.

Impact of data size. To study how the cost of the algorithms

changes with the size of datasets, we evaluate the performance of

EntropyRank and EntropyFilter on random subsets of different sizes

from the same dataset. Each subset has a similar data distribution

with the original dataset. We run the algorithms on these subsets

with the same query as on the original dataset. Figure 1 shows a

case study of the running time of EntropyRank and EntropyFilter

on two of our datasets, varying the size of the subsets. When the

size is large enough, the running time of Exact grows linearly with

the number of rows, while the running time of EntropyRank and

EntropyFilter is almost constant. This confirms the guarantee from

Theorem 4.1 and 4.2, and implies that the speedup of our algorithms

over Exact can be higher for even larger datasets.

Impact of batch size. We study the impact of batch size to the

performance of our algorithms, which is assumed to be a constant

much smaller than N during our theoretical analysis in Section 4.3.

On the one hand, smaller batch size encourages more frequent

updates to the confidence intervals, avoiding excessive data access

if a small sample size is sufficient for top-K ranking orη filtering. On
the other hand, each update to a confidence interval adds overhead

to the algorithms and increases the running time. Thus, a good batch

size should be small enough to allow early termination and large

enough to avoid being backfired by the overhead from frequent

updates of confidence intervals.

Figure 2 shows a case study on one test case in our dataset for

top-1 query and filter query with η = 0.1 using various batch sizes.

While the sampling rate monotonically increases with larger batch

0.2 0.4 0.6 0.8 1

0

20

40

N (million)

T
i
m
e
(
s
)

Ranking

0.2 0.4 0.6 0.8 1

0

20

40

N (million)

Filtering

(a) bls_american-time-use-survey

0.2 0.4

0

20

40

N (million)

T
i
m
e
(
s
)

Ranking

0.2 0.4

0

20

40

N (million)

Filtering

(b) cdc_behavioral-risk

Exact Our method

Figure 1: The running time varying data size

sizes, the speedup ratio first increases and then decreases. When the

batch size is too small, e.g., 10
3
, the overhead from frequent updates

to confidence intervals outweighs the benefit of sampling fewer

data and leads to smaller speedup ratio. After a certain batch size,

e.g., 20K, the cost of accessing data dominates, and the speedup ratio

decreases with larger batch sizes, i.e., larger sampling rate. When

the batch size reaches the full data size, i.e., 10
6
, our algorithms

access all the data and degenerate to Exact, and both sampling rate

and speedup ratio become 1.

Fortunately, for a wide range of batch sizes, e.g., from 1K to 100K,

the speedup is significant. We observe similar results on other test

cases and datasets.

6 RELATEDWORK
The idea of using random subsamples to speed up the extraction of

frequent patterns dates back to 1996 [34]. Riondato and Upfal [31]

presents the best approximation error bound for a single subsample.

They further develop a progressive subsampling method based on

Rademacher averages [32]. With high probability, their method

returns a superset of the frequent itemsets, and no itemset with

frequency much lower than the threshold will be included in it.

Their work is an exemplar of how large scale data mining tasks can

be practically accelerated via theoretically justified subsampling

without losing quality. Scheffer and Wrobel [33] generalizes the

association rule discovery problem to best hypothesis mining and

discusses a variety of utility functions, which include association

10
3

10
4

10
5

10
6

10
−3

10
−2

10
−1

10
0

rows per batch

O
u
r
m
e
t
h
o
d
v
s
.
E
x
a
c
t
(
×
)

Sampling Rate

Ranking Filtering

10
3

10
4

10
5

10
6

2

32

512

rows per batch

Speedup Ratio

Figure 2: The sampling rate and speedup ratio on
bls_american-time-use-survey varying batch size

rule mining as a special case. They present an algorithm that works

for all ‘instance averaging’ aggregation functions [33], leveraging

the insight that the difference between sample mean and population

mean can be probabilistically bounded. They also prove that there

exists no subsampling algorithm for certain utility functions. There

is no generic theoretical result covering all utility functions, though

more results for specific tasks and functions are developed over the

years. For example, Grosskreutz et al. [15] presents tight bounds

for quality functions used in subgroup discovery. A recent study by

Wang and Chakrabarti [38] proves the error bounds for ℓ1 and ℓ2

distance between two unknown distributions under subsampling

for developing a near-optimal algorithm to recommend attributes

that best distinguish two ad-hoc subsets of a large dataset. Huang

et al. [17] approximates the accuracy of a classifier by training the

classifier on subsamples, and further proposes an efficient progres-

sively sampling algorithm to select an approximate best pipeline

among many given pipelines for AutoML. Approximation error

bounds with subsampling are studied for other tasks, such as linear

regression [8], graph embedding [29] and triangle counting [10].

The problem of information entropy estimation has a rich history

in information theory, statistics and theoretical computer science.

The early work dates back to 1950’s [26], and the modern interest

is revived by Antos and Kontoyiannis [1] and Paninski [27]. They

bound the difference between empirical entropy and information

entropy. Valiant and Valiant [35] shows a breakthrough result about

the minimal sample size required for consistent estimation (
c

ϵ log c).

Wu and Yang [39] and Jiao et al.[19] design estimators based on best

polynomial approximation, which achieve optimal minimax mean-

square error rate
c2

M2
log

2 c
+

log
2 c

M . The fundamental difference with

our work is that they all consider the observed data as samples

from an underlying distribution. Therefore, one can theoretically

keep sampling infinite i.i.d samples from that distribution, but the

exact information entropy is never known from finite samples.

The most suitable application scenario for their estimators is the

setting of streaming data and unbounded support size. For our

empirical entropy estimation problem, the given dataset D is the

entire universe to subsample from. We can take all the |D | points
to calculate the exact empirical entropy.

There are studies on the entropy monitoring problem for streams

or distributed streams [9, 13, 22]. They focus on space-efficient or

communication-efficient algorithms for continuously approximat-

ing the entropy from streams or distributed streams, to detect the

changes of empirical entropies calculated from different portions

of the streaming data.

Our EntropyRank solution is inspired by the studies of best arm
identification from a multi-armed bandit (MAB) [2]. Finding top-K
entropy-based aggregation scores is analogous to finding top-K
arms. The difference is that the arms are ranked by expected re-

wards, which can be approximated by the average of sampled re-

wards with known confidence intervals, while the entropy-based

aggregation functions are more complex, which cannot be approxi-

mated in the same way. That challenge is addressed by our work.

7 CONCLUSION
We investigate the idea of using subsampling to approximate em-

pirical entropy for large-scale data. We solve a major challenge of

bounding the difference between the entropy computed from sub-

samples and that computed from the full data with high probability.

We use these bounds to construct useful confidence intervals of em-

pirical entropy, and propose algorithms to speed up entropy-based

ranking and filtering applications. Our algorithms progressively

sample the data as needed until we can return the correct answer

with high probability. Empirically, our algorithms are faster than

the exact methods by up to three orders of magnitude with almost

no error in large-scale real-world datasets. We further show that

the speedup ratio is expected to grow with data size, due to the

sublinear complexity of our algorithms.

Our work can be extended from both the theory and the ap-

plication side. For theory, tighter bound analysis with respect to

the subsample size is an open problem. For applications such as

full-fledged feature selection, automated feature engineering, and

entropy-based clustering and classification, it is promising to de-

velop algorithms like EntropyRank and EntropyFilter to perform

fast computation with theoretical guarantee.

REFERENCES
[1] András Antos and Ioannis Kontoyiannis. 2001. Convergence properties of func-

tional estimates for discrete distributions. Random Structures & Algorithms 19,
3-4 (2001), 163–193.

[2] Jean-Yves Audibert and Sébastien Bubeck. 2010. Best Arm Identification in

Multi-Armed Bandits. In COLT’10.
[3] B. L. Aurelian. 2018. An information entropy based splitting criterion better for

the Data Mining Decision Tree algorithms. In 2018 22nd International Conference
on System Theory, Control and Computing (ICSTCC).

[4] Daniel Barbará, Yi Li, and Julia Couto. 2002. COOLCAT: An Entropy-based

Algorithm for Categorical Clustering. In CIKM’02.
[5] Gavin Brown, Adam Pocock, Ming-Jie Zhao, and Mikel Luján. 2012. Conditional

Likelihood Maximisation: A Unifying Framework for Information Theoretic

Feature Selection. J. Mach. Learn. Res. 13 (Jan. 2012), 27–66.
[6] Luis M de Campos. 2006. A scoring function for learning Bayesian networks

based on mutual information and conditional independence tests. J. Mach. Learn.
Res. 7, Oct (2006), 2149–2187.

[7] Surajit Chaudhuri, Bolin Ding, and Srikanth Kandula. 2017. Approximate Query

Processing: No Silver Bullet. In SIGMOD’17. 511–519.
[8] Michael B. Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard

Peng, and Aaron Sidford. 2015. Uniform Sampling for Matrix Approximation. In

Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science
(ITCS’15).

[9] Graham Cormode. 2013. The continuous distributed monitoring model. ACM
SIGMOD Record 42, 1 (2013), 5–14.

[10] Talya Eden, Amit Levi, Dana Ron, and C Seshadhri. 2017. Approximately counting

triangles in sublinear time. SIAM J. Comput. 46, 5 (2017), 1603–1646.
[11] Ran El-Yaniv and Dmitry Pechyony. 2006. Stable Transductive Learning. In

COLT’06.
[12] Pawel Foremski, David Plonka, and Arthur Berger. 2016. Entropy/IP: Uncovering

Structure in IPv6 Addresses. In Proceedings of the 2016 Internet Measurement
Conference (IMC’16).

[13] Moshe Gabel, Daniel Keren, and Assaf Schuster. 2017. Anarchists, Unite: Practical

Entropy Approximation for Distributed Streams. In KDD’17.
[14] Alison L. Gibbs and Francis Edward Su. 2002. On Choosing and Bounding

Probability Metrics. International Statistical Review 70, 3 (2002), 419–435.

[15] Henrik Grosskreutz, Stefan Rüping, and Stefan Wrobel. 2008. Tight Optimistic

Estimates for Fast Subgroup Discovery. In ECMLPKDD’08.
[16] Wassily Hoeffding. 1962. Probability inequalities for sums of bounded random

variables. J. Amer. Statist. Assoc. 58, March (1962), 13–30.

[17] Silu Huang, Chi Wang, Bolin Ding, and Surajit Chaudhuri. 2019. Efficient Iden-

tification of Approximate Best Configuration of Training in Large Datasets. In

AAAI’19.
[18] Johan Ludwig William Valdemar Jensen. 1906. Sur les fonctions convexes et les

inégalités entre les valeurs moyennes. Acta mathematica 30, 1 (1906), 175–193.
[19] Jiantao Jiao, Kartik Venkat, Yanjun Han, and TsachyWeissman. 2015. Minimax es-

timation of functionals of discrete distributions. IEEE Transactions on Information
Theory 61, 5 (2015), 2835–2885.

[20] A. Kaul, S. Maheshwary, and V. Pudi. 2017. AutoLearn âĂŤ Automated Feature

Generation and Selection. In ICDM’17.
[21] Albert Kim, Eric Blais, Aditya G. Parameswaran, Piotr Indyk, Samuel Madden,

and Ronitt Rubinfeld. 2015. Rapid Sampling for Visualizations with Ordering

Guarantees. PVLDB 8, 5 (2015).

[22] Ashwin Lall, Vyas Sekar, Mitsunori Ogihara, Jun Xu, and Hui Zhang. 2006. Data

Streaming Algorithms for Estimating Entropy of Network Traffic. In Proceedings
of the Joint International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS’06/Performance’06).

[23] David D. Lewis. 1992. Feature Selection and Feature Extraction for Text Cat-

egorization. In Proceedings of the Workshop on Speech and Natural Language
(HLT’91).

[24] Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P. Trevino,

Jiliang Tang, and Huan Liu. 2017. Feature selection: A data perspective. Comput.
Surveys 50, 6 (12 2017).

[25] Colin McDiarmid. 1989. On the method of bounded differences. Cambridge

University Press, 148–188.

[26] G. MILLER. 1955. Note on the bias of information estimates. Information theory
in psychology : Problems and methods 2 (1955), 95–100.

[27] L. Paninski. 2003. Estimation of Entropy and Mutual Information. Neural Com-
putation 15, 6 (2003), 1191–1253.

[28] Hanchuan Peng, Fuhui Long, and C. Ding. 2005. Feature Selection Based on

Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-

Redundancy. IEEE Transactions on Pattern Analysis & Machine Intelligence 27
(2005), 1226–1238.

[29] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan Wang, and

Jie Tang. 2019. NetSMF: Large-Scale Network Embedding as Sparse Matrix

Factorization. InWWW’19.
[30] J. R. Quinlan. 1986. Induction of decision trees. Machine Learning 1, 1 (Mar 1986),

81–106.

[31] Matteo Riondato and Eli Upfal. 2014. Efficient Discovery of Association Rules

and Frequent Itemsets Through Sampling with Tight Performance Guarantees.

ACM Trans. Knowl. Discov. Data 8, 4 (Aug. 2014), 20:1–20:32.
[32] Matteo Riondato and Eli Upfal. 2015. Mining Frequent Itemsets Through Pro-

gressive Sampling with Rademacher Averages. In KDD’15.
[33] Tobias Scheffer and Stefan Wrobel. 2000. A Sequential Sampling Algorithm for a

General Class of Utility Criteria. In KDD’00.
[34] Hannu Toivonen. 1996. Sampling Large Databases for Association Rules. In

VLDB’96. 134–145.
[35] Gregory Valiant and Paul Valiant. 2011. Estimating the unseen: an n/log (n)-

sample estimator for entropy and support size, shown optimal via new CLTs. In

Proceedings of the forty-third annual ACM symposium on Theory of computing.
[36] Paul Valiant and Gregory Valiant. 2013. Estimating the unseen: improved estima-

tors for entropy and other properties. In NIPS’13.
[37] Jorge R. Vergara and Pablo A. Estévez. 2014. A review of feature selectionmethods

based on mutual information. Neural Computing and Applications 24, 1 (Jan 2014),

175–186.

[38] Chi Wang and Kaushik Chakrabarti. 2018. Efficient Attribute Recommendation

with Probabilistic Guarantee. In KDD’18.
[39] Yihong Wu and Pengkun Yang. 2016. Minimax rates of entropy estimation

on large alphabets via best polynomial approximation. IEEE Transactions on
Information Theory 62, 6 (2016), 3702–3720.

[40] Ying Yan, Liang Jeff Chen, and Zheng Zhang. 2014. Error-bounded Sampling for

Analytics on Big Sparse Data. In VLDB’14.

Table 4: Dataset source and randomly chosen target columns

Name URL Target column index

bls_american-time-use https://www.kaggle.com/bls/american-time-use-survey#atuscps.csv 32 92 156 176 233

cdc_behavioral-risk https://www.kaggle.com/cdc/behavioral-risk-factor-surveillance-system#2011.csv 17 72 314 349 379

census-american_hus

https://www.kaggle.com/census/2015-american-community-survey#ss15husa.csv

13 17 18 20 96

https://www.kaggle.com/census/2015-american-community-survey#ss15husb.csv

https://www.kaggle.com/census/2013-american-community-survey#ss13husa.csv

https://www.kaggle.com/census/2013-american-community-survey#ss13husb.csv

census-american_pus

https://www.kaggle.com/census/2015-american-community-survey#ss15pusa.csv

78 147 148 152 154

https://www.kaggle.com/census/2015-american-community-survey#ss15pusb.csv

https://www.kaggle.com/census/2014-american-community-survey#ss14pusa.csv

https://www.kaggle.com/census/2014-american-community-survey#ss14pusb.csv

https://www.kaggle.com/census/2013-american-community-survey#ss13pusa.csv

https://www.kaggle.com/census/2013-american-community-survey#ss13pusb.csv

gbonesso_enem-2016 https://www.kaggle.com/gbonesso/enem-2016#microdados_enem_2016_coma.csv 18 78 127 130 132

REPRODUCIBILITY SUPPLEMENT
This section contains reproducibility details that are not described

in the main paper.

We evaluate our algorithms on five real-world large-scale datasets

from Kaggle as shown in Table 4.

• American Time Use Survey (2013-2015). The American Time

Use Survey (ATUS) is the Nation’s first federally adminis-

tered, continuous survey on time use in the United States.

The goal of the survey is to measure how people divide

their time among life’s activities. In ATUS, individuals are

randomly selected from a subset of households that have

completed their eighth and final month of interviews for

the Current Population Survey (CPS). ATUS respondents

are interviewed only one time about how they spent their

time on the previous day, where they were, and whom they

were with. The survey is sponsored by the Bureau of La-

bor Statistics and is conducted by the U.S. Census Bureau.

The Activity file we used contains information about each

household member of all individuals selected to participate

in ATUS.

• Behavioral Risk Factor Surveillance System (2011). The Be-

havioral Risk Factor Surveillance System (BRFSS) is the na-

tion’s premier system of health-related telephone surveys

that collect state data about U.S. residents regarding their

health-related risk behaviors, chronic health conditions, and

use of preventive services. Factors assessed by the BRFSS

include tobacco use, health care coverage, HIV/AIDS knowl-

edge or prevention, physical activity, and fruit and vegetable

consumption. Data are collected from a random sample of

adults (one per household) through a telephone survey. Kag-

gle has the survey data from 2011 to 2015 in separate csv files.

Since the schema for every year’s data has a large variation,

we did not merge them. Only the dataset in 2011 has more

than half a million rows.

• American Community Survey (2013-2015). The American

Community Survey is an ongoing survey from the US Census

Bureau. In this survey, approximately 3.5 million households

per year are asked detailed questions about who they are and

how they live. Many topics are covered, including ancestry,

education, work, transportation, internet use, and residency.

There are two types of survey data provided, housing and

population. For the housing data, each row is a housing

unit, and the characteristics are properties like rented vs.

owned, age of home, etc. For the population data, each row

is a person and the characteristics are properties like age,

gender, whether they work, method/length of commute, etc.

Each data set is divided in two pieces, "a" and "b" (where

"a" contains states 1 to 25 and "b" contains states 26 to 50).

We merged the available population survey data from year

2013 to 2015, using the common fields in their schema. We

merged the available housing survey data for year 2013 and

2015, using the common fields in their schema. The housing

survey data in 2014 is unavailable in Kaggle.

• ENEM 2016. The original dataset is provided by INEP (http://

portal.inep.gov.br/microdados), a department from the Brazil-

ian Education Ministry. It contains data from the applicants

for the 2016 National High School Exam. Inside this dataset

there are not only the exam results, but the social and eco-

nomic context of the applicants.

To create a test case, we randomly choose one categorical column

as the target variable, and repeat the process for five times. Table 4

shows the index of the columns chosen as the target variable.

By default, we choose 100K as the batch size for EntropyRank

and EntropyFilter. The size of the first small batch is then N mod-

ulo 100K. α is set to
50

C and 1 for EntropyRank and EntropyFilter,

respectively. For experiments varying data sizes, we create subsets

of the datasets with multiples of 100K data points, e.g., 100K, 200K,

300K, etc, that are randomly drawn from the original datasets. For

both varying data size and varying batch size experiments, the

target column index is 12 for bls_american-time-use and 398 for

cdc_behavioral-risk.

https://www.kaggle.com/bls/american-time-use-survey#atuscps.csv
https://www.kaggle.com/cdc/behavioral-risk-factor-surveillance-system#2011.csv
https://www.kaggle.com/census/2015-american-community-survey#ss15husa.csv
https://www.kaggle.com/census/2015-american-community-survey#ss15husb.csv
https://www.kaggle.com/census/2013-american-community-survey#ss13husa.csv
https://www.kaggle.com/census/2013-american-community-survey#ss13husb.csv
https://www.kaggle.com/census/2015-american-community-survey#ss15pusa.csv
https://www.kaggle.com/census/2015-american-community-survey#ss15pusb.csv
https://www.kaggle.com/census/2014-american-community-survey#ss14pusa.csv
https://www.kaggle.com/census/2014-american-community-survey#ss14pusb.csv
https://www.kaggle.com/census/2013-american-community-survey#ss13pusa.csv
https://www.kaggle.com/census/2013-american-community-survey#ss13pusb.csv
https://www.kaggle.com/gbonesso/enem-2016#microdados_enem_2016_coma.csv
http://portal.inep.gov.br/microdados
http://portal.inep.gov.br/microdados

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Entropy for a Single Variable
	2.2 Multivariate Entropy-based Aggregations
	2.3 Concentration Inequality

	3 Theoretical Bounds
	3.1 Entropy
	3.2 Entropy-based Aggregations

	4 Application
	4.1 Ranking
	4.2 Filtering
	4.3 Analysis

	5 Experiments
	5.1 Setup
	5.2 Performance Comparison

	6 Related Work
	7 Conclusion
	References

