Practical Lessons for Job Recommendations in the Cold-Start

Scenario
Jianxun Lian Fuzheng Zhang Min Hou
University of Science and Technology Microsoft Research University of Science and Technology
of China Beijing, China of China

Hefei, China
jianxun.lian@outlook.com

Hongwei Wang
Shanghai Jiao Tong University
Shanghai, China
wanghongwei55@gmail.com

ABSTRACT

The 2017 ACM RecSys Challenge focuses on the problem of job
recommendations on XING in a cold-start scenario. In this paper
we describe our solution as well as some practical lessons learned
from the competition. We model this task as a binary classification
problem. Negative candidate selection is the first key phase in our
solution. We design a negative sampling strategy which performs
significantly better than taking users’ deleted or unclicked items
as negative candidates. We then extract comprehensive features
to model the relationship between a user-job candidate, including
the direct profile similarity between the user and the job, and the
profile similarity between the user’s historical interested jobs and
the target job. To make the whole pipeline scalable and easy to
deploy online, we decide to use a single boosting tree model as the
final discriminative model, instead of using a stacking ensemble of
multiple models. Overall our model ranked 5th on the challenge
leaderboard, and our last model has remained in 2nd place during
the last two online weeks. We have open-sourced our implementa-
tion on https://github.com/Leavingseason/RecsysChallenge2017.

CCS CONCEPTS

« Information systems — Recommender systems;

KEYWORDS

job recommendations, cold start, recsys challenge 2017, recommen-
dation systems, content-based filtering

ACM Reference format:

Jianxun Lian, Fuzheng Zhang, Min Hou, Hongwei Wang, Xing Xie,
and Guangzhong Sun. 2017. Practical Lessons for Job Recommendations in
the Cold-Start Scenario. In Proceedings of RecSys Challenge 17, Como, Italy,
August 27, 2017, 6 pages.

https://doi.org/10.1145/3124791.3124794

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

RecSys Challenge ’17, August 27, 2017, Como, Italy

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5391-5/17/08...$15.00
https://doi.org/10.1145/3124791.3124794

fuzzhang@microsoft.com

Xing Xie
Microsoft Research
Beijing, China
xingx@microsoft.com

Hefei, China
hmhoumin@gmail.com

Guangzhong Sun
University of Science and Technology
of China
gzsun@ustc.edu.cn

1 INTRODUCTION

The ACM RecSys challenge 2017 [4] focuses on the problem of job
recommendations on XING. XING is a social network for business,
has attracted more than 18 million users and typically has around
1 million active job posting on the platform. In order to better
connect job seekers and recruiters, the RecSys Challenge 2017 asks
participants to build recommender systems to solve the following
task: given a new job posting, identify those users (a) who may be
interested in receiving the job posting as a push recommendation
and (b) who that are also appropriate candidates for the given job.

The job recommendation task is very close to traditional CTR pre-
diction tasks such as ad click prediction or app download prediction,
with a common key component being to estimate the probability
that a user will click on the target item. However, one special thing
to job recommendation is that we need to model not only the pref-
erence of the user over the item, but also the relevance between
the user and the item. For example, some popular apps such as
WeChat and Office 365 may be liked and downloaded by many
people, while normally almost no jobs can be applied commonly
to an overwhelming majority of people. This is due to a job seeker
only being interested in the jobs for which he/she is qualified. So
the first key step is to model both relevance and preference of a
user-item pair. In this paper, we introduce a simple, efficient and
effective candidate sampling method to handle this problem, and
in the discussion section we further propose an integrated model
that can incorporate both relevance and preference.

Just like some related CTR tasks [3, 6, 12, 18], we formulate the
job recommendation as a binary classification problem, where a
positive label indicates that the user has ever clicked on, book-
marked, or replied to the item, and a negative label indicates the
user has deleted or no taken action on the item. Not surprisingly,
the most important part is feature engineering. Although some
research works [5, 15] aim to develop models which can be trained
end-to-end without feature engineering, for this job recommenda-
tion task, the use of elaborately crafted features can achieve far
better scores. We split the features into three pillars: (1) features
derived from the similarity between the user’s profile and the target
item’s profile; (2)features derived from the similarity between the
user’s historical interested items and the target item; (3) features
using words and tags directly from profiles. We find that the most
important features come from the second pillar, and it is in line

https://doi.org/10.1145/3124791.3124794
https://doi.org/10.1145/3124791.3124794

RecSys Challenge ’17, August 27, 2017, Como, Italy

J. Lian et al.

Table 1: Fields in the user profile file.

field type comments
id categorical | anonymized ID of the user
job roles bag of words | list of jobrole terms that were extracted from the user’s current job titles
career level categorical | career level ID, e.g. Beginner or Experienced
discipline categorical | anonymized IDs represent disciplines such as "Consulting”, "HR", etc.
industry categorical | anonymized IDs represent industries such as "Internet", "Automotive", etc.
country categorical | describes the country in which the user is currently working.
region categorical | specified for some users who was in Germany.
experience_01 | numerical | the number of CV entries that the user has listed as work experiences
experience_02 | numerical | the estimated number of years of work experience that the user has
experience_03 | numerical | the estimated number of years that the user is already working in her current job
edu degree categorical | estimated university degree of the user
edu fields bag of words | fields of studies that the user studied
wtcj categorical | estimation regarding the user’s willingness to change job
premium categorical | the user subscribed to XING’s payed premium membership

with the intuition: for the cold-start recommendation content-based
filtering is the most efficient method and is essential for building a
better profile via the user’s historical activities.

We compare different classifiers and find that the gradient boost-
ing decision tree (GBDT) model is the best one, with is inline with
most of the winning solutions coming from various data mining
competitions [8, 10, 16]. Blending the results of multiple models,
known as model ensemble, usually further improves scores. How-
ever, given that it is necessary for online systems to keep simple
and efficient for good scalability and maintainability, we decide
to use a single GBDT model through both the offline and online
period without model ensemble. Our initial model ranked 6th in
the first two weeks of the online challenge, and after we updated
our model, we ranked 2nd in the last two consecutive weeks. On
average we ranked 5th on the leaderboard.

2 PROBLEM STATEMENT

The 2017 Recsys Challenge [4] consists of an offline phase and
an online phase. For the offline phase, target users and items are
fixed, participants are asked to recommend no more than 100 users
for each target item, the ground-truth labels are made from the
historical activities. For the online phase, each team will receive a
new group of target users and items daily, and the recommendation
submitted by the teams will actually be rolled out to real users on
XING’s live system. The training dataset includes users’ profiles,
items’ profiles, and historical transactions between users and items.
The details of the user profiles are listed in Table 1. Most of the fields
in the item profiles are the same as for the fields user profiles, except
that items have additional latitude and longitude information for
location tagging. The interaction file has four fields, including user
id, item id, timestamp, and the type of interaction.

Typically, user response prediction can be regarded as binary
classification or ranking problem. In this paper we mainly discuss
binary classification models, while we also compare them with
one ranking model. A positive label indicates that a user has some
explicit positive action on an item, such as clicks or replies; a neg-
ative label indicates that a user neglects or explicitly deletes an item.

Evaluation metrics. The official evaluation metrics ! are calcu-
lated according to the user/item’s premium level and the interaction
type. For better demonstration and comparison of various models,
we use the following evaluation metrics throughout the paper:

(1) reward. This is the official evaluation metrics. We predict 10%
of the offline test dataset (selected by item_id mod 10 = 1)
and submit it to the platform for judgement?.

reward@1. Since the online phase requires that each target
user can at most receive one recommendation, we follow
this constraint and only keep the top 1 prediction for each
user.

(3) p@1. Success user rate (which we denote as precision in this

|success(user@1)|
|lusers]| >

where success(user@1) is the set of users that have positive

interactions on the top 1 prediction.
(4) p@5. Success user rate at top 5 predictions. Calculated by
|success(user@5)|
lusers| :

(5) AUC. Area under the ROC curve.

We reserve 1000 items from the training set as the validation
set to simulate the cold-start scenario. reward and reward@1 are
evaluated on 10% of the official offline test dataset, while p@1, p@5
and AUC are evaluated on our validation set.

—
S
~

paper) at top 1 predictions. Calculated by

3 NEGATIVE CANDIDATES SELECTION

We find that for job recommendation, the selection of negative
candidates is highly important. We start by using the items deleted
by the user or receive no interaction after impression as negative
candidates. We find the model trained based on these training
instances yields very poor performance as shown in the negative
action row in Table 2. Although the performance can be improved
by adding a filter to remove those user-job pairs which do not have
common words in the user’s and item’s titles, the scores (as shown
in the negative action filtered row) is still far less than a simple
random sampling of negative candidates (as shown in the random
small row). It is not hard to understand the cause: every historical

1 The details can be found here: http://2017.recsyschallenge.com
The offline submission entrance is still open for experimental evaluation.

Practical Lessons for Job Recommendations in the Cold-Start Scenario

item shown to the user is proposed by XING’s recommender system,
which means the item is at least relevant to the user to some extent.
If all the training data come from the user’s historical interaction
logs provided by XING, the trained model is biased to the user’s
relevant area. However, in the real world prediction step, we are
dealing with an open target item set, which contains far more
items that are not relevant to the user. The trained model does not
have knowledge in this new area, thus it will produce a lot of false
positive cases. We further illustrate this with Figure 1. To sum it
up, the classifier usually fails to work if the data distribution of the
training and the test sets are different.

o
"0
7 8e °
B °
A o .~ °
6 °

(a) distribution of training data (b) distribution of test data

Figure 1: Illustration of a classifier failing to work when dis-
tributions of training data and test data are different. In the
left figure, a max-margin classifier will choose A rather than
B as the optimal discriminative plane. However, in the real
test set, there are many hidden irrelevant data points, which
make B a better splitting plane.

Algorithm 1 Wide & Deep Negative Sampling

Require: user set U, item set V, and interactions I.
Ensure: training candidates D.
Do
Add pairs from I with activity {1,2,3,5} to D as positive candidates
Add pairs from I with activity {4} to D as negative candidates
%% the wide part
Vi « sample 100000 items from V
for each item v € V; do
for i =0 — 500 do
sample one user u € U
Add < u,v > to D as negative candidate if not exists
end for
end for
%% the deep part
V3 « sample 1000 items from V
for each item v € V5 do
for i = 0 — 30000 do
sample one user u € U
Add < u,v > to D as negative candidate if not exists
end for
end for
return D

RecSys Challenge ’17, August 27, 2017, Como, Italy

Since random sampling performs well, we ask two follow up
questions: (1) how many negative candidates are enough for sam-
pling? (2) Is there a strategy better than the brute-force sampling
over the complete N X M space? Question (1) is related to the class
imbalance problem. Usually we can train a better model if we col-
lect more instances. However, since we have a limited number of
positive instances, the increase of negative instances aggravates
the unbalance between positive and negative labels. We propose
an effective and efficient negative sampling algorithm as shown in
Algorithm 1, in order to control the total number of negative in-
stances while keeping as much information as possible in the open
space. It consists two parts: the wide part and the deep part. The
wide part aims to cover a large number of items, while each item
is only connected to a small number of users; the deep part aims
to explore exhaustive candidates for one item. The total number
of sampled negative candidates is 80 million. To demonstrate the
necessity of both the deep and the wide parts, we sample negative
candidates using only wide part or deep part, while keeping the
total number of negative candidates at 80 million. The performance
comparison is shown in Table 2. We find that by using both the
wide and deep part we can get the best model.

4 FEATURE EXPLORATION

4.1 Feature Engineering

Our entire feature set can be split into three pillars: profile matching,
historical matching, and bag of words.

4.1.1 Profile Matching. Job relevance can be measured by com-
paring a user’s profile and an item’s profile. The numerical and
categorical fields in the user’s profile and the item’s profile are
used directly as features, such as discipline, industry, number of
words in job roles. Next we use some boolean variables to record
whether the corresponding field of user’s profile and item’s profile
matches, e.g. the user’s industry v.s. the item’s industry, and the
user’s country v.s. the item’s country. We further intersect some
fields from the user’s profile and the item’s profile, considering that
using each base field separately may not be enough to explain the
relationship. For example, intersecting the user’s career_level field
with the item’s career_level field will yield a new categorical col-
umn with n X m possible values, where n, m stands for the possible
values for the user’s career_level field and the item’s career level
field, respectively.

4.1.2 Historical Matching. The user’s profile is filled explicitly
by the user. Actually, a fixed number of fields is not enough to
introduce a user exhaustively. What is more, sometimes the user
does not enter many messages in the online platform and his/her
profile is very brief, or some fields are even fake. By contrast, the
user’s historical activities are an ideal implicit supplement to the
profile, which is why we try to build the user’s secondary profile
from his/her historical interacted items. We design several numer-
ical variables by matching the user’s secondary profile and the
target item’s profile, covering title similarity, industry similarity,
career level similarity, employment similarity, and location simi-
larity. Typically, similarity here means the percentage of items in
the secondary profile that share the same corresponding field with
the target item. For location similarity, we additionally calculate

RecSys Challenge ’17, August 27, 2017, Como, Italy

J. Lian et al.

Table 2: Evaluation of different negative candidates selection methods. The classification model is GBDT.

method reward reward@1 p@1 p@5 AUC

negative action 1502 8 0.0050 0.0193 0.6659
negative action (filtered) 2474 430 0.1546 0.2978 0.6128
random (small) 5089 1805 0.4148 0.6572 0.9656
random(small) + negative action 3015 1205 0.2648 0.4172 0.8686
random (wide) 6013 2804 0.4755 0.7056 0.9736

random (deep) 5025 945 0.1251 0.3030 0.9291
random (wide & deep) 7286 3005 0.6419 | 0.8264 | 0.9825

Table 3: Evaluation of different feature set. The classification model is GBDT.

feature set reward change reward@1 p@1 p@5 AUC
ALL 7286 - 3005 0.6419 | 0.8264 | 0.9825

- profile 5999 117.6% 1795 0.4428 0.6363 0.9479
- history 1883 174.2% 848 0.2816 0.5391 0.9190
-BOW 6790 16.81% 2919 0.5347 0.7501 0.9764

- car & loc 5603 123.1% 2306 0.5195 0.7453 0.9724
- location 6640 18.87% 2734 0.5421 0.7573 0.9758

the min/avg/max distance between the target item and items in the
user’s secondary profile via latitude and longitude.

4.1.3 Bag of Words. Up to now we have compacted the profile
into some numerical variables to describe the similarity. Usually it
is necessary to treat the profile as a document and learn its latent
representation to retain as much information as possible. Some
popular methods are latent topic models [1] and deep learning tech-
niques [17]. However, due to limitations, we do not have enough
time to build and tune parameters for these models, so we adopt
the most simple bag-of-words feature to retain the raw document.
To reduce dimension, we only use the top 20k most frequent words.

4.2 Feature Evaluation

To study the importance of each feature pillar, we remove one of
them and see how the performance changes. Results are shown
in Table 3, where - profile indicates removal of the entire profile
matching pillar; - history indicates removal of the entire historical
matching pillar; - BOW indicates removal of the entire bag of words
pillar. We can observe that three pillars contribute to the best model,
and the historical matching features are the most important features,
without which the performance drops severely by 74.2%. Thus we
are curious to further explore the features within the historical
matching pillar. Row - car & loc in Table 3 means for the historical
matching pillar we only keep similarity variables extracted from
titles and tags, and remove those similarity variables extracted from
career level, employment, and location. Row - location in Table
3 indicates that we exclude all location related variables in the
historical matching pillar. By doing this we want to verify whether
only one or two historical fields are enough to explain the data.
Results demonstrate that every field is important, and the more
fields we have in the profile, the more precise the model can be.
Table 4 lists the top 10 most important features ranked by GBDT.
The vast majority of the top features come from the historical match-
ing pillar, which again demonstrates that implicit profiles better
describe the user. The best feature is sum_clicked_item_sim, which
means the sum of similarities between the user’s clicked items and

Table 4: Feature importance from GBDT.

feature importance pillar

sum_clicked_item_sim 1 historical matching
nearest_clicked item 0.34 historical matching
avg_city_match 0.32 historical matching
sum_city_match 0.31 historical matching
nearest_clicked item 0.28 historical matching
avg_clicked_item_sim 0.21 historical matching

region_match 0.21 profile matching
sum_distance 0.19 historical matching

item_is_paid 0.19 profile matching

tag_similarity 0.12 profile matching

the target item. Intuitively, the more similar the user’s historical
interested items are with the target item, the more likely it is that
the user will click on the target item.

5 MODEL SECTION

With all features, we train models using logistic regression (LR),
support vector machine (SVM), factorization machine (FM), gradi-
ent boosting decision trees (GBDT), and LambdaMART. LR, SVM,
FM, and GBDT are classification model, while LambdaMART [2] is
a ranking model. We find the best parameters for each model using
grid-searching and report their best scores. Figure 2 shows that
under all evaluation metrics, GBDT performs best. Another inter-
esting observation is that although GBDT generates only slightly
improvement over the other models in terms of AUC, it performs
far better in terms of reward@1 and precision@1. Reward@1 and
P@1 are actually more realistic metrics because real users usually
view only a small number of items.

We also try two ways ensembling several models to further
improve performance. The first way is blending the best output
from LR/SVM/FM/MART/GBDT by harmonic average or stacking
ensemble. The other way is to train GBDT with different param-
eters and different bags of features, and then blend the results.

Practical Lessons for Job Recommendations in the Cold-Start Scenario

RecSys Challenge ’17, August 27, 2017, Como, Italy

8000
7500 3000
7000 2800
6500 2600

6000 E 2400
H

reward
precision@1
°
&

5500 £ 2200
5000 2000)
4500 1800
4000 LR SVM FM MART GBDT 1600 LR SVM FM MART GBDT o4 R

(a) reward (b) reward@1

(c) Precision@1

°
&

°

8

°
°
8

®
3 075 S oer
2 2
£
g
0.7] 0.96
0.65 0.95]
0.6! 0.94/
MART GBDT LR SVM FM MART GBDT LR svm M MART GBDT
(d) Precision@5 (e) AUC

Figure 2: Performance comparison among logistic regression (LR), support vector machine (SVM), factorization machine (FM),
LambdaMARK (MARK), and gradient boosted decision tree (GBDT).

Table 5: Results of complexity reduction.

reward@1 | AUC | test size | test time
initial 3005 0.9825 4TB 26h

LR preprocess 2998 0.9824 | 250 GB 0.2h

We can get about 1.5% improvement through the model ensemble.

However, this step makes the running pipeline more complex and
time-consuming. To make the pipeline efficient, we decide to give
up model ensemble for the challenge.

6 COMPLEXITY REDUCTION

In Section 3 we generate about 80 million candidates for training
set, and the entire test set for the offline stage contains 46k x 74k
possible candidates. After extracting features the size of test file
(feature vectors) is about 4 TB, and the training and test processes
together cost about 12 hours. The data is so huge that we are curious
about reducing the data volume. We notice that in fact many items
proposed by Algorithm 1 are not relevant to the user. Inspired by [8],
we decide to use a weak classification model to filter out low quality
candidates. Since we have found that LR is the relatively weakest
learner and GBDT is the best one, we use LR to filter instances with
probability lower than 0.01 in both the training set and test set,
then train a GBDT model using the filtered training set. Finally we
make prediction on the filtered test set. Table 5 indicates that with
LR preprocessing, there is no significant loss in evaluation metrics,
while the file size and running time are reduced significantly.

7 RESULTS OF CHALLENGE

Since the final leaderboard is evaluated according to the online
stage, here we only report our growth history in the online stage>.
At the first two weeks we only use the model without historical
career and location similarity features (as shown in row - car &
loc of Table 3), and we manually start the programs and submit
the prediction file. We soon realize that manually repeat the whole
pipeline is inefficient and easy to generate bugs (such as forget to
update a parameter). Thus we decide to build an automatic pipeline
to daily pull data via API, extract features, make predictions, and
then submit the prediction file. This automatic pipeline make us
able to submit files 12 hours earlier than the manually way we used
before. We enabled the pipeline in week 3, along with some new
features related to historical career matching. As shown in Figure

3Until the time we submit this paper, our best single GBDT model ranks 3rd in the
latest offline leaderboard with score 62110.

1 add location similarity

1 add auto pipeline and career sim

rank

100 1 2 3 4 5 6

week index

Figure 3: The trend chart of our rank during online phase.

3 our rank increased to 3rd that week. We further added historical
location matching features in week 4, and our model remained
ranked 2nd since we used the latest model.

8 DISCUSSION

In Section 3 we have demonstrated that random sampling negative
candidates performs far better than using the user’s none-click
impressions as negative candidates. However, removing the latter
may to some extent cause information loss. If we regard the user’s
clicked items as positive candidates, random sampling items as neg-
ative candidates, and the user’s none-click impressions as negative
ranking candidates (for which we do not know their true label, how-
ever, we know that their score should not be higher than positive
candidates), now we can incorporate classification and ranking into
one unified model, which we call relevance & preference model. Let
D, denotes the positive candidates in D from Section 3, D_ denotes
the negative candidates in D, R denotes the interactions history,
and O denotes the model parameters. We want to maximize the
following posterior:

Pr(©;D,,D_,R) = P(D,|0)P(D_|0)P(R|O)P(©) 1)

where P(D. |0@) classifies positive candidates:

PD;|0) = [] fail®) (2)
ieDy
and P(D_|@) classifies negative candidates:

p-10) = [| (1- f(ilO)) 3)

ieD_

RecSys Challenge ’17, August 27, 2017, Como, Italy

Table 6: Score comparison between the relevance & prefer-

ence model and the base LR model.

P@1 | P@5 | AUC
LR 0.3541 | 0.4801 | 0.8672

relevance & preference | 0.3581 | 0.4991 | 0.8683

and P(R|©) models the preference among the user’s interaction his-
tory, ¢ is a hyper-parameter controlling the weight of the preference

module:
c

P(R|O®) = l_[D

(+,-)€eR

©

f(,;0) can be arbitrary discriminative learner. Due to time limit,
we only implement it with LR and conduct experiments over a
small subset. Table 6 demonstrates that the proposed relevance &
preference model is promising. In the future we will implement the
model with GBDT and conduct experiment in the complete dataset.

9 RELATED WORKS

Compared to the 2016 Recsys Challenge, the 2017 Recsys Challenge
[4] is more focused on online scenarios. All recommendations sub-
mitted by teams are pushed to real users daily, which requires us
to build efficient pipeline for making timely recommendations. Dif-
ferent from the winning solutions from last year [13, 16, 19], our
pipeline is simple and does not include any model ensemble, which
make the online logic efficient and easy to maintain.

The most popular method for recommender systems is collab-
orative filtering (CF). However, since the 2017 Recsys Challenge
aims at making recommendations for new items, which is known
as the cold-start problem, CF is not applicable in this task. Thus
we have to abandon a lot of good models related to CF [7, 9, 17],
and mainly consider models with content-based filtering [11, 14].
We find the job recommendation task is very close to click-through
rate prediction tasks, where the most popular method is to model
it as a binary classification problem [6, 12]. Generalized linear algo-
rithms such as FTRL [12] proves efficient and effective in practice,
and we also exploit it for the LR and FM experiments. Recently,
some researchers have tried to enhance the non-linear ability of
the models with deep neural networks [5, 15, 18]. However, these
deep learning-based models require more effort on training (e.g.,
parameter tuning and pre-training), and at the same time they are
still not as fast as the traditional versions which do not use neural
networks.

10 CONCLUSIONS

In this paper, we introduce our pipeline for the 2017 Recsys Chal-
lenge [4]. There are mainly three key components, i.e. negative
candidates selection, feature engineering, and model selection. We
have demonstrated that in each component there are some elaborate
designs which improve performance significantly. For cold-start
jobs recommendation, the user’s historical activities are the best
features for profiling the user. We also propose a unified model to
incorporate both relevance and preference together. For the future
work, we will conduct more comprehensive experiments for the
proposed relevance & preference model.

J. Lian et al.

REFERENCES

[1] David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent dirichlet allocation.
Journal of machine Learning research 3, Jan (2003), 993-1022.

[2] Chris J.C. Burges. 2010. From RankNet to LambdaRank to LambdaMART:
An Overview. Technical Report. https://www.microsoft.com/en-us/research/
publication/from-ranknet- to-lambdarank- to-lambdamart-an-overview/

[3] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
Workshop on Deep Learning for Recommender Systems. ACM, 7-10.

[4] Abel Fabian, Yashar Deldjoo, Mehdi Elahi, and Daniel Kohlsdorf. 2017. RecSys
Challenge 2017: Offline and Online Evaluation. In Proceedings of the 11th ACM
Conference on Recommender Systems (RecSys ’17). ACM, Como, ITALY, 2.

[5] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqgiang He. 2017.
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction.
arXiv preprint arXiv:1703.04247 (2017).

[6] Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine
Atallah, Ralf Herbrich, Stuart Bowers, et al. 2014. Practical lessons from predicting
clicks on ads at facebook. In Proceedings of the Eighth International Workshop on
Data Mining for Online Advertising. ACM, 1-9.

[7] Yehuda Koren. 2008. Factorization Meets the Neighborhood: A Multifaceted Col-

laborative Filtering Model. In Proceedings of the 14th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD ’08). ACM, New York,

NY, USA, 426-434. https://doi.org/10.1145/1401890.1401944

Jianxun Lian and Xing Xie. 2016. Cross-Device User Matching Based on Massive

Browse Logs: The Runner-Up Solution for the 2016 CIKM Cup. arXiv preprint

arXiv:1610.03928 (2016).

Jianxun Lian, Fuzheng Zhang, Xing Xie, and Guangzhong Sun. 2017. CCCFNet:

A Content-Boosted Collaborative Filtering Neural Network for Cross Domain

Recommender Systems. In Proceedings of the 26th International Conference on

World Wide Web Companion, Perth, Australia, April 3-7, 2017. 817-818. https:

//doi.org/10.1145/3041021.3054207

Guimei Liu, Tam T. Nguyen, Gang Zhao, Wei Zha, Jianbo Yang, Jianneng Cao,

Min Wu, Peilin Zhao, and Wei Chen. 2016. Repeat Buyer Prediction for E-

Commerce. In Proceedings of the 22Nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (KDD °16). ACM, New York, NY, USA,

155-164. https://doi.org/10.1145/2939672.2939674

Zhongqi Lu, Zhicheng Dou, Jianxun Lian, Xing Xie, and Qiang Yang. 2015.

Content-based Collaborative Filtering for News Topic Recommendation. In Pro-

ceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI'15).

AAAI Press, 217-223. http://dlLacm.org/citation.cfm?id=2887007.2887038

H Brendan McMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner,

Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, et al. 2013.

Ad click prediction: a view from the trenches. In Proceedings of the 19th ACM

SIGKDD international conference on Knowledge discovery and data mining. ACM,

1222-1230.

Andrzej Pacuk, Piotr Sankowski, Karol Wegrzycki, Adam Witkowski, and Piotr

Wygocki. 2016. RecSys Challenge 2016: Job Recommendations Based on Preselec-

tion of Offers and Gradient Boosting. In Proceedings of the Recommender Systems

Challenge (RecSys Challenge ’16). ACM, New York, NY, USA, Article 10, 4 pages.

https://doi.org/10.1145/2987538.2987544

Seung-Taek Park and Wei Chu. 2009. Pairwise Preference Regression for

Cold-start Recommendation. In Proceedings of the Third ACM Conference on

Recommender Systems (RecSys '09). ACM, New York, NY, USA, 21-28. https:

//doi.org/10.1145/1639714.1639720

Yanru Qu, Han Cai, Kan Ren, Weinan Zhang, Yong Yu, Ying Wen, and Jun Wang.

2016. Product-based neural networks for user response prediction. arXiv preprint

arXiv:1611.00144 (2016).

Wenming Xiao, Xiao Xu, Kang Liang, Junkang Mao, and Jun Wang. 2016. Job Rec-

ommendation with Hawkes Process: An Effective Solution for RecSys Challenge

2016. In Proceedings of the Recommender Systems Challenge (RecSys Challenge ’16).

ACM, New York, NY, USA, Article 11, 4 pages. https://doi.org/10.1145/2987538.

2987543

Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma.

2016. Collaborative Knowledge Base Embedding for Recommender Systems. In

Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD ’16). ACM, New York, NY, USA, 353-362. https:

//doi.org/10.1145/2939672.2939673

Weinan Zhang, Tianming Du, and Jun Wang. 2016. Deep learning over multi-

field categorical data. In European Conference on Information Retrieval. Springer,

45-57.

David Zibriczky. 2016. A Combination of Simple Models by Forward Predictor

Selection for Job Recommendation. In Proceedings of the Recommender Systems

Challenge (RecSys Challenge '16). ACM, New York, NY, USA, Article 9, 4 pages.

https://doi.org/10.1145/2987538.2987548

8

[9

[10

[11

[12

[13

[14

[15

=
&

[17

[18

=
)

https://www.microsoft.com/en-us/research/publication/from-ranknet-to-lambdarank-to-lambdamart-an-overview/
https://www.microsoft.com/en-us/research/publication/from-ranknet-to-lambdarank-to-lambdamart-an-overview/
https://doi.org/10.1145/1401890.1401944
https://doi.org/10.1145/3041021.3054207
https://doi.org/10.1145/3041021.3054207
https://doi.org/10.1145/2939672.2939674
http://dl.acm.org/citation.cfm?id=2887007.2887038
https://doi.org/10.1145/2987538.2987544
https://doi.org/10.1145/1639714.1639720
https://doi.org/10.1145/1639714.1639720
https://doi.org/10.1145/2987538.2987543
https://doi.org/10.1145/2987538.2987543
https://doi.org/10.1145/2939672.2939673
https://doi.org/10.1145/2939672.2939673
https://doi.org/10.1145/2987538.2987548

	Abstract
	1 introduction
	2 problem statement
	3 negative candidates selection
	4 feature exploration
	4.1 Feature Engineering
	4.2 Feature Evaluation

	5 model section
	6 Complexity Reduction
	7 Results of challenge
	8 discussion
	9 related works
	10 conclusions
	References

