The Blessings of Multiple Causes

David M. Blei

Departments of Computer Science and Statistics

Data Science Institute

Columbia University

We have complicated data; we want to make sense of it.

What is complicated data?

- many data points; many dimensions
- elaborate structures and relationships (e.g., text)
- different interconnected modalities (e.g., images, links, text, clicks)

What is making sense of data?

- make predictions about the future
- identify interpretable patterns
- do science: confirm, elaborate, form causal theories

PROBABILISTIC MACHINE LEARNING

- ML methods that connect domain knowledge to data.
- A methodology for articulating assumptions and computing with them
- Goal: Make probabilistic ML expressive, scalable, easy to develop

BAYESIAN STATISTICS

- Statistical methods that connect domain knowledge to data.
- A methodology for articulating assumptions and computing with them
- Goal: Make Bayesian statistics expressive, scalable, easy to develop

Communities discovered in a 3.7M node network of U.S. Patents

Neuroscience analysis of 220 million fMRI measurements

Topics found in 1.8M articles from the New York Times

Population analysis of 2 billion genetic measurements

[Gopalan+ Nature Genetics 2016]

(Fancy) discrete choice analysis of 5.7M purchases

The probabilistic pipeline

- Customized data analysis is important to many fields.
- Pipeline separates assumptions, computation, application
- Eases collaborative solutions to statistics/ML problems

Causal inference from observational data

- How can we understand the world through observation?
- Important to genetics, economics, physics, medicine, finance, ...
- Today: Use probabilistic machine learning for causal inference

The probabilistic pipeline

- Customized data analysis is important to many fields.
- Pipeline separates assumptions, computation, application
- Eases collaborative solutions to statistics/ML problems

Causal inference from observational data

- How can we understand the world through observation?
- Important to genetics, economics, physics, medicine, finance, ...
- Today: Use probabilistic machine learning for causal inference

Credit

- This is joint work with Yixin Wang (Statistics)
- ▶ Credit → Yixin
- ▶ (Blame → Dave)

A frivolous causal inference problem

- Data about movies: casts and revenue
- Goal: Understand the causal effect of putting an actor in a movie
- Causal: "What will the revenue be if we make a movie with a particular cast?"

The naive solution

Title	Cast	Revenue
Avatar	{Sam Worthington, Zoe Saldana, Sigourney Weaver, Stephen Lang, }	\$2788M
Titanic	{Kate Winslet, Leonardo DiCaprio, Frances Fisher, Billy Zane, }	\$1845M
The Avengers	{Robert Downey Jr., Chris Evans, Mark Ruffalo, Chris Hemsworth, }	\$1520M
Jurassic World	{Chris Pratt, Bryce Dallas Howard, Irrfan Khan, Vincent D'Onofrio, }	\$1514M
Furious 7	{Vin Diesel, Paul Walker, Dwayne Johnson, Michelle Rodriguez, }	\$1506M
Avengers: Age of Ultron	{Robert Downey Jr., Chris Hemsworth, Mark Ruffalo, Chris Evans, }	\$1405M
Frozen	{Kristen Bell, Idina Menzel, Jonathan Groff, Josh Gad,}	\$1274M
Iron Man 3	{Robert Downey Jr., Gwyneth Paltrow, Don Cheadle, Guy Pearce, }	\$1215M
Minions	{Sandra Bullock, Jon Hamm, Michael Keaton, Allison Janney, }	\$1157M
Captain America: Civil War	{Chris Evans, Robert Downey Jr., Scarlett Johansson, Sebastian Stan,}	\$1153M
		:

- Naive solution: Fit a regression (or use deep learning)
- Actors are features; revenue is the response
- Estimates revenue as a function of which actors are cast

The naive solution

Title	Cast	Revenue
Avatar	{Sam Worthington, Zoe Saldana, Sigourney Weaver, Stephen Lang, }	\$2788M
Titanic	{Kate Winslet, Leonardo DiCaprio, Frances Fisher, Billy Zane, }	\$1845M
The Avengers	{Robert Downey Jr., Chris Evans, Mark Ruffalo, Chris Hemsworth, }	\$1520M
Jurassic World	{Chris Pratt, Bryce Dallas Howard, Irrfan Khan, Vincent D'Onofrio, }	\$1514M
Furious 7	{Vin Diesel, Paul Walker, Dwayne Johnson, Michelle Rodriguez, }	\$1506M
Avengers: Age of Ultron	{Robert Downey Jr., Chris Hemsworth, Mark Ruffalo, Chris Evans, }	\$1405M
Frozen	{Kristen Bell, Idina Menzel, Jonathan Groff, Josh Gad,}	\$1274M
Iron Man 3	{Robert Downey Jr., Gwyneth Paltrow, Don Cheadle, Guy Pearce, }	\$1215M
Minions	{Sandra Bullock, Jon Hamm, Michael Keaton, Allison Janney, }	\$1157M
Captain America: Civil War	{Chris Evans, Robert Downey Jr., Scarlett Johansson, Sebastian Stan,}	\$1153M
		3

- But standard ML does not (necessarily) provide causal inferences
- Whether an actor was cast is different from casting an actor
- Causal inference is about prediction under intervention

The naive solution

- James Bond-ness is an unobserved confounder.
- Confounders affect both the cast ("causes") and the revenue ("effect")
- Confounders bias "passive ML," when used to predict interventions.
 - Some actors overestimated; others are underestimated

Unobserved confounders are everywhere.

What is causal inference?

- Causal inference is about prediction under intervention.
 - [Hernan and Robins 2019; Imbens and Rubin 2015; Pearl 2009]
- "What will the revenue be if we make a movie with a particular cast?"
- Challenge: Unobserved confounders (like James Bond-ness)

The classical solution

The classical solution

- This approach requires that we find and measure sufficient confounders.
- But whether we included sufficient confounders is untestable.
- The classical solution rests on hope. (And it makes us worry.)

Multiple causal inference

Title	Cast	Revenue
Avatar	(Sam Worthington, Zoe Saldana, Sigourney Weaver, Stephen Lang,)	\$2788M
Titanic	{Kate Winslet, Leonardo DiCaprio, Frances Fisher, Billy Zane,}	\$1845M
The Avengers	{Robert Downey Jr., Chris Evans, Mark Ruffalo, Chris Hemsworth, }	\$1520M
Jurassic World	(Chris Pratt, Bryce Dallas Howard, Irrfan Khan, Vincent D'Onofrio,)	\$1514M
Furious 7	(Vin Diesel, Paul Walker, Dwayne Johnson, Michelle Rodriguez,)	\$1506M
Avengers: Age of Ultron	{Robert Downey Jr., Chris Hemsworth, Mark Ruffalo, Chris Evans, }	\$1405M
Frozen	(Kristen Bell, Idina Menzel, Jonathan Groff, Josh Gad,)	\$1274M
Iron Man 3	{Robert Downey Jr., Gwyneth Paltrow, Don Cheadle, Guy Pearce, }	\$1215M
Minions	{Sandra Bullock, Jon Hamm, Michael Keaton, Allison Janney, }	\$1157M
Captain America: Civil War	(Chris Evans, Robert Downey Jr., Scarlett Johansson, Sebastian Stan,)	\$1153M
		÷

- But our problem is not classical.
- ► There are many causes (one per actor)—multiple causal inference
- Multiple causes helps construct a variable that contains confounders.

The deconfounder

The deconfounder

- Find, fit, and check a **factor model** of the assigned causes.
- Use the model to form substitute confounders for each individual.
- Use the substitute confounders in a causal model of the outcome.

The deconfounder

- Find, fit, and check a **probabilistic matrix factorization** of movie casts.
- Use the model to infer the per-movie variables in the matrix factorization.
- Use these variables in a regression from casts to earnings.

Case study: Actors

"Overestimated":

"Underestimated":

Most "corrected":

Intuition and assumptions

- Intuition: "Multi-cause confounders" induce dependence among the causes.
- That dependence is encoded in the data; we can capture it with a factor model
- Assumption: No unobserved single-cause confounders
 - But this is weaker than "no unobserved confounders"

Intuition and assumptions

- Intuition: "Multi-cause confounders" induce dependence among the causes.
- That dependence is encoded in the data; we can capture it with a factor model
- Assumption: No unobserved single-cause confounders
 - But this is weaker than "no unobserved confounders"

Beyond James Bond

How do genes affect a trait?

- The causes are genetic variation
- The effect is a trait
- Confounder: Each person's ancestry induces correlation in multiple genes.

Beyond James Bond

How do sports players affect how well the team is doing?

- The causes are who is in the game.
- The effect is the points scored in the game.
- Confounder: The coach uses multiple players together.

Beyond James Bond

How do prices of items affect how much money is spent?

- The causes are the prices of each item for sale.
- The effect is how much money is spent by consumers.
- Confounder: Holidays affect the prices and demand of multiple items.

Multiple causal inference

Title	Cast	Revenue
Avatar	{Sam Worthington, Zoe Saldana, Sigourney Weaver, Stephen Lang, }	\$2788M
Titanic	{Kate Winslet, Leonardo DiCaprio, Frances Fisher, Billy Zane, }	\$1845M
The Avengers	{Robert Downey Jr., Chris Evans, Mark Ruffalo, Chris Hemsworth, }	\$1520M
Jurassic World	{Chris Pratt, Bryce Dallas Howard, Irrfan Khan, Vincent D'Onofrio, }	\$1514M
Furious 7	{Vin Diesel, Paul Walker, Dwayne Johnson, Michelle Rodriguez, }	\$1506M
Avengers: Age of Ultron	{Robert Downey Jr., Chris Hemsworth, Mark Ruffalo, Chris Evans, }	\$1405M
Frozen	{Kristen Bell, Idina Menzel, Jonathan Groff, Josh Gad,}	\$1274M
Iron Man 3	{Robert Downey Jr., Gwyneth Paltrow, Don Cheadle, Guy Pearce, }	\$1215M
Minions	(Sandra Bullock, Jon Hamm, Michael Keaton, Allison Janney,)	\$1157M
Captain America: Civil War	{Chris Evans, Robert Downey Jr., Scarlett Johansson, Sebastian Stan,}	\$1153M

- ▶ Observed dataset $\mathcal{D} = \{(\mathbf{a}_1, y_1), \dots, (\mathbf{a}_n, y_n)\}$
 - assigned causes $\mathbf{a}_i = \{a_{i1}, \dots, a_{im}\}$
 - outcome y_i
- ▶ Goal: Do causal inference, $\mathbb{E}[Y; do(\mathbf{a})]$
 - "The expectation of Y in the model where we intervened on \mathbf{a} ."

Multiple causal inference

Title	Cast	Revenue
Avatar	{Sam Worthington, Zoe Saldana, Sigourney Weaver, Stephen Lang, }	\$2788M
Titanic	{Kate Winslet, Leonardo DiCaprio, Frances Fisher, Billy Zane, }	\$1845M
The Avengers	{Robert Downey Jr., Chris Evans, Mark Ruffalo, Chris Hemsworth, }	\$1520M
Jurassic World	{Chris Pratt, Bryce Dallas Howard, Irrfan Khan, Vincent D'Onofrio, }	\$1514M
Furious 7	{Vin Diesel, Paul Walker, Dwayne Johnson, Michelle Rodriguez, }	\$1506M
Avengers: Age of Ultron	{Robert Downey Jr., Chris Hemsworth, Mark Ruffalo, Chris Evans, }	\$1405M
Frozen	{Kristen Bell, Idina Menzel, Jonathan Groff, Josh Gad,}	\$1274M
Iron Man 3	{Robert Downey Jr., Gwyneth Paltrow, Don Cheadle, Guy Pearce, }	\$1215M
Minions	(Sandra Bullock, Jon Hamm, Michael Keaton, Allison Janney,)	\$1157M
Captain America: Civil War	{Chris Evans, Robert Downey Jr., Scarlett Johansson, Sebastian Stan,}	\$1153M

If there are unobserved confounders then

$$\mathbb{E}[Y; do(\mathbf{a})] \neq \mathbb{E}[Y \mid A = \mathbf{a}].$$

We can calculate the right term from data, but it's not equal to the left term.

The deconfounder

- Find, fit, and check a **factor model** of the movie casts.
- Use the factor model to form substitute confounders for each movie.
- Use the substitute confounders in a causal model of movie revenue.

Fit a probabilistic factor model

A probabilistic factor model has the following form,

$$\beta_j \sim p(\beta_j)$$
 $j = 1, ..., m$
 $z_i \sim p(z_i)$ $i = 1, ..., n$
 $a_{ij} \sim p(a_{ij} | z_i, \beta_j).$

E.g., mixtures, matrix factorization, deep generative models, topic models, ...

Poisson factorization [Gopalan+ 2015]

$$\beta_{jk} \sim \operatorname{Gam}(a, b)$$
 $i \in \{1, \dots, n\}$
 $z_{ik} \sim \operatorname{Gam}(a, b)$ $j \in \{1, \dots, m\}$
 $a_{ij} \sim \operatorname{Poi}(z_i^{\mathsf{T}} \beta_j)$ $k \in \{1, \dots, d\}$

- Provides a generative model of the assigned causes a_{ij} .
- Can be approximated on large datasets with variational methods
- A Bayesian form of non-negative matrix factorization [Lee and Seung 1999]

Poisson factorization [Gopalan+ 2015]

$$\beta_{jk} \sim \text{Gam}(a, b)$$
 $i \in \{1, ..., n\}$
 $z_{ik} \sim \text{Gam}(a, b)$ $j \in \{1, ..., m\}$
 $a_{ij} \sim \text{Poi}(z_i^{\mathsf{T}} \beta_j)$ $k \in \{1, ..., d\}$

- ightharpoonup Consider the dataset of casts $a_{1:n}$.
- Approximate the posterior distribution $p(z_{1:n}, \beta_{1:m} | \mathbf{a}_{1:n})$.
- ightharpoonup We only model the actors a_i ; the outcome is not involved.

- Estimate the local latent variable $\hat{z}_i = \mathbb{E}_{\text{model}}[Z \mid \mathbf{a}_i, \boldsymbol{\beta}].$
- rightharpoonup Check how well \hat{z}_i captures the distribution of the actors.
- E.g., use a predictive check on actors. (No need for exact inference.)

Poisson factorization [Gopalan+ 2015]

$$\beta_{jk} \sim \text{Gam}(a, b)$$
 $i \in \{1, ..., n\}$
 $z_{ik} \sim \text{Gam}(a, b)$ $j \in \{1, ..., m\}$
 $a_{ij} \sim \text{Poi}(z_i^{\top} \beta_j)$ $k \in \{1, ..., d\}$

- Provides a generative model of the assigned causes a_{ij} .
- Can be approximated on large datasets with variational methods
- A Bayesian form of non-negative matrix factorization [Lee and Seung 1999]

- Estimate the local latent variable $\hat{z}_i = \mathbb{E}_{\text{model}}[Z \mid \mathbf{a}_i, \boldsymbol{\beta}].$
- ightharpoonup Check how well \hat{z}_i captures the distribution of the actors.
- E.g., use a predictive check on actors. (No need for exact inference.)

Model	Predictive score
Probabilistic PCA	0.14
Poisson factorization	0.16
Mixtures	0.01
Deep exponential families	0.19

- Estimate the local latent variable $\hat{z}_i = \mathbb{E}_{\text{model}}[Z \mid \mathbf{a}_i, \boldsymbol{\beta}].$
- ightharpoonup Check how well \hat{z}_i captures the distribution of the actors.
- E.g., use a predictive check on actors. (No need for exact inference.)

Model	Predictive score
Probabilistic PCA	0.14
Poisson factorization	0.16
Mixtures	0.01
Deep exponential families	0.19

Do causal inference

```
{Sam Worthington, Zoe Saldana, Sigourney Weaver, Stephen Lang, ... }
                                                                                          $2788M
               {Kate Winslet, Leonardo DiCaprio, Frances Fisher, Billy Zane, ... }
                                                                                          $1845M
               {Robert Downey Jr., Chris Evans, Mark Ruffalo, Chris Hemsworth, ... }
                                                                                          $1520M
{Chris Pratt, Bryce Dallas Howard, Irrfan Khan, Vincent D'Onofrio, ... }
                                                                                          $1514M
               {Vin Diesel, Paul Walker, Dwayne Johnson, Michelle Rodriguez, ...}
                                                                                          $1506M
               {Robert Downey Jr., Chris Hemsworth, Mark Ruffalo, Chris Evans, ... }
                                                                                          $1405M
               {Kristen Bell, Idina Menzel, Jonathan Groff, Josh Gad, ... }
                                                                                          $1274M
               {Robert Downey Jr., Gwyneth Paltrow, Don Cheadle, Guy Pearce, ... }
                                                                                          $1215M
               {Sandra Bullock, Jon Hamm, Michael Keaton, Allison Janney, ... }
                                                                                          $1157M
               {Chris Evans, Robert Downey Jr., Scarlett Johansson, Sebastian Stan, ... }
                                                                                          $1153M
```

- The estimated local variables \hat{z}_i are substitute confounders.
- They are latent attributes of movie casts that the factorization has discovered.
- Form an **augmented dataset** of triplets $(\mathbf{a}_i, y_i, \hat{z}_i)$.

Do causal inference

```
{Sam Worthington, Zoe Saldana, Sigourney Weaver, Stephen Lang, ... }
                                                                                             $2788M
                   {Kate Winslet, Leonardo DiCaprio, Frances Fisher, Billy Zane, ... }
                                                                                             $1845M
                   {Robert Downey Jr., Chris Evans, Mark Ruffalo, Chris Hemsworth, ... }
                                                                                             $1520M
                   {Chris Pratt, Bryce Dallas Howard, Irrfan Khan, Vincent D'Onofrio, ... }
                                                                                             $1514M
{Vin Diesel, Paul Walker, Dwayne Johnson, Michelle Rodriguez, ...}
                                                                                             $1506M
                   {Robert Downey Jr., Chris Hemsworth, Mark Ruffalo, Chris Evans, ... }
                                                                                             $1405M
                                                                                             $1274M
                   {Kristen Bell, Idina Menzel, Jonathan Groff, Josh Gad, ...}
                   {Robert Downey Jr., Gwyneth Paltrow, Don Cheadle, Guy Pearce, ...}
                                                                                             $1215M
                   {Sandra Bullock, Jon Hamm, Michael Keaton, Allison Janney, ... }
                                                                                             $1157M
                   {Chris Evans, Robert Downey Jr., Scarlett Johansson, Sebastian Stan, ... }
                                                                                             $1153M
```

- Use the substitute confounders in a causal inference.
- E.g., fit regression from casts and confounders to revenue,

$$\mathbb{E}[Y \mid \mathbf{a}, \hat{z}] = \boldsymbol{\beta}^{\mathsf{T}} \mathbf{a} + \boldsymbol{\eta}^{\mathsf{T}} \hat{z}.$$

Use adjustment/the g-formula to perform causal inference,

$$\mathbb{E}[Y \; ; \; \mathrm{do}(\mathbf{a})] \approx \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[Y \mid \mathbf{a}, \hat{Z}].$$

The deconfounder

- Find, fit, and check a factor model of the movie casts.
- Use the factor model to form substitute confounders for each movie.
- Use the substitute confounders in a causal model of movie revenue.

Case study: Actors

"Overestimated":

"Underestimated":

Most "corrected":

A little theory

The deconfounder

- Find, fit, and check a factor model of the movie casts.
- Use the factor model to form substitute confounders for each movie.
- Use the substitute confounders in a causal model of movie revenue.

A little theory

The deconfounder

- Suppose we fit a good factor model of the assigned causes (the actors).
- Then its local latent variable will contain multi-cause confounders.
- Main assumption: No single cause confounders.

Intuition (through graphical models)

If we find a good factor model then

$$p(a_{i1},...,a_{im} | z_i, \beta_{1:m}) = \prod_{j=1}^m p(a_{ij} | z_i, \beta_j)$$

Intuition (through graphical models)

- There cannot be an unobserved multi-cause confounder.
- Contradiction: If one existed then the independence statement would not hold.

Intution (through graphical models)

- Note: there still might be a single-cause confounder
- This is a weaker assumption than "strong ignorability."

Theory: It works

THEOREM: THE DECONFOUNDER

Suppose $p_{\text{true}}(\mathbf{a})$ can be written $\int p(z) \prod_j p(a_j \mid z, \boldsymbol{\beta}) dz$.

Then Z blocks the backdoor path between the causes and the effect.

This implies that,

$$\mathbb{E}[Y : do(\mathbf{a})] = \mathbb{E}_Z[\mathbb{E}_Y[Y \mid Z, \mathbf{a}]].$$

Thus we can estimate the interventional expectation.

(It's a little more nuanced than this; ask me later...)

We did many simulations and studies

Example: Genome-wide association studies (GWAS)

- GWAS is a problem of multiple causal inference
- How is genetic variation causally connected to a trait?
- For each individual: a trait and many measurements of the genome (SNPs).

Example: Genome-wide association studies (GWAS)

- Multiple-cause confounding is a problem.
- Non-causal SNPs may be highly correlated to causal SNPs
- Misestimates causal effects

ID (i)	SNP_1 $(a_{i,1})$	SNP_2 $(a_{i,2})$	SNP_3 (a _{i,3})	SNP_4 (a _{i,4})	SNP_5 (a _{i,5})	SNP_6 (a _{i,6})	SNP_7 (a _{i,7})	SNP_8 (a _{i,8})	SNP_9 (a _{i,9})	***	$\begin{array}{c} \mathrm{SNP_100K} \\ (a_{i,100K}) \end{array}$	Height (feet) (y _i)
1	1	0	0	1	0	0	I	2	0		0	5.73
2	1	2	2	1	2	1	1	0	1	•••	2	5.26
3	2	0	1	1	0	1	0	1	1		2	6.24
4	0	0	0	1	1	0	1	2	0	(444)	0	5.78
5	1	2	1	1	1	0	1	O	0	: ***	1	5.09

- ightharpoonup Generate SNPs a_{ij} , where each individual belongs to a latent group c_i .
- The true outcome is a trait y_i , drawn from

$$y_i = \sum_j \beta_j a_{ij} + \lambda_{c_i} + \varepsilon_i \quad \varepsilon_i \sim \mathcal{N}(0, \sigma_{c_i}),$$

where many β_i are zero, i.e., non-causal SNPs.

ightharpoonup Confounded: the intercept λ_{c_i} and error ε_i are connected to the latent group.

	pred. score	Real-valued outcome RMSE×10 ²	Binary outcome RMSE×10 ²
No control	927 27		
Control for confounders*	-		
(G)LMM	_		
PPCA	0.14		
PF	0.15		
LFA	0.14		
Mixture	0.00		
DEF	0.20		

- We fit many factor models; none was the true model.
- Each provides different levels of predictive performance.
- All computation done in Edward [Tran+ 2018].

	pred. score	Real-valued outcome RMSE×10 ²	Binary outcome RMSE×10 ²
No control	92	58.82	29.50
Control for confounders*	-	25.32	25.77
(G)LMM	_	35.18	28.87
PPCA	0.14	33.32	26.70
PF	0.15	33.38	26.84
LFA	0.14	33.93	26.83
Mixture	0.00	57.59	29.96
DEF	0.20	26.47	25.91

- Also fit outcome models with no control and with observed confounders
- The deconfounder provides good causal estimates.
- Predictive checks indicate downstream causal performance.

Explains and justifies existing methods for GWAS

- Linear mixed models [Yu+ 2006; Kang+ 2008; etc.]
- Principal component analysis [Price+ 2006]
- Logistic factor analysis [Song+ 2015; Hao+ 2015]
- Mixed-membership models [Pritchard+ 2000a,b; Falush+ 2003; Falush+ 2007]
- Deep generative models [Tran and Blei 2018]

Simulation study

	pred. score	Real-valued outcome RMSE×10 ²	Binary outcome RMSE×10 ²
No control	9 <u>2 - 2</u> 9	58.82	29.50
Control for confounders*	-	25.32	25.77
(G)LMM	_	35.18	28.87
PPCA	0.14	33.32	26.70
PF	0.15	33.38	26.84
LFA	0.14	33.93	26.83
Mixture	0.00	57.59	29.96
DEF	0.20	26.47	25.91

- Also fit outcome models with no control and with observed confounders
- The deconfounder provides good causal estimates.
- Predictive checks indicate downstream causal performance.

Explains and justifies existing methods for GWAS

- Linear mixed models [Yu+ 2006; Kang+ 2008; etc.]
- Principal component analysis [Price+ 2006]
- Logistic factor analysis [Song+ 2015; Hao+ 2015]
- Mixed-membership models [Pritchard+ 2000a,b; Falush+ 2003; Falush+ 2007]
- Deep generative models [Tran and Blei 2018]

Discussion

Causal inference from observational data

- How can we understand the world through observation?
- Important to genetics, economics, physics, medicine, finance, ...
- Today: Use probabilistic machine learning for causal inference

The deconfounder

- Find, fit, and check a factor model of the assigned causes.
- ► Use the factor model to form **substitute confounders** for each individual.
- Use the substitute confounders in a causal model of the outcome.

The deconfounder

- Suppose we fit a good factor model of the assigned causes (the actors).
- Then its local latent variable will contain multi-cause confounders.
- (There are assumptions.)

The deconfounder

- Uses probabilistic machine learning for causal inference.
- Can employ approximate inference and Bayesian model checking.
- Requires weaker assumptions than classical causal inference.

Further reading and current research

Y. Wang and D. Blei. *The Blessings of Multiple Causes*, 2018. https://arxiv.org/abs/1805.06826

- Other readings
 - Tran and Blei (2018), ICLR
 - Ranganath and Perotte (2018), arXiv 1805.08273
- Current research about the deconfounder
 - SEMs and the causal graphical view
 - testing with the deconfounder
 - understanding the bias-variance trade-off of the deconfounder
 - latent mediators & mechanisms
 - many applications (medicine, recommendation, sports, fairness, ...)

Extra slides

On identification

- A causal quantity is identifiable if it can be written as a function of the observed variables.
- ▶ If the causal quantity changes, so does the distribution of the observed data.
- ightharpoonup D'Amour (2019) gives two examples where $\mathbb{E}[Y; do(\mathbf{a})]$ is not identifiable.
- These results help flesh out the theory of multiple causal inference.
- But identification is still possible (with assumptions).

On identification

- Assume we pinpoint a substitute confounder $\hat{z} = f(\mathbf{a})$, e.g., many causes.
- ► (Theorem) Differences of complete interventions are

$$\mathbb{E}\left[Y : do(\mathbf{a})\right] - \mathbb{E}\left[Y : do(\mathbf{a}')\right].$$

They are nonparametrically identifiable when the outcome separates contributions from the unobserved confounders and causes.

 \triangleright (Theorem) Consider a subset of causes B. The subset intervention is

$$\mathbb{E}\left[Y : do(\mathbf{a}_B)\right].$$

It is identifiable with overlap on the subset, $p(\mathbf{a}_B \mid z) > 0$.