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Abstract

User modeling is an essential task for online rec-
ommender systems. In the past few decades, col-
laborative filtering (CF) techniques have been well
studied to model users’ long term preferences.
Recently, recurrent neural networks (RNN) have
shown a great advantage in modeling users’ short
term preference. A natural way to improve the rec-
ommender is to combine both long-term and short-
term modeling. Previous approaches neglect the
importance of dynamically integrating these two
user modeling paradigms. Moreover, users’ be-
haviors are much more complex than sentences in
language modeling or images in visual computing,
thus the classical structures of RNN such as Long
Short-Term Memory (LSTM) need to be upgraded
for better user modeling. In this paper, we im-
prove the traditional RNN structure by proposing
a time-aware controller and a content-aware con-
troller, so that contextual information can be well
considered to control the state transition. We fur-
ther propose an attention-based framework to com-
bine users’ long-term and short-term preferences,
thus users’ representation can be generated adap-
tively according to the specific context. We con-
duct extensive experiments on both public and in-
dustrial datasets. The results demonstrate that our
proposed method outperforms several state-of-art
methods consistently.

1 Introduction
In the era of information overload, Recommender Systems
(RS) are essential for online services and are broadly utilized
in a variety of areas such as online shopping, movies, music
and news reading services. Two paradigms of recommender
systems are most popular nowadays: general recommender
and sequential recommender. General recommender aims to
learn users’ long-term preference which are presumed to be
statistic or change slowly over time. Factorization-based col-
laborative filtering [Koren et al., 2009; Koren, 2008] methods
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are the best-known techniques in this area. However, the in-
tent of user behaviors is inherently variable, which can be in-
fluenced by various factors such as interest evolution, instant
demands and global mainstream fashion during a certain time
period. Recently, the sequential recommender has attracted
considerable attention due to its superiority in capturing item-
to-item sequential relations, and this superiority meets the
needs of exploring users’ short-term preference. Motivated
by the successful applications of recurrent neural networks
(RNN) in other domains, especially in Natural Language Pro-
cessing (NLP), RNN approaches have now become the main-
stream models for sequential recommender [Wu et al., 2017;
Okura et al., 2017; Beutel et al., 2018; Zhou et al., 2019].

The vanilla RNN presumes an evenly distribution pattern
between successive items in a sequence. For example, in NLP
applications intervals between any two successive words in a
sentence can be regarded as equal, and the whole sentence
is organized for expressing the same (semantic) topic. How-
ever, a user’s behavior sequence in the real-world is much
more complex, and in this paper, we focus on two key prob-
lems: dynamic time intervals and dynamic latent intent. The
first problem indicates the time interval between a user’s suc-
cessive actions can be varying. e.g., his/her next action may
happen on the next day or in the next week. Intuitively, two
actions within a short time interval tend to share a closer
relationship than two actions that within a long time inter-
val. Thus this kind of temporal distance deserve special han-
dling. On the other side, the dynamic latent intent prob-
lem indicates a type of semantic distance. Customer intent,
also known as the user’s main purpose behind his/her behav-
ior, is often changing from session to session. Irrelevant ac-
tions are useless for predicting a user’s certain future action.
For example, suppose a user’s purchase history is [iPhone
xs, airpods, yogurt X, cat food X ], when we want to rec-
ommend him with laptops, only the first two actions, i.e.
the iPhone xs and airpods, are strongly signals to infer that
he/she may be interested in MacBook series. Some recent
works partially discuss these two challenges [Zhu et al., 2017;
Zhou et al., 2019], but none of them address both dynamic
time interval and latent intent problems in a unified model.

Motivated by the aforementioned observations, we first
propose a novel sequential recommender based on LSTM
[Hochreiter and Schmidhuber, 1997], named TC-SeqRec, for
better short-term user modeling. There are two key mecha-



nisms in our TC-SeqRec model, corresponding to time-aware
controller and content-aware controller. Specifically, to cope
with the time-aware distance, we propose to utilize the gated
mechanism in classical LSTM, and it is capable of control-
ling to what extent the information should be translated to
future stages according to time context. To cope with the
content-aware distance, we adapt attention mechanisms to
dynamically filter out irrelevant actions in a user’s behav-
ior sequence, since attention mechanisms have achieved re-
markable results in multiple domains such as recommender
systems, question answering, machine translation, and image
captioning. Via jointly training with both the time-aware and
content-aware mechanisms, TC-SeqRec is more effective and
robust for short-term user modeling.

Usually we do not merely rely on RNNs for sequential
recommender systems. Although users’ interest may be
time-varying, there is still some static components influenc-
ing users’ behaviors, which reflect their long-term prefer-
ences. That is why existing approaches tend to combine both
short-term and long-term interaction [Rendle et al., 2010;
Wu et al., 2017]. We find that a naive and static combi-
nation of these two aspects are insufficient. The aforemen-
tioned time-aware and content-aware observations can also be
applied in this combination stage. We propose an attention-
based fusion method to adaptively incorporate the short- and
long-term preferences under specific circumstances, such as
when (if the next action occurs shortly after the last action,
short-term information may play a major role in prediction;
otherwise, we should shift more weight to the long-term com-
ponent) and what (if recent actions share a distinct intent, then
the next action may have a higher probability to share the
same intent). We name the integrated model SLi-Rec, which
is short for Short-term and Long-term preference Integrated
RECommender system. We conduct extensive experiments
on both a public dataset and our industrial dataset, and re-
sults demonstrate that our proposed model outperforms sev-
eral state-of-art models significantly.

2 Related Work
2.1 General Recommender
A general recommender models users’ long-term preference
which reflects users’ inherent characteristics and are static
or changed slowly with time. Items recommended by this
type of recommender are supposed to be interacted with by
the user eventually without any consideration of the order.
Factorization-based collaborative filtering methods [Koren et
al., 2009; Koren, 2008] are one of the most effective tech-
niques for this goal. Some popular topics under this direc-
tion include unifying collaborative and content-based filter-
ing [Basilico and Hofmann, 2004], implicit feedback [Rendle
et al., 2009], general user profiling [Zhong et al., 2015] and
so on. In recent years, deep learning techniques have been
widely and successfully applied in RS, for example, [He et
al., 2017] proposes NCF to learn an arbitrary function from
data by replacing the inner product with a neural architecture,
[Cheng et al., 2016] jointly trains wide linear models and
deep neural networks for combining memorization and gen-
eralization, [Lian et al., 2018] aims to learn effective higher-

order feature interactions based on factorization machine.

2.2 Sequential Recommender
In contrast, a sequential recommender pays attention to the
order of user behaviors. Some early work considers Markov
chains to model sequential behavior by learning a transi-
tion graph over times that is used to predict the next ac-
tion based on the recent actions of a user [Rendle et al.,
2010]. Recently, recurrent neural networks (RNN) have
demonstrated great power in sequential recommender, in-
cluding in learning user/item evolution [Wu et al., 2017],
building session-based RS [Hidasi et al., 2015; Wang et
al., 2018] and next item/basket prediction [Li et al., 2017;
Zhu et al., 2017]. [Liu et al., 2016] employs adaptive context-
specific input matrices and transition matrices to improve
conventional RNN models. [Zhu et al., 2017] proposes sev-
eral time gates to model time intervals with the goal of cap-
turing both of users’ long-term and short-term interests. The
sequential recommender is not only popular in academia,
but also popular in industrial systems [Okura et al., 2017;
Beutel et al., 2018; Zhou et al., 2019]. In this paper, we
leverage RNN structures for model users’ short-term prefer-
ence, and further propose an attention-based adaptive fusion
schema to dynamically combine users’ both short-term and
long-term preference.

3 Our Model
Let U = {u1, u2, ..., un} denote a set of users and I =
{i1, i2, ..., im} denote a set of items. A user’s behav-
ior history is represented by an ordered list: B(u) =
{(iu1 , tu1 ), (iu2 , t

u
2 ), ..., (iu|B(u)|, t

u
|B(u)|)}, where (iu1 , t

u
1 ) means

a user u interacted with an item iu1 at time tu1 , ti < tj for
i < j, and |B(u)| denotes the number of actions in the
user’s behavior sequence. Our task belongs to the category
of embedding-based user modeling, i.e., given B(u) we will
generate a dense user vector pu = 〈p1, p2, ..., pd〉 which en-
codes the user’s preference and can be used (together with
other rich features) to predict which item he/she will inter-
act at a future time tp, where p = |B(u)| + 1 . To make
user vectors be more expressive, we will introduce a method
to incorporate both long-term and short-term preference. In
real industrial recommender systems, users’ long-term pref-
erence can be learned based on a relatively longer time range
and computed offline. On the other side, users’ short-term
preference can be inferred at online serving based on a rel-
atively shorter range of recent behaviors to reduce computa-
tional cost. Next, we will introduce our proposed model in
detail in three parts: short-term modeling, long-term model-
ing, and adaptive fusion stage.

3.1 Short-Term Modeling
Due to their remarkable ability in sequential user modeling,
RNNs have been attracting great attention recently in both
academia [Zhu et al., 2017; Wu et al., 2017; Donkers et al.,
2017] and industry [Beutel et al., 2018; Okura et al., 2017;
Zhou et al., 2019]. The sequential updating process is very
simple and can be formulated by:

hk = g(xkW + hk−1U + b) (1)



Where g is the activation function, xk is the latest user ac-
tion and hk−1 is the last hidden state. Among all RNN-based
models, LSTM (long short-term memory) [Hochreiter and
Schmidhuber, 1997] and GRU (gated recurrent unit) [Cho et
al., 2014] are most commonly used for RS. On our own in-
dustrial dataset we observed that LSTM is slightly better than
GRU, without loss of generality, in this paper we formulate
the model with LSTM, whose equations are as follows:

fk = σ(xkWf + hk−1Uf + bf ) (2)
ik = σ(xkWi + hk−1Ui + bi) (3)
ck = fk � ck−1 + ik � φ(xkWc + hk−1Uc + bc) (4)
ok = σ(xkWo + hk−1Uo + bo) (5)
hk = ok � φ(ck) (6)

whereW∗, U∗ ∈ RD×D are trainable parameters,D indicates
the dimension of input embedding and hidden layer in RNN
(for notation simplicity, we presume the size of dimensions
are equal). fk, ik, ok represent the forget, input, and output
gates, respectively. ck represents the cell status, xk denotes
the k-th item’s input embedding, and � denotes the element-
wise product. Usually, σ is the sigmoid function, and φ is
the tanh function.

Different from words of a sentence in NLP domain, where
items can be regarded as evenly spaced and semantically
consistent, the sequence of user behaviors are much more
complex. Here we mainly focus on these two challenges:
(1) Time irregularity. Time intervals between two succes-
sive actions can be various. E.g., user a’s purchase his-
tory is Ba = {(ia1 , Feb 1st), (ia2 , F eb 2nd), (ia3 , Apr 2nd)},
it’s more reasonable to transmit more information from ia1
to ia2 than from ia2 to ia3 , because item ia2 is purchased just
one day after purchasing item ia1 , while item ia3 is pur-
chased two months after last purchase. (2) Semantic irreg-
ularity. Items within a user’s behavior sequence may not al-
ways share the same semantic topic (which we usually call
customer intent). E.g., user a’s purchase sequence may
contains items {iphonexs, airpods, lawnmower,Bikini},
these items represent his/her different demands and only the
first two items are strong signals for predicting his/her next
activity for electronic products.

To tackle the problem of time irregularity, we modify the
gating logic in LSTM to make it sensitive to time changes.
We introduce two time-aware features, i.e., time interval fea-
ture δtk and time span feature stk , as follows:

δtk = φ(Wδlog(tk − tk−1) + bδ) (7)
stk = φ(Wslog(tp − tk) + bs) (8)
Tδ = σ(xkWxδ + δtkWtδ + btδ) (9)
Ts = σ(xkWxs + stkWts + bts) (10)

where Wδ , Ws ∈ RD and Wtδ , Wts ∈ RD×D. The time
span feature stk encodes the absolute temporal distance be-
tween current state tk and prediction state tp, while the time
interval feature δtk encodes the relative temporal distance be-
tween two consecutive states. Similar to [Beutel et al., 2018],
we add a fully connected layer to convert the time-aware fea-
tures into dense vectors (δtkWtδ and stkWts), then compute

time gates (Tδ and Ts) accordingly. Eq.(4) is now changed to:

ck =fk � Tδ � ck−1
+ ik � Ts � φ(xkWc + hk−1Uc + bc)

(11)

and Eq.(5) is updated as:

ok = σ(xkWxo+ δtkWδo+ stkWso+hk−1Who+ bo) (12)

To tackle the problem of semantic irregularity, we adopt
attentive mechanisms to suppress the information that devi-
ates from the target direction. Actually, attention mechanisms
have been widely used to filter out irrelevant items or distin-
guish different levels of influence scores for relevant items
[Wang et al., 2018; Ying et al., 2018; Zhou et al., 2019;
Li et al., 2017]. An item’s attention score is computed by:

ak =
exp(xkW

s
xep)∑|Bu|

j=1 exp(xjW
s
xep)

(13)

where ep represents another embedding vector of item we
want to make prediction, we call it prediction embedding
in contrast to the input embedding vector xp. The attention
score ak determines which item should be emphasized or ne-
glected according to target items. We utilize these scores to
adjust the cell and hidden states:

c̃k = ak ∗ ck + (1− ak) ∗ ck−1 (14)

h̃k = ak ∗ hk + (1− ak) ∗ hk−1 (15)

Instead of using the last hidden state as user representation,
i.e., pushort = h̃k, we formulate user’s short term representa-
tion as the weighted average of all the hidden states:

ask =
exp(h̃kW

s
hep)∑|Bu|

j=1 exp(h̃jW
s
hep)

(16)

pshortu =

|Bu|∑
j=1

asj h̃j (17)

We call our proposed short-term model TC-SeqRec, which
indicates that the model is a time- and content-aware sequen-
tial recommender.

3.2 Long-Term Modeling
In this component we aim to model users’ general preference
that are inherent and supposed to be static or changed slowly.
Matrix factorization techniques are the most successful meth-
ods for learning this long-term preference. Instead of provid-
ing an explicit parameterization for users, we adopt the at-
tentive “Asymmetric-SVD” [Koren, 2008] paradigm, which
represents users through the items that they interacted with:

plongu =
∑

j∈B(u)

aljxj (18)

similar to the Attentive Collaborative Filtering [Chen et al.,
2017], alj is the weighting score for behavior j. We presume
that not all behaviors contribute equally, thus it is meaningful



to assign higher (lower) weights for the corresponding behav-
iors that are more informative (less informative). The weight-
ing score is computed as:

vk = φ(W l
vxk + bv) (19)

alk =
exp(vkτl)∑

j∈B(u) exp(vjτl)
(20)

where W l
v ∈ RD×D and τl ∈ RD. Usually we can add a

general user vector to the Asymmetric-SVD, i.e., plongu =
p′u +

∑
j∈B(u) a

l
jxj . But to reduce parameters and prevent

overfitting, we merely use Eq.(18) as user representation.

3.3 Adaptive Fusion Approach
Both short-term and long-term components have strengths
and weaknesses. It is necessary to accommodate these two
components. Instead of using a naive way to combine them,
e.g., pfinalu = pshortu + plongu , we design an adaptive way
for information fusion. The motivation is which component
should play a more important role is determined by the spe-
cific context, such as when (if next action is taken shortly af-
ter the previous behaviors, then short-term preference may be
more informative) and what (some categories of items such as
mobile phone are better inferred from long-term preference,
while some categories such as mobile accessories are better
inferred from short-term information). Thus information fu-
sion in a dynamic fashion is beneficial, and we propose the
following attention-based adaptive fusion method:

α = σ(Wm[pshortu , plongu , xcontext] + bm) (21)

pfinalu = α ∗ pshortu + (1− α) ∗ plongu (22)

where [pshortu , plongu , xcontext] represents a concatenation of
short-term information, long-term information, and the con-
textual information. Note that for contextual information, we
can include various kinds of important features according to
what we have at hand, such as time interval, time stamp, lo-
cation, and target item category. In our experiments we only
include the item interval and the prediction embedding of the
target item. We name the model SLi-Rec, which is short
for Short-term and Long-term preference Integrated RECom-
mender system.

A typical function for measuring user and item interaction
is the doc product in the form of ŷui = 〈pfinalu , ei〉. A more
flexible approach is to feed them into a multilayer perception
(MLP). In this way, various additional features, such as user
profiles and contextual features, can be easily incorporated
for industrial recommender systems. To emphasize the im-
pact of different user representations, in this paper we only
concatenate the user vector and item vector as the input for a
two-layer MLP, and all compared models in the experiment
section will share this design, i.e., ŷui = MLP ([pfinalu , ei]).

Because our real-world industrial task is related to CTR
(click-through rate) prediction, we formulate the recommen-
dation task as a binary classification problem, where the neg-
ative log-likelihood function (log-loss) is usually used as the
loss function:

L = − 1

N

N∑
i=1

yilogŷi + (1− yi)log(1− ŷi) (23)

Dataset Users Items Category Instances

Electronics 192k 63k 704 2993k
Movies 123k 50k 163 3147k
CDs 75k 64k 343 2044k
Entire 100k 1,200k 12024 6716k

Ads 519k 668k - 3894k

Table 1: Basic statistics of the datasets. Category feature is not en-
able in Ads dataset. “k” indicates a thousand.

where N is the total number of training instances. yi = 1
indicates a positive instance (the user has interacted with the
item) and yi = 0 indicates a negative instance. The optimiza-
tion process is to minimize the loss function together with a
regularization term:

J = L+ λ∗||Θ||2 (24)

where Θ denotes the set of trainable parameters.

4 Experiments
4.1 Datasets
We use both a public dataset and our own industrial dataset
for experimental analysis. The basic statistics of datasets (af-
ter filtering) are shown in Table 1.

Amazon dataset. [He and McAuley, 2016]. This is a public
dataset containing product reviews and metadata from Ama-
zon. Nowadays it’s widely used as a benchmark dataset in
the RS domain. Reviews can reveal customers’ shopping
behaviors. We choose three subcategories, i.e., Electronics,
Movies and TV, CDs and Vinyl, as well as a subset of the
entire merged Amazon dataset for experiments. Item is rep-
resented by item id and category id. Given a user’s previous
T behaviors, we want to predict his T+1 behavior. For each
user, his/her last behavior is hold out as the test set. For each
positive instance we randomly sample one negative instance.
50% of the test set is used for hyperparameter tuning and the
rest is used for reporting evaluation metrics.

Industrial dataset. Our real application scenario is native
advertising 1. We display personalized advertisements on
MSN2 homepage in a fashion that advertisements look like
part of the editorial flow of the page. A user’s behavior se-
quence is comprised of an ordered list of general browsing
records. Thus the input embedding (i.e., xk) is derived from
titles of browsing records while prediction embedding (i.e.,
ek) is from advertisement items. We extract the impression
logs from 10 consecutive days in November 2018, and down-
sample the non-click logs to make the ratio of positive in-
stances to negative instances be 1:5. The first 7 days are used
as the training set, and the latter 3 days are used for the test
set. Similar to the Amazon settings, 50% of the test set is
used for hyperparameter tuning and the rest is used for re-
porting evaluation metrics.

1https://en.wikipedia.org/wiki/Native advertising
2https://www.msn.com/

https://en.wikipedia.org/wiki/Native_advertising


4.2 Compared Methods
We compare SLi-Rec with the following competitive models:
ASVD [Koren, 2008] represents users by the items that they
have interacted with. Items contribute equally. We further use
Eq.(18) to get an attentive ASVD, or A2SVD for short.
DIN [Zhou et al., 2018] uses an attentive mechanism to dy-
namically activate related items in a user’s behavior history
according to the target item.
LSTM The classical LSTM model for sequential prediction.
NARM [Li et al., 2017] is a neural attentive recommendation
machine, which captures a user’s main purpose in the current
session by incorporating an attention mechanism into RNN.
RRN [Wu et al., 2017] also leverages LSTM to capture dy-
namics in addition to a traditional low-rank factorization. The
biggest difference between this method and the LSTM base-
line is that, in RRN the user-item interactions are aggregated
by a time step granularity. We have tried the granularity of
daily and weekly, denoted by RRN-day and RRN-week.
LSTM++ combines the A2SVD and the LSTM baselines to
capture both long-term and short-term preferences. We de-
note it as LSTM++ for convenience.
CA-RNN [Liu et al., 2016] is the context-aware recurrent
neural networks which employs adaptive context-specific in-
put matrices and transition matrices in the RNN framework.
T-LSTM [Zhu et al., 2017] equips LSTM with time gates to
model time intervals. Different from our model, it doesn’t
handle time span and relies on the time gates to capture both
long-term and short-term interests.
DIEN [Zhou et al., 2019] is the most recent related work
which models the user’s sequential behaviors with two lay-
ers of GRU. Its key components consist of interest extracting
layer and interest evolving layer. The long-term component
in this baseline is ASVD.
We implement the models with Tensorflow, the source code
is available at https://github.com/zepingyu0512/sli rec. Op-
timizer is Adam. Dimension for item/category embedding
and RNN hidden layers is 18, while the dimension for MLP
is 36. We adopt grid search to find the best hyperparame-
ters for each model with validation set. Optimal settings for
our model are: learning rate is 0.001; L2 regularizataion is
0.0001; no dropouts; batch normalization is used only after
the concatenation of the user’s (final) embedding and item
embedding; activation function of MLP is Dice [Zhou et al.,
2018] for Amazon and ReLU for Ads dataset; maximum
length for user behaviors is set to 100.

Evaluation metrics. In Section 3.3 we formulate the rec-
ommendation task as a binary classification problem, thus we
use AUC and F1-score as the evaluation metrics. AUC mea-
sures the probability that a positive instance will be ranked
higher than a randomly chosen negative one. F1-score is the
harmonic mean of precision and recall. These metrics sum-
marize a model’s performance from different aspects.

4.3 Results
Comparison to baselines. Tables 2 and 3 show the over-
all performance of different models in terms of AUC and
F1-score respectively. ASVD, A2SVD and DIN are mod-
els without sequential mechanism, while the other models

Model Entire Elec Movies CDs Ads

ASVD 0.8060 0.7727 0.8156 0.8863 0.6463
A2SVD 0.8204 0.7838 0.8263 0.9032 0.6501
DIN 0.8293 0.7927 0.8388 0.9111 0.6520

LSTM 0.8272 0.7859 0.8414 0.9086 0.6527
LSTM++ 0.8306 0.8028 0.8495 0.9113 0.6535
NARM 0.8290 0.7876 0.8448 0.9130 0.6531
RRNday 0.8260 0.7864 0.8406 0.9078 0.6531
RRNweek 0.8250 0.7869 0.8390 0.9069 0.6500
CARNN 0.8278 0.8106 0.8527 0.9096 0.6551
T-LSTM 0.8387 0.8212 0.8660 0.9181 0.6597
DIEN 0.8361 0.7904 0.8438 0.9128 0.6610

SLi-Rec 0.8494 0.8282 0.8769 0.9279 0.6654

Table 2: Performance comparison in terms of AUC. A bold font
means the number is significantly bigger than the second best model
with p-value < 0.05. For notation simplicity we omit the asterisks
and the same goes for all the other tables.

have a sequential component. A2SVD and DIN outper-
form ASVD, which demonstrates that assigning importance
score to items are beneficial. Containing both short-term and
long-term interest is meaningful for recommender systems,
and this can easily be verified via comparing LSTM++ with
LSTM. NARM is original designed for capturing the user’s
main purpose in the current session, which is different from
our application scenario, thus its performance is not very out-
standing in our cases. CARNN, T-LSTM, and DIEN can out-
perform LSTM and RRN in most cases, which directly verify
that considering contextual information in sequence is help-
ful. At last, our proposed SLi-Rec significantly outperform
all the baselines on five datasets across the three evaluation
metrics. The superiority of SLi-Rec depends on three com-
ponents, i.e., the short-term part, the long-term part, and the
adaptive fusing part. Next we will investigate the effective-
ness of these components separately.

Model variants for short-term component. To verify
whether our design of time-aware and content-aware con-

Model Entire Elec Movies CDs Ads

ASVD 0.7427 0.7255 0.7539 0.8128 0.3242
A2SVD 0.7538 0.7264 0.7565 0.8264 0.3270
DIN 0.7599 0.7349 0.7660 0.8348 0.3320

LSTM 0.7556 0.7311 0.7683 0.8325 0.3296
LSTM++ 0.7591 0.7448 0.7742 0.8352 0.3338
NARM 0.7565 0.7323 0.7706 0.8375 0.3327
RRNday 0.7550 0.7318 0.7685 0.8322 0.3313
RRNweek 0.7545 0.7327 0.7676 0.8315 0.3313
CARNN 0.7584 0.7519 0.7763 0.8336 0.3292
T-LSTM 0.7591 0.7448 0.7742 0.8352 0.3338
DIEN 0.7632 0.7327 0.7755 0.8374 0.3343

SLi-Rec 0.7745 0.7643 0.7958 0.8532 0.3367

Table 3: Performance comparison in terms of F1-score.

https://github.com/zepingyu0512/sli_rec


Model Entire Elec Movies CDs Ads

LSTM 0.8272 0.7859 0.8414 0.9086 0.6527

T-LSTM 0.8387 0.8212 0.8660 0.9181 0.6597
T-SeqRec 0.8401 0.8248 0.8709 0.9223 0.6615

TC-SeqReci 0.8324 0.8178 0.8602 0.9080 0.6596
TC-SeqRecg 0.8356 0.8261 0.8696 0.9220 0.6634
TC-SeqRec 0.8453 0.8264 0.8730 0.9244 0.6639

Table 4: Comparison of variants of short-term models (in AUC).

α design Entire Elec Movies CDs Ads

0 0.8204 0.7838 0.8263 0.9032 0.6501
1 0.8453 0.8264 0.8730 0.9244 0.6634

fixed 0.8397 0.8274 0.8725 0.9261 0.6641

adaptive 0.8494 0.8282 0.8769 0.9279 0.6654

Table 5: Comparison of different fusing methods (in AUC).

trollers are necessary and effective for short-term preference
modeling, we study several variants. Table 4 shows the re-
sults. All the other models are better than LSTM, which
demonstrates that consider complex user behavior patterns is
indeed meaningful. T-SeqRec is our short-term model which
only enable the time-aware controller. Compared with T-
LSTM, T-SeqRec not only uses time interval, but also uses
time span feature. TC-SeqRec∗ are different approaches to
enable the content-aware controller, where i means the item
attention score (Eq.(13)) is applied to input features instead
of to cell and hidden states, g means we use the last state
as short-term preference instead of averaging all the hidden
states (Eq.(17)). Via comparing with these various variants,
we can observe that both the time-aware and content-aware
controllers are beneficial to short-term user modeling.

Effectiveness of adaptive fusion. Table 5 demonstrates
various choices of α in Eq.(22). α = 0 and α = 1 indicate
only using a long-term or short-term component, respectively.
α = fixed means we empirically search a fixed optimal
value for each dataset (similar to an end-2-end ensemble of
two components). We observe that the short-term component
is always significantly better than the long-term component,
thus sometimes a naive combination of these two components
turns out to be even worse than a mere short-term component.
An adaptive fusion mechanism is necessary and effective. To
get an intuitive sense of how αwould change with context, we
split test instances according to the time interval of a user’s
last behavior. For instance, 1 hour means than the behavior
which we want make prediction occurs within one hour after
the user’s last behavior. Figure 1 shows the results. There
is a clear trend that importance for long-term component in-
creases with the time interval, which matches our assumption.

Attention in long-term component. To verify whether
Eq.(18) can learn discriminative importance scores for dif-
ferent items, we output item’s weighting values in Eq.(20)

Figure 1: Average integration values (Eq.(21)) for Long-term prefer-
ence component on the CDs (left) and Movies (right) dataset w.r.t.
the next prediction time interval.

(a) Item (b) Category (with variance).

Figure 2: Distribution of attentive weights (Eq.(20)) for items and
categories (item average) in long-term preference modeling.

on the entire dataset. For better illustration, for each category
we at most sample 1000 items, and ignore categories that con-
tain fewer than 100 items. We sort items by their normalized
importance score and plot Figure 2a. For each category, we
count the mean and variance of all items’ scores under this
category and draw Figure 2b (the scores are scaled by 1e-5 ).
We can observe that items are assigned with discriminative
scores, and few items (less than 2%) are assign a normalized
score greater than 0.5.

5 Conclusion
In this paper, we have proposed the novel SLi-Rec model for
integrating both the short-term and long-term preference for
better user modeling. We observe that users’ behavior se-
quences are much more complex and challenging than se-
quences in other application domains (such as sentences in
NLP), thus we propose the time-aware and content-aware
controllers to make the classical LSTM more suitable for user
behavior modeling. We further propose an attention-based fu-
sion method to adaptively combine the long-term and short-
term preference according to the specific context. We have
conduct extensive experiments on both public dataset and in-
dustrial dataset, experiments demonstrate that our proposed
model outperforms state-of-the-art methods consistently.
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