Building neural network models
that can reason
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What is Reasoning? pottou 2011




What is Reasoning? pottou 2011

* Algebraically manipulating previously acquired

knowledge in order to answer a new question
° |Is not necessarily achieved by making logical inferences

* Continuity between algebraically rich inference and
connecting together trainable learning systems

° Central to reasoning is composition rules to guide the
combinations of modules to address new tasks




Worshipping the
tabula Prrasa




Worshipping the
tabula P:asa

A good inductive bias
improves your ability to
learn (quickly and well)




Approprio&e skructural pri‘.ors




Appropria&e skructural pri.ors

highway network

Convolution Attention Gating (LSTM/highway)




Tree-skructured models

[Socher et al. 2010ff]
[Tai et al. 2015]




Tree-skruckured models

repetitive

it Interesting

slow and

[Socher et al. 2010ff, Tai et al. 2015]




Tree-skructured models

eople Buildimj :\\Tree

00008860

[Socher et al. 2011]




Composikiov\at reasolning tree
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ComPosiEiov\a\L reasoning without trees




ComPosE.Eiov\aL reasoning without trees

attention

Premises




Composi&iov\at reasoning without trees

If £ (X x Y x Z) — N, then curry(f): X — (Y — (Z — N))

Premises




Our Goal

Rather than using standard machine learning correlation

engines, the goal is improved neural network designs

* With a structural prior encouraging compositional
and transparent multi-step reasoning

* While retaining end-to-end differentiability

and demonstrated scalability to real-world problems




“When a person understands a

story, [they] can demonstrate
[their] understanding by
answering questions about the
story. Since questions can be
devised to query any aspect of
text comprehension, the ability
to answer questions is the
strongest possible demonstra-

tion of understanding.”
— Wendy Lehnert (PhD, 1977)
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Visual Question
Answering




Tallke Qubtline

v" From Machine Learning to Machine Reasoning
MAC networks on the CLEVR task

o The GQA dataset for VQA

o Neural State Machines for VQA




LEV , A Diagnostic Dataset for Compositional
C R ¢ Language and Elementary Visual Reasoning

There is a purple cube that is behind a metal object

left to a large ball; what material is the cube? [Johnson et al,

CVPR 2017]




LEV , A Diagnostic Dataset for Compositional
C R ¢ Language and Elementary Visual Reasoning
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There is a purple cube that is behind a metal object
left to a large ball; what material is the cube?

[Johnson et al,
CVPR 2017]




LEV , A Diagnostic Dataset for Compositional
C R ¢ Language and Etemeutarv Visual Reasoning

~
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relate: left ),

ﬁlé}r large
filker: ball

There is a purple cube that is behind a metal object
left to a large ball; what material is the cube? Rubber

[Johnson et al,
CVPR 2017]




One Existing Approach...
Neural Module Networks K

@ Partlally differentiable models that Question: Are there more cubes than yellow things? Answer: Yes

- things——>{ LSTM | LSTM |[—»{ 9=52%e= Glaniﬁfef
rely on strong supervision to 4 ¥ T
yellow— LSTM | | LSTM [~ count :
. . } ¥ Engine
translate queries into a tree- £ilter ——
than— LSTM | -»| LSTM % color 9:“ L ;
. ’ * S coun coun
structured functional program subes - tora M TR || S s || ot
A v filter || filter
* The programs are used to cOmpoS€  more—»| LsTM | |-+ LSTM || count o | e
. j ‘ filter e °4
a corresponding neural network out  there—+| LSTM | |- LSTM |[—»| shape /* T
¢ ¥ oibe)
of a discrete collection of Are: —il LSTM [yt ST i > {fsch e -
Predicted
| Program Generator_ Program

specialized neural modules

[Andreas at al, CVPR 2016; Johnson et al, ICCV 2017]




Memorj. Abtention. ComPosition.

The MAC Nebtworlk

A neural model for problem solving and reasoning tasks

°* Decomposes a problem into a sequence of explicit reasoning steps,

each performed by a Memory-Attention-Composition (MAC) cell

* One universal recurrent MAC cell is used throughout all the steps, where

its behavior is versatile, adapting to the context in which it is applied

* The network can represent arbitrarily complex reasoning graphs in a

soft manner (self-attention), maintaining an end-to-end differentiability




Memorv. Abtention. Compositiov\.

The MAC Nebtworlke

Each MAC cell is responsible for performing one reasoning step

at a time. It maintains dual recurrent states:

* Control c; this step’s reasoning operation

Attention-based average of a given query (question)

* Memory m; retrieved information relevant

to a query, accumulated over steps

Attention-based average of a given KB (image)




Memory, Attention. ComFositiov\.

The MAC cell

(MAC cell E
— R 7
Ci1 q _: CU Ci
m;., RU - WU 7 m
KB rm‘“l '




Memory, Attention. ComPosikiov\.
The MAC cell
M AC cell ) * Control Unit (CU) computes a
- control state, extracting an
i1 instruction that focuses on some
aspect of the query
M;.1

@)




Memory, Attention, ComFosE.!:'Lovx.
The MAC cell

M AC cell ) * Control Unit (CU) computes a
T T ietint s

@ I aspect of the query

° Read Unit (RU): retrieves

Mpew information from the knowledge
I WU ”m, . ’
| base given the current conftrol
M1 state and previous memory




Memor

The

MAC cell

Abtention. ComFosikiovx.

AC cell

) * Control Unit (CU) computes a
control state, extracting an
instruction that focuses on some

Cia q -

aspect of the query

°* Read Unit (RU): retrieves
information from the knowledge
base given the current control

m;_4 RU

&)

state and previous memory
° Write Unit (WU): updates the
N Y, memory state, merging old and
new information




The MAC cell =
The Conkrol Unit (CU) l‘”””"’_‘

Extract an instruction (control) from the question

- ; )
Control Unit (CU)
control \ \
2 3
—— i =
Ci1
: / /
attention
uer
9 y W,b softmax +
weighted
CWS average
contextual /

words




The MAC cell
The Read Unik (RU)

Retrieve information basedC on the current instruction

\

‘ Mpyew

, )0
/ Compositional attention

binary (and/or)

. & :
previous [ ReadUnit(RU) .., oitie

memory reasoning

W,b

knowledge
base

KBy, w




The MAC cell
The Write Unik (WO)

Combine retrieved information with accumulated

knowledge (memory)
@rite Unit (WU)

retrieved
information
Mg T )

new

m;_q

previous
memory




The MAC wnet
~From Cell to Nebtworlk

A MacNet is a soft-attention sequence of p MAC cells

MAC cell Control ]
i




The MAC wnet
~From Cell to Networlk

A MacNet is a soft-attention sequence of p MAC cells

Control Control Control Control Control

Memory Memory Memory Memory Memory

\ 7\ B & W By &

Uniform sequential structure for all queries;
efficient, easy to deploy, and fully differentiable




The MAC wnet

~rom Cell to Networlk

A MacNet is a soft-attention sequence of p MAC cells

Control

Memory

A capacity to represent arbitrarily complex

reasoning Directed Acyclic Graphs (DAGSs)
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Experime.v\ts
CLEVR Overall Resulks

Overall Accuracy (0-100)

= 700k Training set

= 150k Test set

= 28 candidate
answers

= Baseline: the most
frequent answer for
each question type

BASELINE CNN+LSTM N2NMN HUMAN




Experimev\&s
CLEVR Overall Resulks

Overall Accuracy (95-100)
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Experimev\!:s
CLEVR Overall Resulks

Overall Accuracy (95-100)

100
99
= (S): strongly
o8 supervised
= MAC net halves
97 the previous best
error rate
96
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RN PG+EE (S) FILM MACNET




Existing Approaches
Relation Neks and Film

Large CNN stacks interleaved with

specialized layers

RN [Santoro et al, 2017]
FiLM [Perez et al, 2017]




Existing Approaches
Relation Nets and Film

Large CNN stacks interleaved with

specialized layers

° Relation Net: Inspects every pair of ) "
Conv. o H ’[E“:’: : fo-Mp
pixels in order to make predictions based -@* i o I
e — RAHEEE ggp.

RN [Santoro et al, 2017]
FiLM [Perez et al, 2017]




Existing Approaches
Relation Nets and FilM

Large CNN stacks interleaved with

Are —»| GRU
- : ere y

specialized layers ree—lol | |
" more —+| GRU e A——— y (.%)._ :
v : ; L '
* Relation Net: Inspects every pair of R gt |
; 5 |

pixels in order to make predictions based = tyelow— RN | :

- things —» GR;U .t RS Conv
on binary relations 2 o :—

activation ! Fi& E Conv

* FiLM: Inserts conditional linear s— O .

normalization layers that tilt the
RN [Santoro et al, 2017]

activations based on the question FILM [Perez et al, 20171
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Data Efficiency

Learning curve

1

0.9

Accuracy (Val)
o
~N

R / B MAC
1 PG+EE (S)
0.5 OFiLM
O SA
0.4
0 0.2 0.4 0.6 0.8 1

Data set size (% out of 700k train)




Experime.v\!:s

Data Efficiency

Learning curve

: |

For 10% of the CLEVR

dataset, 70k examples:

= MacNet achieves 86%

0.9

" Other approaches obtain

Accuracy (Val)
o
~N

0.6 O MAC 51 -6% at beSt
y O PG+EE (S) o .
0.5 // 0 FiLM - Basellne aChleveS 41 .80/0
O SA
" o 0.2 0.4 0.6 0.8 1 Base"ne

Data set size (% out of 700k train) Most Frequent Answer for Question Type




Experimev\ts

CLEVR-Humawns

CLEVR Humans

100

30
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40

20

CNN+LSTM

PG+EE FILM

® O-shot ™ Finetuning

MACNET

CLEVR-Humans is 18k natural
language questions collected
through crowdsourcing

They wrote “questions hard for a
smart robot to answer’

Dataset has diverse vocabulary and
linguistic variation; demands more
varied reasoning skills

Has a small training set for fine-tuning



Perime.\r\l:s

CLE\/R-Humahs
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® O-shot m Finetuning




Experime.u&s

CLEVR-Humans

CLEVR Humans = CLEVR-Humans is 18k natural
o language questions collected
80 through crowdsourcing
60 " They wrote “questions hard for a
smart robot to answer’
- = Dataset has diverse vocabulary and
20 linguistic variation; demands more
0 varied reasoning skills

CNN+LSTM  PG+EE FILM MACNET ® Has a small training set for fine-tuning

m 0-shot m Finetuning




Abtention visualizakiowns
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o : What color is the matte thing to the right of the
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Attenkion visualizakiowns

1 234 56
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A heural compositional reasoning engine

° An initial design for a compositional reasoning engine
A constrained sequence model, separating control and
memory and exploiting attention is a good prior for reasoning
* Strong compositional reasoning skills
Halves the previous lowest error rate
Generalizes much better from more modest training data
Generalizes better to new tasks in CLEVR-Humans
° Generic, fully differentiable, end-to-end model




Earlier reasoning datasets are limited

Artificial images and/or language

A very small space of possible

objects and attributes gt i
High capacity models may memorize ]

all combinations, reducing effective il A
compositionality ° .

Subr el al. B
A L2017‘




Current VQA Benchmarks are problematic

Strong language real-world biases

models guess based on language priors

Visual biases
models overly focus on salient objects

Unclear error sources
noisy language; lack of object grounding

Little reasoning/compositionality required




: G‘Q A a new dataset for compositional question

10M compositional questions involving

a diverse set of reasoning skills

A balanced 1.5M-questions dataset with

closely controlled answer distributions




a new dataset for compositional question .

answering over real-world images

‘GQA

Each image comes with a scene graph

to represent its semantics

Each question comes with a functional program

to represent its semantics, grounded in the scene graph




a new dataset for compositional question .

answering over real-world images
il i

- 7” il »
\ A

%

!

Questions are generated using a (traditional, rule-based)

BN
© y W

multi-step question engine focusing on

linguistic diversity and a large vocabulary

A suite of new metrics exploit the known grounding

to shed light on model behaviors in various aspects

t
-




[Krishna, Zhu, Groth, Johnson, Hata, Kravitz, Chen, Kalantidis, Li, Shamma, Bernstein, and Fei-Fei, |[JCV 2017]




@ Visual Genome Scene Graph

Fm

Objects + Attributes + Relationships

smiling <= man = kneelingon cow = resting
7Z ¥ T ™
wears wears laying on has has
i i { { §
helmet watch grass bell neck

! l | ! t
silver black green hanging from

[Krishna, Zhu, Groth, Johnson, Hata, Kravitz, Chen, Kalantidis, Li, Shamma, Bernstein, and Fei-Fei, |[JCV 2017]




Improved Visual Genome

108k images, each with a Scene Graph and object masks

e Use ontology of concepts: 1700 objects, 600 attributes and
330 relations, in 60 categories and subcategories <

e Augment the graphs with (egocentric) positional (/ef),
comparative (same color) and global information (p/ace)




Question generation from graphs

Patterns: 500 probabilistic patterns, give
a high-level question outline

What|Which <type> [do you
think] <is> <dobject>,
<attr> or <decoy>?

small

holding
Select: <dobject> — Choose

<type>:<attr>|<decoy>

mburglly




Example Questions

VQA

1. Does this man need a haircut?

2. What color is the guy’s tie?
3. What is different about the man’s suit
that shows this is for a special occasion?

GQA

Is the person’s hair long and brown?
What appliance is to the left of the man?

Who is in front of the refrigerator on the left?
I[s there a necktie in the picture that is not red?
Is the color of the vest different than shirt?

SN S




Baseline Accuracies
100

80

60

40
”llll

Global CNN Local LSTM LSTM+ Bottom MAC Human
Prior Prior CNN







Language
!—%

VQA




Language

VQA

l—'—l
Language of Thought




VAbstraction: Towards a Language of Thought

We see and reason with concepts,
not visual details, 99% of the time

“Scene gists”

* Aman
e Acyclist
* Wearing glasses, gloves, watch
* Acow
e Grassland

e Sky...clouds




VAbstraction: Towards a Language of Thought

* We use concepts to organize our sensory experience

* We build semantic world models relating concepts to

represent our environment
* Usedto generalize from given examples to new ones

* Usedtodraw inferences from facts to conclusions

47




The hope of deep neural models is to

learn higher-level abstractions

Abstractions disentangle factors of

variation, improving generalization




Content-based attention over concepts

o Attention allows focus on a few elements out of a large set
 But we need attention over concept space, not over pixel space

e Cf.Yoshua Bengio’s so-called “Consciousness Prior”

e Learn a deep representation that disentangles abstract explanatory
factors

* The conscious state is then a very low-dimensional vector, an attention
mechanism applied on the deep representation

49
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A Neural State Machine

°* Adifferentiable graph-based model that
simulates the operation of a state machine
°* Aims to combine the strengths of
neural and symbolic approaches



A Neural State Machine

Two stages of construction and inference:
1) Construction: transforms the raw inputs
iInto abstract semantic representations,

building the state machine
Image — Scene graph, Question = Instructions

2) Inference: simulates an iterative computation
over the machine, sequentially traversing the

states until completion.

Reasoning over the scene graph to compute an answer



Formal Definition
® C the model’s alphabet '@v @
(embedded concepts) { :
a\ D v

® S a set of states

® £ a set of edges for valid transitions @'\ /

d

® r, I = n, instruction sequence
® p, distribution over the initial state

® 0: p; x r, = p., ( aneural state transition function



Reasoning with Abstractions

The State Machine | gm)
2 front >~

Given an image, we construct a scene graph
Treat it as a neural state machine, where:




Reasoning with Abstractions

The State Machine gm)

2 fromt .y @ .
HBOSIons ! Color: brown (0.92) =
\/ Material: wood (0.8) woom
.0
right ‘coffee
/ Color: red (0.95)

 looking \Z’y(\ Shape: round (0.87)  momm

states

swiling @
Mood: happy (0.78)  womm

Posture: sitfing (0.82) wmm

" boy

Given an image, we construct a scene graph
Treat it as a neural state machine, where:

* States correspond to objects

* Transitions correspond to relations

* States have different [soft) properties (attributes) via attention

properties




Reasonmg with Abstractions

The State Machine gm
| 2 front > transltlons ?

a/phabet (concepts)

Color: brown (0.92)  wmm
Material: wood (0.8) = um

apple

Color‘ red (0.95) R
 looking_\, 9 y = Shape: round (0.87)  momm
states |

swiling @
Y Mood: happy (0.78)  weem |

Posture: siffing (0.82) =mm

Objects are represented through a factorized / \
distribution over semantic properties properties  djsentangled
(color, shape, material), defined over the representation

concept vocabulary




Reasoning with Abstractions

U] -
L
i r
: |
yifee
1GKel
What is the red fruit inside —> maker 71001 m inside  red
of the bowl to the right of e 1 ‘, r, '
the coffee maker?

instructions

The question is translated into a series of instructions (with
an attention-based encoder-decoder), defined over the concepts




Reasomng with Abstractions

The State Machine gm
2 fete transztlons

a/phabet (concepts)

yellow

Color: brown (0.92) ==
Material: wood (0.8) =moum

fic
~ apple 3
ik "9 & Color' red (0.95) -
N hookng 3 / (\ Shape: round (0.87)  memm
boy states =
g
| Mood: happy (0.78) = em |
coffee Posture: siting (0.82) mmm
What is the red fruit inside —> maker right m inside  red il _J
o;' the bowl to the right of "o l'l Yz- rg K = . \
the coffee maker? .
: . properties  djsentangled
instructions

representation
We simulate a computation as a neural state machine, feeding one

instruction at a time and traversing the states until completion.




Reasoning with Abstractions

a/phabet (concepts)

The State Machine gm )
* . “trapsitions Color: brown (0.92) o
@ T o~ 1 / Material: wood (0.8) =mowm

- Color: red (0.95) -

looking \3’9 (\ Shape: round (0.87)  memm
states
Y Mood: happy (0.78)  wesm
Posture: siiting (0.82) wmm
What is the red fruit inside —> m right m inside red | Soalailan b —
of the bowl to the right of "o "'1 !'2- r3 e | \
the coffee maker? p ro p ertie S d . I d
instructions Isentangle

representation
We simulate a computation as a neural state machine, feeding one

instruction at a time and traversing the states until completion.




a/phabet (concepts)

Reasoning with Abstractions

The State Machine g,,,
| 2 front > trans:tlons
Material: wood (0 8) mum

. ffc
apple
4 Color‘ red (0.95) ——

. looking |\ &' ) . 2 8 Shape: round (0.87) e
boy |
= states
swiling @ =
Y Mood: happy (0.78)  wewm |
coffee Posture: sifting (0.82)
What is the red fruit inside —> mlur right m inside  red A =1
of the bowl to the right of "o "1 ‘) "3 n \
the coffee maker?

properties  djisentangled
representation

We simulate a computation as a neural state machine, feeding one
instruction at a time and traversing the states until completion.

instructions




Reasoning with Abstractions

alphabet (concepts)

The State Machine gm /
trans:tlons @

yellow Color: brown (0.92) s
[ Material: wood (0.8) = um

: Color: red (0.95) e

v looking \3/-”/ (\ Shape: round (0.87)  momm
i states
swiling @ |
Y Mood: happy (0.78)  weem |
coffee Posture: siffing (0.82) wmm
What is the red fruit inside —> mker right m inside  red —> apple | oo i =
o;' the bowl to the right of "o f ‘, r3 \ '4 \
the coffee maker? .
. . properties  djsentangled
instructions

representation
We simulate a computation as a neural state machine, feeding one

instruction at a time and traversing the states until completion.




One more example

Cabinet: wood (0.95), tall (0.92), shiny (0.86)  (cabinet, left, bed) (0.82) made
Bed: white (0.84), comfortable (0.91) (pillow, on, bed) (0.74)

What is the tall object to the _
left of the bed made of? Lamp: yellow (0.92), on (0.74), thin (0.82) er— Wood




NSM accuracy on GQA

70
60

50
40
30
20
wllll
0

CNN Global Local LSTM LSTM+ Bottom MAC NSM
Prior Prior CNN




Testing Disentanglement (= Understanding) —
VQA-CP: VQA under Changing Priors [agawal etal. 2017

Train Split Test Split

_ Model |Dataset __|Overallscore _
= d-LSTMQ+norml  VQAVIL 54.40
. (Antol et al. ICCV 2015) VQA-CP vl 23.51 -31%
. .. NMN VQA V1 54,83
(Andreas et al. CVPR 2016) VQA-CP vl 29.64 -25%

SAN VQA V1 55.86
(Yangetal. CVPR2016)  VQA-CPvl  26.88 -29%

- : MCB VOA V1 60.97
I (Fukui et al. EMNLP 2016)  VQA-CP v1 3439 -27%
60

What sport ...?



Generalization on VQA-CP v2

50
45

40 3921 39.31 39.54

39
31.30
30 28.65
5 24 9 l
20
SAN

HAN GVQA RAMEN BAN MuRel ReGAT NSM

40.42




GQA Generalization Splits

structure

content

training

What is the <obj> covered by?
Is there a <obj> in the image?
What is the <obj> made of?

What's the name of the <obj> that is <attr>?

Only questions that do not refer to any

type of food or animal (do not have
any word from these categories)

testing

What is covering the <obj>?

Do you see any <obj>s in the photo?
What material makes up the <obj>?
What is the <attr> <obj> called?

Only questions that refer to foods or
animals (have a word from that one of
these categories)




GQA Generalization Results

Model Content Structure
Global Prior 8.51 14.64
Lobal Prior 12.14 18.21
Vision 17.51 18.68
Language 21.14 32.88
Lang+Vision 24.95 36.51
BottomUp 29.72 41.83
MAC 31.12 47.27
NSM 40.24 55.72
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We should seek tasks involving
understanding and

multi-step compositional reasoning




Let’s build neural networks that think!

By iterative attention over

abstracted, disentangled concepts




Tree-skructured models
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[Socher et al. 2011]




a new dataset for compositional question
answering over real-world i Images '

”‘f)

Questions are generated using a (traditional, rule-based)
multi-step question engine focusing on

linguistic diversity and a large vocabulary

A suite of new metrics exploit the known grounding

to shed light on model behaviors in various aspects

t
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[Krishna, Zhu, Groth, Johnson, Hata, Kravitz, Chen, Kalantidis, Li, Shamma, Bernstein, and Fei-Fei, |[JCV 2017]




A Neural State Machine

Two stages of construction and inference:
1) Construction: transforms the raw inputs
Into abstract semantic representations,

building the state machine
Image — Scene graph, Question = Instructions

2) Inference: simulates an iterative computation
over the machine, sequentially traversing the
states until completion.

Reasoning over the scene graph to compute an answer



Reasoning with Abstractions

The State Machine g;,,/“‘x
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Given an image, we construct a scene graph
Treat it as a neural state machine, where:

* States correspond to objects

* Transitions correspond to relations

* States have different [soft) properties (attributes) via attention

properties




