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Abstract

We design a new family of estimators for off-policy evaluation in contextual bandits.
Our estimators are based on the asymptotically optimal approach of doubly robust
estimation, but they shrink importance weights to obtain a better bias-variance
tradeoff in finite samples. Our approach adapts importance weights to the quality
of a reward predictor, interpolating between doubly robust estimation and direct
modeling. When the reward predictor is poor, we recover previously studied weight
clipping, but when the reward predictor is good, we obtain a new form of shrinkage.
To navigate between these regimes and tune the shrinkage coefficient, we design a
model selection procedure, which we prove is never worse than the doubly robust
estimator. Extensive experiments on bandit benchmark problems show that our
estimators are highly adaptive and typically outperform state-of-the-art methods.

1 Introduction

Many real-world applications, ranging from online news recommendation [18], advertising [4], and
search engines [19] to personalized healthcare [28], are naturally modeled by the contextual bandit
protocol [17], where a learner repeatedly observes a context, takes an action, and accrues reward. In
news recommendation, the context is any information about the user, such as history of past visits,
the action is the recommended article, and the reward could indicate, for instance, the user’s click on
the article. The goal is to maximize the reward, but the learner can only observe the reward for the
chosen actions, and not for other actions.

In this paper we study a fundamental problem in contextual bandits known as off-policy evaluation,
where the goal is to use the data gathered by a past algorithm, known as the logging policy, to estimate
the average reward of a new algorithm, known as the target policy. High-quality off-policy estimates
help avoid costly A/B testing and can also be used as subroutines for optimizing a policy [7, 1].

The key challenge in off-policy evaluation is distribution mismatch: the decisions made by the target
policy differ from those made by the logging policy that collected the data. Three standard approaches
tackle this problem. The first approach, known as inverse propensity scoring (IPS) [12], corrects for
this mismatch by reweighting the data. The resulting estimate is unbiased, but may exhibit intolerably
high variance when the importance weights (also known as inverse propensity scores) are large. The
second approach, direct modeling (DM) or imputation, sidesteps the problem of large importance
weights and directly fits a regression model to predict rewards. Non-parametric variants of direct
modeling are asymptotically optimal [13], but in finite samples, direct modeling often suffers from
a large bias [7]. The third approach, called the doubly robust (DR) estimator [20, 2, 7], combines
IPS and DM: it first estimates the reward by DM, and then estimates a correction term by IPS. The
approach is unbiased, its variance is smaller than that of IPS, and it is asymptotically optimal under
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weaker assumptions than DM [21]. However, since DR uses the same importance weights as IPS,
its variance can still be quite high, unless the reward predictor is highly accurate. Therefore, several
works have developed variants of DR that clip or remove large importance weights. Weight clipping
incurs a small bias, but substantially decreases the variance, yielding a lower mean squared error than
standard DR [3, 4, 27, 23].

In this paper, we continue this line of work, by developing a systematic approach for designing
estimators with favorable finite-sample performance. Our approach involves shrinking the importance
weights to directly optimize a sharp bound on the mean squared error (MSE). We use two styles of
upper bounds to obtain two classes of estimators. The first is based on an upper bound that is agnostic
to the quality of the reward estimator and yields the previously studied weight clipping [16, 22, 23],
which can be interpreted as pessimistic shrinkage. The second is based on an upper bound that
incorporates the quality of the reward predictor, yielding a new estimator, which we call DR with
optimistic shrinkage. Both classes of estimators involve a hyperparameter and specific choices
produce the unbiased doubly robust estimator and the low-variance direct-modeling estimator; the
optimal hyperparameter improves on both of these.

To tune the hyperparameter and navigate between the two estimator classes, we design a simple
model-selection procedure. Model selection is crucial to our approach, but is important even for
classical estimators, as their performance is highly dataset-dependent. In contrast with supervised
learning, where cross-validation is a simple and effective strategy, distribution mismatch makes
model selection quite challenging in contextual bandits. Our model selection approach again involves
optimizing a bound on the MSE. Combined with our shrinkage estimators, we prove that our final
estimator is never worse than DR. Thus, our estimators retain the asymptotic optimality of DR, but
with improved finite-sample performance.

We evaluate our approach on benchmark datasets and compare its performance with a number of exist-
ing estimators across a comprehensive range of conditions. While our focus is on tuning importance
weights, we also vary how we train a reward predictor, including the recently proposed more robust
doubly robust (MRDR) approach [9], and apply our model selection to pick the best predictor. Our
experiments show that our approach typically outperforms state-of-the-art methods in both off-policy
evaluation and off-policy learning settings. We also find that the choice of the reward predictor
changes, depending on whether weight shrinkage is used or not. Via extensive ablation studies, we
identify a robust configuration of our shrinkage approach that we recommend as a practical choice.

Other related work. Off-policy estimation is studied in observational settings under the name
average treatment effect (ATE) estimation, with many results on asymptotically optimal estima-
tors [10, 11, 13, 21], but only few that optimize MSE in finite samples. Most notably, Kallus [14, 15]
adjusts importance weights by optimizing MSE under smoothness (or parametric) assumptions on
the reward function. This can be highly effective when the assumptions hold, but the assumptions
are difficult to verify in practice. In contrast, we optimize importance weights without making any
modeling assumptions other than boundedness of rewards.

2 Setup

We consider the contextual bandits protocol, where a decision maker interacts with the environment
by repeatedly observing a context x ∈ X , choosing an action a ∈ A, and observing a reward
r ∈ [0, 1]. The context space X can be uncountably large, but we assume that the action space A is
finite. In the news recommendation example, x describes the history of past visits of a given user, a
is a recommended article, and r equals one if the user clicks on the article and zero otherwise. We
assume that contexts are sampled i.i.d. from some distribution D(x) and rewards are sampled from
some conditional distribution D(r | x, a). We write η(x, a) := E [ r | x, a ] for the expected reward,
conditioned on a given context and action, and refer to η as the regression function.

The behavior of a decision maker is formalized as a conditional distribution π(a | x) over actions
given contexts, referred to as a policy. We also write π(x, a, r) := D(x)π(a | x)D(r | x, a) for the
joint distribution over context-action-reward triples when actions are selected by the policy π. The
expected reward of a policy π, called the value of π, is denoted as V (π) := E(x,a,r)∼π[r].

In the off-policy evaluation problem, we are given a dataset {(xi, ai, ri)}ni=1 ∼ µ consisting of
context-action-reward triples collected by some logging policy µ, and we would like to estimate the
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value of a target policy π. The quality of an estimator V̂ (π) is measured by the mean squared error

MSE
(
V̂ (π)

)
:= E

[(
V̂ (π)− V (π)

)2]
,

where the expectation is with respect to the data generation process. In analyzing the error of an
estimator, we rely on the decomposition of MSE into the bias and variance terms:

MSE
(
V̂ (π)

)
= Bias

(
V̂ (π)

)2
+ Var

[
V̂ (π)

]
, Bias

(
V̂ (π)

)
:= E

[
V̂ (π)− V (π)

]
.

We consider three standard approaches for off-policy evaluation. The first two are direct modeling
(DM) and inverse propensity scoring (IPS). In the former, we train a reward predictor η̂ : X ×A →
[0, 1] and use it to impute rewards. In the latter, we simply reweight the data. The two estimators are:

V̂DM(π; η̂) :=
1

n

n∑
i=1

∑
a∈A

π(a | xi)η̂(xi, a), V̂IPS(π) :=
1

n

n∑
i=1

π(ai | xi)
µ(ai | xi)

ri.

For a concise notation, let w(x, a) := π(a | x)/µ(a | x), denote the importance weight. We make
a standard assumption that π is absolutely continuous with respect to µ, meaning that µ(a | x) > 0
whenever π(a | x) > 0. This condition ensures that the importance weights are well defined and that
V̂IPS(π) is an unbiased estimator for V (π). However, if there is substantial mismatch between π and
µ, then the importance weights will be large and V̂IPS(π) will have large variance. On the other hand,
given any fixed reward predictor η̂ (fit on a separate dataset), V̂DM(π) has low variance, independent
of the distribution mismatch, but it is typically biased due to approximation errors in fitting η̂.

The third approach, called the doubly robust (DR) estimator [8], combines DM and IPS:

V̂DR(π; η̂) := V̂DM(π; η̂) +
1

n

n∑
i=1

w(xi, ai)
(
ri − η̂(xi, ai)

)
. (1)

The DR estimator applies IPS to a shifted versions of rewards, using η̂ as a control variate to decrease
the variance of IPS. DR preserves unbiasedness of IPS and achieves asymptotic optimality, as long as
it is possible to derive sufficiently good reward predictors η̂ given enough data [21].

When η̂ = 0, DR recovers IPS and is plagued by the same large variance. However, even when the
reward predictor η̂ is perfect, any intrinsic stochasticity in the rewards may cause the terms ri −
η̂(xi, ai), appearing in the DR estimator, to be far from zero. Multiplied by large importance weights
w(xi, ai), these terms yield large variance for DR in comparison with DM. Several approaches
seek a more favorable bias-variance trade-off by clipping, removing, or re-scaling the importance
weights [27, 23, 14, 15]. Our work also seeks to systematically replace the weights w(xi, ai) with
new weights ŵ(xi, ai) to bring the variance of DR closer to that of DM.

In practice, η̂ is biased due to approximation errors, so in this paper we make no assumptions about
its quality. At the same time, we would like to make sure that our estimators can adapt to high-quality
η̂ if it is available. To motivate our adaptive estimator, we assume that η̂ is trained via weighted least
squares regression on a separate dataset than used in V̂DR. That is, for a dataset {(xj , aj , rj)}mj=1 ∼ µ,
we consider a weighting function z : X ×A → R+ and solve

η̂ := argmin
f∈F

1

m

m∑
j=1

z(xj , aj)
(
f(xj , aj)− rj

)2
, (2)

where F is some function class of reward predictors. Natural choices of the weighting function z, ex-
plored in our experiments, include z(x, a) = 1, z(x, a) = w(x, a) and z(x, a) = w2(x, a). We stress
that the assumption on how we fit η̂ only serves to guide our derivations, but we make no specific as-
sumptions about its quality. In particular, we do not assume thatF contains a good approximation of η.

3 Our Approach: DR with Shrinkage

Our approach replaces the importance weight mapping w : X ×A → R+ in the DR estimator (1)
with a new weight mapping ŵ : X × A → R+ found by directly optimizing sharp bounds on the
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MSE. The resulting estimator, which we call the doubly robust estimator with shrinkage (DRs) thus
depends on both the reward predictor η̂ and the weight mapping ŵ:

V̂DRs(π; η̂, ŵ) := V̂DM(π; η̂) +
1

n

n∑
i=1

ŵ(xi, ai)
(
ri − η̂(xi, ai)

)
. (3)

We assume that 0 ≤ ŵ ≤ w, justifying the terminology “shrinkage”. For a fixed choice of π and η̂,
we will seek the mapping ŵ that minimizes the MSE of V̂DRs(π; η̂, ŵ), which we simply denote as
MSE(ŵ). We similarly write Bias(ŵ) and Var(ŵ) for the bias and variance of this estimator.

We treat ŵ as the optimization variable and consider two upper bounds on MSE: an optimistic one
and a pessimistic one. In both cases, we separately bound Bias(ŵ) and Var(ŵ). To bound the bias,
we use the following expression, derived from the fact that V̂DRs is unbiased when ŵ = w:

Bias(ŵ) = E
[
V̂DRs(π; η̂, ŵ)

]
− E

[
V̂DRs(π; η̂, w)

]
= Eµ

[(
ŵ(x, a)− w(x, a)

)(
r − η̂(x, a)

)]
. (4)

To bound the variance, we rely on the following proposition, which states that it suffices to focus on
the second moment of the terms ŵ(xi, ai)

(
ri − η̂(xi, ai)

)
:

Proposition 1. If 0 ≤ ŵ(x, a) ≤ w(x, a) and | η̂(x, a)− η(x, a) | ≤ 1, then∣∣∣∣Var(ŵ)− 1

n
Eµ
[
ŵ2(x, a)

(
r − η̂(x, a)

)2]∣∣∣∣ ≤ 5

n
.

The proof of Proposition 1 and other mathematical statements from this paper are in the appendix.

We derive estimators for two different regimes depending on the quality of the reward predictor η̂.
Since we do not know the quality of η̂ a priori, in the next section we obtain a model selection
procedure to select between these two estimators.

3.1 DR with Optimistic Shrinkage

Our first family of estimators is based on an optimistic MSE bound, which adapts to the quality of η̂,
and which we expect to be tighter when η̂ is more accurate. Recall that η̂ is trained to minimize
weighted square loss with respect to some weighting function z, which we denote as

L(η̂) := Eµ
[
z(x, a)

(
r − η̂(x, a)

)2]
.

We next bound the bias and variance in terms of the weighted square loss L(η̂).

To bound the bias we apply the Cauchy-Schwarz inequality to (4):

Bias(ŵ) ≤
√

Eµ
[

1
z(x,a)

(
ŵ(x, a)− w(x, a)

)2]√
L(η̂). (5)

To bound the variance, we invoke Proposition 1 and focus on bounding the quantity Eµ
[
ŵ2(r − η̂)2

]
.

Using the Cauchy-Schwarz inequality, the fact that 0 ≤ ŵ ≤ w, and |r − η̂(x, a)| ≤ 1, we obtain

Eµ
[
ŵ2(x, a)

(
r − η̂(x, a)

)2] ≤√Eµ
[

1
z(x,a) ŵ

4(x, a)
]√

Eµ
[
z(x, a)

(
r − η̂(x, a)

)4]
≤
√

Eµ
[
w2(x,a)
z(x,a) ŵ

2(x, a)
]√

L(η̂). (6)

Combining the bounds (5) and (6) with Proposition 1 yields the following bound on MSE(ŵ):

MSE(ŵ) ≤ Eµ
[

1
z(x,a)

(
ŵ(x, a)− w(x, a)

)2]
L(η̂) +

√
Eµ
[
w2(x,a)
z(x,a) ŵ

2(x, a)
]√

L(η̂) +
5

n
.

A direct minimization of this bound appears to be a high dimensional optimization problem. Instead of
minimizing the bound directly, we note that it is a strictly increasing function of the two expectations
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that appear in it. Thus, its minimizer must be on the Pareto front with respect to the two expectations,
meaning that for some choice of λ ∈ [0,∞], the minimizer can be obtained by solving

Minimize
ŵ

λEµ
[

1
z(x,a)

(
ŵ(x, a)− w(x, a)

)2]
+ Eµ

[
w2(x,a)
z(x,a) ŵ

2(x, a)
]
.

The objective decomposes across contexts and actions. Taking the derivative with respect to ŵ(x, a)
and setting to zero yields the solution

ŵo,λ(x, a) =
λ

w2(x, a) + λ
w(x, a),

where “o” above is a mnemonic for optimistic shrinkage. We refer to the DRs estimator with ŵ = ŵo,λ
as the doubly robust estimator with optimistic shrinkage (DRos) and denote it by V̂DRos(π; η̂, λ).
Note that this estimator does not depend on z, although it was included in the optimization objective.

3.2 DR with Pessimistic Shrinkage

Our second estimator family makes no assumptions on the quality of η̂ beyond the range bound
η̂(x, a) ∈ [0, 1], which implies |η̂(x, a)− r| ≤ 1 and yields the bias and second-moment bounds

Bias(ŵ) ≤ Eµ
[
|ŵ(x, a)− w(x, a)|

]
, Eµ

[
ŵ(x, a)2(r − η̂(x, a))2

]
≤ Eµ

[
ŵ(x, a)2

]
. (7)

As before, we do not optimize the resulting MSE bound directly and instead solve for the Pareto front
points parameterized by λ ∈ [0,∞]:

Minimize
ŵ

λEµ
[
|ŵ(x, a)− w(x, a)|

]
+ Eµ

[
ŵ(x, a)2

]
.

The objective again decomposes across context-action pairs, yielding the solution

ŵp,λ(x, a) = min{λ, w(x, a)},

which recovers (and justifies) existing weight-clipping approaches [16, 22, 23]. We refer to the
resulting estimator as V̂DRps(π; η̂, λ), for doubly robust with pessimistic shrinkage, since we have
used the worst-case bounds in the derivation. See Appendix A for detailed calculations.

3.3 Basic Properties

The two shrinkage estimators, for a suitable choice of λ, are never worse than DR or DM. This is an
immediate consequence of their form and serves as a basic sanity check.

Proposition 2. Let V̂ denote either V̂DRos or V̂DRps. Then for any η̂ there exists λ? ≥ 0 such that

MSE
(
V̂ (π; η̂, λ?)

)
≤ min

{
MSE

(
V̂DM(π; η̂)

)
, MSE

(
V̂DR(π; η̂)

)}
.

Both estimators actually interpolate between V̂DM and V̂DR. As λ varies, we obtain V̂DM for λ = 0
and V̂DR as λ→∞. The optimal choice of λ is therefore always competitive with both. While we
do not know λ?, in the next section, we derive a model selection procedure that finds a good λ.

4 Model Selection

All of our estimators can be written as finite sums of the form V̂ (θ) = 1
n

∑n
i=1 Zi(θ), where θ are

some fixed hyperparameters and Zi(θ) are i.i.d. random variables. For example θ = (η̂, o, λ) denotes
that we are using a reward predictor η̂ and the optimistic shrinkage with the parameter λ. To choose
hyperparameters, we first estimate the variance of V̂ (θ) by the sample variance

V̂ar(θ) := V̂ar
(
V̂ (θ)

)
=

1

n(n− 1)

n∑
i=1

(
Zi(θ)− Z̄(θ)

)2

where Z̄(θ) :=
1

n

n∑
i=1

Zi(θ).

We also form a data-dependent upper bound on the bias, which we call BiasUB(θ). The only
requirement is that for all θ, Bias(θ) ≤ BiasUB(θ) (with high probability), and that BiasUB(θ) = 0
whenever Bias(θ) = 0; this holds for both bias bounds from the previous section, as they become
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zero when ŵ = w. Now, we simply choose θ from some class of hyperparameters Θ to optimize the
estimate of the MSE:

θ̂ ← Minimize
θ∈Θ

BiasUB(θ)2 + V̂ar(θ).

This model selection procedure is related to MAGIC [26] as well as the model selection procedure
for the SWITCH estimator [27]. In comparison with MAGIC, we pick a single parameter value θ
rather than aggregating several, and we use different bias and variance estimates. SWITCH uses the
pessimistic bias bound (7), whereas we will also use two additional bounding strategies.
Theorem 3. Let Θ be a finite set of hyperparameter values and let Θ0 := {θ ∈ Θ : Bias(θ) = 0}
denote the subset corresponding to unbiased procedures. Then

MSE(θ̂) ≤ min
θ0∈Θ0

MSE(θ0) + o(n−1).

The theorem shows that the MSE of our final estimator after model selection is no worse than the
best unbiased estimator in consideration. The o(n−1) term is asymptotically negligible, as the MSE
itself is Θ(1/n). In particular, since the doubly robust estimator is unbiased and a special case of
our estimators with λ = ∞, we retain asymptotic optimality as long as we include λ = ∞ in the
model selection. In fact, since we may perform model selection over many different choices for η̂,
our estimator is competitive with the doubly robust approach using the best reward predictor.

There are many natural ways to construct data-dependent upper bounds on the bias with the required
properties. The three we use in our experiments involve using samples to approximate expectations in:
(i) the expression for the bias given in (4), (ii) the optimistic bias bound in (5), and (iii) the pessimistic
bias bound in (7). In our theory, these estimates need to be adjusted to obtain high-probability
confidence bounds. In our experiments we evaluate both the basic estimates and a adjusted variant
where we add twice the standard error.

5 Experiments

We evaluate our new estimators on the tasks of off-policy evaluation and off-policy learning, and com-
pare their performance with previous estimators. Our secondary goal is to identify the configuration
of the shrinkage estimator that is most robust for use in practice.

Datasets. Following prior work [8, 25, 27, 9, 23], we simulate bandit feedback on 9 UCI multi-class
classification datasets. This lets us evaluate estimators in a broad range of conditions and gives us
ground-truth policy values (see Table 3 in the appendix for the dataset statistics). Each multi-class
dataset with k classes corresponds to a contextual bandit problem with k possible actions coinciding
with classes. We consider either deterministic rewards, where on multiclass example (x, y∗), the ac-
tion y yields the reward r = 1{y = y∗}, or stochastic rewards where r = 1{y = y∗}with probability
0.75 and r = 1− 1{y = y∗} otherwise. For every dataset, we hold out 25% of the examples to mea-
sure ground-truth. On the remaining 75% of the dataset, we use logging policy µ to simulate n bandit
examples by sampling a context x from the dataset, sampling an action y ∼ µ(·|x) and then observing
a deterministic or stochastic reward r. The value of n varies across experimental conditions. 1

Table 1: Policies.
base α β

target π1,det 0.9 0

logging

π1,det 0.7 0.2
π1,det 0.5 0.2

— 1/k 0
π2,det 0.3 0.2
π2,det 0.5 0.2
π2,det 0.95 0.1

Policies. We use the 25% held-out data to obtain logging and target
policies as follows. We first obtain two deterministic policies π1,det
and π2,det by training two logistic models on the same data, but using
either the first or second half of the features. We obtain stochastic
policies parameterized by (α, β), following the softening technique
of Farajtabar et al. [9]. Specifically, π1,(α,β)(a | x) = (α + βu) if
a = π1,det(x) and π1,(α,β)(a | x) = 1−α−βu

k−1 otherwise, where u ∼
Unif([−0.5, 0.5]). In off-policy evaluation experiments, we consider
a fixed target and several choices of logging policy (see Table 1). In
off-policy learning we use π1,(0.9,0) as the logging policy.

Reward predictors. We obtain reward predictors η̂ by training linear models via weighted least
squares with `2 regularization, using 2-fold cross-validation to tune the regularization parameter. We

1If n is the size of the remaining 75%, we use each example exactly once, but there is still variation in the
ordering of examples, actions taken, and rewards.
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η̂ ≡ 0 z ≡ 1 z = w z = w2 MRDR
DM 0 (0) 47 (23) 45 (22) 41 (31) 11 (5)
DR 27 (2) 86 (9) 90 (4) 85 (5) 65 (0)
snDR 63 (7) 80 (2) 85 (8) 69 (4) 54 (0)
DRs 23 (19) 44 (16) 35 (4) 62 (35) 18 (2)

DRps DRos
η̂ ≡ 0 21 51
z ≡ 1 58 28
z = w 55 30
z = w2 55 29
MRDR 49 29

Table 2: Ablation analysis. Left: we compare reward predictors using a fixed estimator (with
oracle tuning if applicable). We report the number of conditions where a regressor is statistically
indistinguishable from the best and, in parenthesis, the number of conditions where it statistically
dominates all others. Right: we compare different shrinkage types using a fixed reward predictor
(with oracle tuning) reporting the number of conditions where one statistically dominates the other.

experiment with weights z(x, a) ∈ {1, w(x, a), w2(x, a)} and we also consider the special weight
design of Farajtabar et al. [9], which we call MRDR (see Appendix C for details). In evaluation
experiments, we use 1/2 of the bandit data to train η̂; in learning experiments, we use 1/3 of the
bandit data to train η̂. In addition to the four trained reward predictors, we also consider η̂ ≡ 0.

Baselines. We include a number of estimators in our evaluation: the direct modeling approach (DM),
doubly-robust (DR) and its self-normalized variant (snDR), our approach (DRs), and the doubly-robust
version of the SWITCH estimator of Wang et al. [27], which also performs a form of weight clipping.2
Note that DR with η̂ ≡ 0 is identical to inverse propensity scoring (IPS); we refer to its self-normalized
variant as snIPS. Our estimator and SWITCH have hyperparameters, which are selected by their
respective model selection procedures (see Appendix C for details about the hyperparameter grid).

5.1 Off-policy Evaluation

We begin by evaluating different configurations of DRs via an ablation analysis. Then we compare
DRs with baseline estimators. We have a total of 108 experimental conditions: for each of the 9
datasets we use 6 logging policies and consider stochastic or deterministic rewards. Except for the
learning curves below, we always take n to be all available bandit data (75% of the overall dataset).

We measure performance with clipped MSE, E
[
(V̂ − V (π))2 ∧ 1

]
, where V̂ is the estimator and

V (π) is the ground-truth value (computed on the held-out 25% of the data). We use 500 replicates
of bandit-data generation to estimate the MSE; statistical comparisons are based on paired t-tests
at significance level 0.05. In some of our ablation experiments, we pick the best hyperparameters
against the test set on a per-replicate basis, which we call oracle tuning and always call out explicitly.

Ablation analysis. Table 2 displays the results of two ablation studies, one evaluating different
reward predictors and the other evaluating the optimistic and pessimistic shrinkage types.

On the left, for each fixed estimator type (e.g., DR) we compare different reward predictors by
reporting the number of conditions where it is statistically indistinguishable from the best and the
number of conditions where it statistically dominates all other estimators using that predictor. For DRs
we use oracle tuning for the shrinkage type and coefficient. The table shows that weight shrinkage
strongly influences the choice of regressor. For example, z ≡ 1 and z = w are top choices for
DR, but with the inclusion of shrinkage in DRs, z = w2 emerges as the best single choice.3 In our
comparison experiments below, we therefore restrict our attention to z = w2 and additionally also
consider η̂ ≡ 0, because it allows including IPS as a special case of DRs. Somewhat surprisingly,
MRDR is in our experiments dominated by other reward predictors (except for η̂ ≡ 0), and this
remains true even with a deterministic target policy (see Table 4 in the appendix).

On the right of Table 2, we compare optimistic and pessimistic shrinkage when paired with a fixed
reward predictor (using oracle tuning for the shrinkage coefficient). We report the number of times
that one estimator statistically dominates the other. The results suggest that both shrinkage types
are important for robust performance across conditions, so we consider both choices going forward.

2For simplicity we call this estimator SWITCH, although Wang et al. call it SWITCH-DR.
3The oracle can always select the shrinkage parameter in DRs to recover DM or DR, but, according to the

table, the oracle choices for z ≡ 1 and z = w lead to inferior performance compared with z = w2.
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Figure 1: CDF plots of normalized MSE aggregated across all conditions with deterministic rewards
(left) and stochastic rewards (right). See Table 6 in the appendix for statistical significance.
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Figure 2: MSE for a varying number of samples n, for the dataset yeast and logging policy π1,(0.7,0.2),
with deterministic rewards (left) and stochastic rewards (right).

Comparisons. In Figure 1, we compare our new estimator with the baselines. We visualize the
results by plotting the cumulative distribution function (CDF) of the normalized MSE (normalized
by the MSE of snIPS) across conditions for each method. Better performance corresponds to CDF
curves towards top-left corner, meaning the method achieves a lower MSE more frequently. The left
plot summarizes 54 conditions where the reward is deterministic, while the right plot considers the 54
stochastic reward conditions. For DRs we consider two model selection procedures outlined in Sec-
tion 4 that differ in their choice of BiasUB. DRs-direct estimates the expectations in the expressions in
Eqs. (4), (5), and (7) (corresponding to the bias and bias bounds) by empirical averages and takes their
pointwise minimum. DRs-upper adds to theses estimates twice their standard error, before taking min-
imum, more closely matching our theory. For DRs, we only use the zero reward predictor and the one
trained with z = w2, and we always select between both shrinkage types. Since SWITCH also comes
with a model selection procedure, we use it to select between the same two reward predictors as DRs.

In the deterministic case (left plot) we see that DRs-upper has the best aggregate performance, by
a large margin. DRs-direct also has better aggregate performance than the baselines on most of
the conditions. In the stochastic case, DRs-direct has similarly strong performance, but DRs-upper
degrades considerably, suggesting this model selection scheme is less robust to stochastic rewards. We
illustrate this phenomenon in Figure 2, plotting the MSE as a function of the number of samples for one
choice of a logging policy and dataset, with deterministic rewards on the left and stochastic on the right.
Because of a more robust performance, we therefore advocate for DRs-direct as our final method.

5.2 Off-policy Learning
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Figure 3: Learning experiments.

Following prior work [24, 25, 23], we learn a stochastic
linear policy πu where πu(a | x) ∝ exp

{
u>f(x, a)

}
and f(x, a) is a featurization of context-action pairs.
We solve `2-regularized empirical risk minimization
û = argminu

[
−V̂ (πu) + γ‖u‖2

]
via gradient descent,

where V̂ is a policy-value estimator and γ > 0 is a hy-
perparameter. For these experiments, we partition the
data into four quarters: one full information segment for
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training the logging policy and as a test set, and three
bandit segments for (1) training reward predictors, (2)
learning the policy, and (3) hyperparameter tuning and
model selection. The logging policy is π1,(0.9,0) and since there is no fixed target policy, we consider
three reward predictors: η̂ ≡ 0, and η̂ trained with z = 1

µ(a|x) and z = 1
µ(a|x)2 .

In Figure 3 we display the performance of four methods (DM, DR, IPS, and DRs-direct) on four of
the UCI datasets. For each method, we compute the average value of the learned policy on the test set
(averaged over 10 replicates) and we report this value normalized by that for IPS. For DM and DR,
we select the hyperparamater γ and reward predictor optimally in hindsight, while for DRs we use
our model selection method. Note that we do not compare with SWITCH here as it is not amenable
to gradient-based optimization [23]. Except for the opt-digits dataset, where all the methods are
comparable, we find that off-policy learning using DRs-direct always outperforms the baselines.

Acknowledgments

We thank Alekh Agarwal for valuable input in the early discussions about this project. Part of this
work was completed while Yi Su was visiting Microsoft Research.

9



References
[1] Susan Athey and Stefan Wager. Efficient policy learning. arXiv:1702.02896, 2017.
[2] Heejung Bang and James M Robins. Doubly robust estimation in missing data and causal

inference models. Biometrics, 2005.
[3] Oliver Bembom and Mark J van der Laan. Data-adaptive selection of the truncation level for

inverse-probability-of-treatment-weighted estimators. Technical report, UC Berkeley, 2008.
[4] Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela, Denis X Charles, D Max Chickering,

Elon Portugaly, Dipankar Ray, Patrice Simard, and Ed Snelson. Counterfactual reasoning and
learning systems: The example of computational advertising. The Journal of Machine Learning
Research, 2013.

[5] Victor De la Pena and Evarist Giné. Decoupling: from dependence to independence. Springer
Science & Business Media, 2012.

[6] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

[7] Miroslav Dudík, John Langford, and Lihong Li. Doubly robust policy evaluation and learning.
In International Conference on Machine Learning, 2011.

[8] Miroslav Dudík, Dumitru Erhan, John Langford, Lihong Li, et al. Doubly robust policy
evaluation and optimization. Statistical Science, 2014.

[9] Mehrdad Farajtabar, Yinlam Chow, and Mohammad Ghavamzadeh. More robust doubly robust
off-policy evaluation. In International Conference on Machine Learning, 2018.

[10] Jinyong Hahn. On the role of the propensity score in efficient semiparametric estimation of
average treatment effects. Econometrica, 1998.

[11] Keisuke Hirano, Guido W Imbens, and Geert Ridder. Efficient estimation of average treatment
effects using the estimated propensity score. Econometrica, 2003.

[12] Daniel G Horvitz and Donovan J Thompson. A generalization of sampling without replacement
from a finite universe. Journal of the American Statistical Association, 1952.

[13] Guido Imbens, Whitney Newey, and Geert Ridder. Mean-squared-error calculations for average
treatment effects. ssrn.954748, 2007.

[14] Nathan Kallus. A Framework for Optimal Matching for Causal Inference. In International
Conference on Artificial Intelligence and Statistics, 2017.

[15] Nathan Kallus. Balanced policy evaluation and learning. In Advances in Neural Information
Processing Systems, 2018.

[16] Joseph DY Kang, Joseph L Schafer, et al. Demystifying double robustness: A comparison of
alternative strategies for estimating a population mean from incomplete data. Statistical science,
2007.

[17] John Langford and Tong Zhang. The epoch-greedy algorithm for multi-armed bandits with side
information. In Advances in Neural Information Processing Systems, 2008.

[18] Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. Unbiased offline evaluation of
contextual-bandit-based news article recommendation algorithms. In International Conference
on Web Search and Data Mining, 2011.

[19] Lihong Li, Shunbao Chen, Jim Kleban, and Ankur Gupta. Counterfactual estimation and
optimization of click metrics in search engines: A case study. In International Conference on
World Wide Web, 2015.

[20] James M Robins and Andrea Rotnitzky. Semiparametric efficiency in multivariate regression
models with missing data. Journal of the American Statistical Association, 1995.

[21] Christoph Rothe. The value of knowing the propensity score for estimating average treatment
effects. IZA Discussion Paper Series, 2016.

[22] Alex Strehl, John Langford, Lihong Li, and Sham M Kakade. Learning from logged implicit
exploration data. In Advances in Neural Information Processing Systems, 2010.

[23] Yi Su, Lequn Wang, Michele Santacatterina, and Thorsten Joachims. Cab: Continuous adaptive
blending estimator for policy evaluation and learning. In International Conference on Machine
Learning, 2018.

10

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


[24] Adith Swaminathan and Thorsten Joachims. Counterfactual risk minimization: Learning from
logged bandit feedback. In International Conference on Machine Learning, 2015.

[25] Adith Swaminathan and Thorsten Joachims. The self-normalized estimator for counterfactual
learning. In Advances in Neural Information Processing Systems, 2015.

[26] Philip Thomas and Emma Brunskill. Data-efficient off-policy policy evaluation for reinforce-
ment learning. In International Conference on Machine Learning, 2016.

[27] Yu-Xiang Wang, Alekh Agarwal, and Miroslav Dudik. Optimal and adaptive off-policy evalua-
tion in contextual bandits. In International Conference on Machine Learning, 2017.

[28] Xin Zhou, Nicole Mayer-Hamblett, Umer Khan, and Michael R Kosorok. Residual weighted
learning for estimating individualized treatment rules. Journal of the American Statistical
Association, 2017.

11



A Derivation of Shrinkage Estimators

In this section we provide detailed derivations for the two estimators.

We first derive the pessimistic version. Recall that the optimization problem decouples across (x, a),
so we focus on a single (x, a) pair, and we omit explicit dependence on these. Fixing λ ≥ 0, we must
solve

Minimize
0≤ŵ≤w

µŵ2 + λ |µ(ŵ − w) | .

The optimality conditions are that

2µŵ + λµv = 0 and v ∈ ∂ |ŵ − w| =


1 if ŵ > w

[−1, 1] if ŵ = w

−1 if ŵ < w

The first case for v cannot occur, since setting v = 1 would make ŵ = −λ/2 ≤ 0 (according to the
first equation), but we know that w ≥ 0. If ŵ < w then we must have ŵ = λ/2. And so, we get

ŵp,λ(x, a) = min{λ/2, w(x, a)},
which is the clipped estimator.

For the optimistic version, the optimization problem is

Minimize
0≤ŵ≤w

µŵ2w2/z + λµ(ŵ − w)2/z

The optimality conditions are

2µw2ŵ/z + 2λµ(ŵ − w)/z = 0.

This gives the optimistic estimator

ŵo,λ(x, a) =
λ

w(x, a)2 + λ
w(x, a).

Notice that this estimator does not depend on the weighting function z, so it does not depend on how
we train the regression model.

B Proofs

Proof of Proposition 1. The law of total variance gives

Var(ŵ) =
1

n
Var

x,a,r∼µ

( ∑
a′∈A

π(a′ | x)η̂(x, a′) + ŵ(x, a)(r − η̂(x, a))

)

= E
x

Var
a,r∼µ

( ∑
a′∈A

π(a′ | x)η̂(x, a′) + ŵ(x, a)(r − η̂(x, a))

)
︸ ︷︷ ︸

=:T1

+ Var
x

E
a,r∼µ

( ∑
a′∈A

π(a′ | x)η̂(x, a′) + ŵ(x, a)(r − η̂(x, a))

)
︸ ︷︷ ︸

=:T2

For the first term, since
∑
a′∈A π(a′ | x)η̂(x, a′) does not depend on a, r, it does not contribute to the

conditional variance, and we get

T1 = E
x

Var
a,r

( ŵ(x, a)(r − η̂(x, a)) ) = E
x,a,r

[
ŵ(x, a)2(r − η̂(x, a))2

]
− E

x

[
E
a,r

[ ŵ(x, a)(r − η̂(x, a)) ]
2

]

= E
x,a,r

[
ŵ(x, a)2(r − η̂(x, a))2

]
− E

x

(∑
a∈A

ŵ(x, a)µ(a | x)(η(x, a)− η̂(x, a))

)2

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For T2 we have

T2 = Var
x

(∑
a∈A

π(a | x)η̂(x, a) + ŵ(x, a)µ(a | x)(η(x, a)− η̂(x, a))

)

Now, using our assumption that 0 ≤ ŵ(x, a) ≤ w(x, a) = π(a | x)/µ(a | x), we get

| ŵ(x, a)µ(a | x) | ≤ π(a | x),

and hence for all x ∈ X ,∑
a∈A

ŵ(x, a)µ(a | x)(η(x, a)− η̂(x, a)) ≤
∑
a∈A

π(a | x) · | η(x, a)− η̂(x, a) | ≤ 1.

Here in the last step we are using boundedness of the regression function η, and the estimated
regression function η̂.

Thus, for T1 the second term is at most 1, and for T2, we have

T2 ≤ 2E

(∑
a∈A

π(a | x)η̂(x, a)

)2
+ 2E

[
( ŵ(x, a)µ(a | x)(η(x, a)− η̂(x, a)) )

2
]
≤ 4,

using the above calculation. Therefore, the residual terms add up to at most 5.

Proof of Proposition 2. We analyze the optimistic version. If MSE(V̂DM) ≤ MSE(V̂DR), then we
simply take λ = 0 at which point the objective is clearly minimized by ŵ = 0. Therefore we recover
V̂DM. On the other hand if MSE(V̂DR) ≤ MSE(V̂DM), then we set λ → ∞ so that the minimizer is
ŵ = w. This recovers the doubly-robust estimator.

Proof of Theorem 3. The main technical part of the proof is a deviation inequality for the sample
variance. For this, let us fix θ, which we drop from notation, and focus on estimating the variance

Var(Z) = E[(Z − E(z))2] with V̂ar =
1

2n(n− 1)

n∑
i 6=j=1

(Zi − Zj)2

We have the following lemma

Lemma 4 (Variance estimation). Let Z1, . . . , Zn be iid random variables, and assume that |Zi| ≤ R
almost surely. Then there exists a constant C > 0 such that for any δ ∈ (0, 1), with probability at
least 1− δ∣∣∣Var(Z)− V̂ar

∣∣∣ ≤ (C + 1)

(√
2R2 Var(Z) log(4C/δ)

(n− 1)
+

4R2 log(4C/δ)

n(n− 1)

)
.

Proof. For this lemma only, define µ = E[Z]. By direct calculation

Var(Z) = E
[
Z2
]
− µ2, V̂ar =

1

n

n∑
i=1

Z2
i −

1

n(n− 1)

∑
i6=j

ZiZj

We work with the second term first. Let Z ′1, . . . , Z
′
n be an iid sample, independent of Z1, . . . , Zn.

Now, by Theorem 3.4.1 of De la Pena and Giné [5], we have

P

 ∣∣∣∣∣∣ 1

n(n− 1)

∑
i6=j

(Zi − µ)(Zj − µ)

∣∣∣∣∣∣ > t

 ≤ CP
 ∣∣∣∣∣∣ 1

n(n− 1)

∑
i 6=j

(Zi − µ)(Z ′j − µ)

∣∣∣∣∣∣ > t/C


for a universal constant C > 0. Thus, we have decoupled the U-statistic. Now let us condition on
Z1, . . . , Zn and write Xj = 1

n−1

∑
i 6=j(Zi − µ), which conditional on Z1, . . . , Zn is non-random.
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We will apply Bernstein’s inequality on 1
n

∑n
j=1Xj(Z

′
j − µ), which is a centered random variable,

conditional on Z1:n. This gives that with probability at least 1− δ∣∣∣∣∣∣ 1

n

n∑
j=1

Xj(Z
′
j − µ)

∣∣∣∣∣∣ ≤
√

2 1
n

∑n
j=1 Var(XjZ ′j) log(2/δ)

n
+

2 maxj sup |Xj(Zj − µ) | log(2/δ)

3n
.

≤ max
j
|Xj |

(√
2 Var(Z) log(2/δ)

n
+

2R log(2/δ)

3n

)
.

This bound holds with high probability for any {Xj}nj=1. In particular, since |Xj | ≤ R almost surely,
we get that with probability 1− δ∣∣∣∣∣∣ 1

n(n− 1)

∑
i6=j

(Zi − µ)(Zj − µ)

∣∣∣∣∣∣ ≤ C
√

2R2 Var(Z) log(2C/δ)

n
+

2CR2 log(2C/δ)

3n
.

The factors of C arise from working through the decoupling inequality.

Let us now address the first term, a simple application of Bernstein’s inequality gives that with
probability at least 1− δ∣∣∣∣∣ 1

n

n∑
i=1

Z2
i − E[Z2]

∣∣∣∣∣ ≤
√

2 Var(Z2) log(2/δ)

n
+

2R2 log(2/δ)

3n

≤
√

2R2 Var(Z) log(2/δ)

n
+

2R2 log(2/δ)

3n
.

Combining the two inequalities, we obtain the result.

Since we are estimating the variance of the sample average estimator, we divide by another factor of
n. Thus the error terms in Lemma 4 are O(n−3/2) and O(n−2) respectively, which are both o(n−1).
We will simply write these error terms are o(n−1) from now on.

For the model selection result, first apply Lemma 4 for all θ ∈ Θ, taking a union bound (This only
requires that |Θ| = o(exp(n))). Further take a union bound over the event that Bias(θ) ≤ BiasUB(θ)
for all θ ∈ Θ, if it is needed. Then, observe that for any θ0 ∈ Θ0 we have

MSE(θ̂) = Bias(θ̂)2 + Var(θ̂) ≤ BiasUB(θ)2 + V̂ar(θ̂) + o(n−1)

≤ BiasUB(θ0)2 + V̂ar(θ0) + o(n−1) ≤ 0 + Var(θ0) + o(n−1) = MSE(θ0) + o(n−1).

The first inequality uses Lemma 4 and the fact that Bias ≤ BiasUB. The second uses that θ̂ optimizes
this quantity, and the third uses the property that BiasUB(θ0) = 0 by assumption.

B.1 Construction of bias upper bounds.

In this section we give detailed construction of bias upper bounds that we use in the model selection
procedure. Recall that this is for the analysis only. Empirically we found that using the estimators
alone — not the upper bounds — leads to better performance.

Throughout, we fix a set of hyperparameters θ, which we suppress from the notation.

Direct bias estimation. The most straightforward bias estimator is to simply approximate the
expectation with a sample average.

B̃ias =
1

n

n∑
i=1

( ŵ(xi, ai)− w(xi, ai) ) ( ri − η̂(xi, ai) )

This estimator has finite-sum structure, and naively, the range of each term is w∞ = maxx,a w(x, a).
The variance is at most Eµ[w(x, a)2]. Hence Bernstein’s inequality gives that with probability at
least 1− δ ∣∣∣ B̃ias− Bias

∣∣∣ ≤√2Eµ[w(x, a)2] log(2/δ)

n
+

2w∞ log(2/δ)

3n
.

Inflating the estimate by the right hand side gives BiasUB, which is a high probability upper bound
on Bias.
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Pessimistic estimation. The bias bound used in the pessimistic estimator and its natural sample
estimator are

E
µ

[ | ŵ(x, a)− w(x, a) | ] , B̃ias =
1

n

∑
i

∑
a

µ(a | xi) | ŵ(xi, a)− w(xi, a) | .

Note that since we have already eliminated the dependence on the reward, we can analytically evaluate
the expectation over actions, which will lead to lower variance in the estimate.

Again we perform a fairly naive analysis. Since ŵ(x, a) ≤ w(x, a) and using the fact that w(x, a) =
π(a | x)/µ(a | x) the range of the random variable is simply 1. Therefore, Hoeffding’s inequality
gives that with probability 1− δ

Bias ≤ B̃ias +

√
log(1/δ)

2n
,

and we use the right hand side for our high probability upper bound.

Optimistic estimation. For the optimistic bound, we must estimate two terms, one involving the
regressor and one involving the importance weights. We use

T1 :=
1

n

n∑
i=1

z(xi, ai)(ri − η̂(xi, ai))
2, T2 :=

1

n

n∑
i=1

∑
a

µ(a | xi)(ŵ(xi, a)− w(xi, a))2/z(xi, a).

Note here that the former uses sampled actions from µ, but does not involve the importance weight,
while the latter involves the importance weight but analytically evaluates the expectation over µ. Thus
we can expect that both are fairly low variance.

For both, we use Bernstein’s inequality. For T1 the range is naively z∞ = maxx,a z(x, a) and the
variance is Eµ[z(x, a)2]. Thus we get that with probability at least 1− δ/2

E
[
z(x, a)(r − η̂(x, a))2

]
≤ T1 +

√
2Eµ[z(x, a)2] log(2/δ)

n
+

2z∞ log(2/δ)

3n

For the second one, the range is maxx,a w(x, a)/z(x, a) and we just use Hoeffding’s inequality, so
that with probability 1− 2δ

E
µ

[
(ŵ(x, a)− w(x, a))2/z

]
≤ T2 +

√
maxx,a

w(x,a)
z(x,a) log(2/δ)

2n

The high probability upper bound follows by multiplying the two right hand sides together and taking
square root.

C Experimental Details and Additional Results

Dataset statistics. We use datasets from the UCI Machine Learning Repository [6]. Dataset
statistics are displayed in Table 3.

Hyperparameter grid. For our shrinkage estimators and SWITCH, we choose the shrinkage coef-
ficients from a grid of 30 geometrically spaced values. For the pessimistic estimator and SWITCH,
the largest and smallest values in the grid are the 0.05 quantile and 0.95 quantile of the impor-
tance weights. For the optimistic estimator, the largest and smallest values are 0.01× (w0.05)2 and
100× (w0.95)2 where w0.05 and w0.95 are the 0.05 and 0.95 quantile of the importance weights.

For the off-policy learning experiments, we only consider the shrinkage coefficients in
{0.0, 0.1, 1, 10, 100, 1000,∞} during training, while for model selection, we use the same grid
as in the evaluation experiments.

MRDR. Farajtabar et al. [9] propose training the regression model with a specific choice of
weighting z, which we also use in our experiments. When the evaluation policy π is deterministic,
they set z(x, a) = 1{π(x) = a} · 1−µ(a|x)

µ(a|x)2 . For stochastic policies, following the implementation of
Farajtabar et al., we sample ai ∼ π(· | xi) for each example in the dataset used to train the reward
predictor. Then we proceed as if the evaluation policy deterministically chooses ai on example xi.
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Dataset Glass Ecoli Vehicle Yeast PageBlok OptDigits SatImage PenDigits Letter
Actions 6 8 4 10 5 10 6 10 26

Examples 214 336 846 1484 5473 5620 6435 10992 20000

Table 3: Dataset statistics.

Ablation study for deterministic target policy. Since MRDR is more suited to deterministic
policies, we also report the results of our regressor and shrinkage ablations for a deterministic target
policy π1,det in Table 4. As with the stochastic policies, the estimator influences the choice of reward
predictor, but note that z = 1 and z = w are more favorable here. This is likely due to high variance
suffered from training with z = w2, because the importance weights are larger with a deterministic
policy. Our shrinkage ablation reveals that both estimator types are important also when the target
policy is deterministic.

Ablation study for model selection. In Table 5, we show the comparison of different model
selection methods under different reward predictor pairs and different shrinkage types. In most cases,
Dir-all (DRs-direct where the bias bound is estimated as the pointwise minimum of (1) the bias,
(2) the optimistic bound and (3) the pessimistic bound) and Up-all (all bias estimates are adjusted
by adding twice standard error before taking pointwise minimum) are most frequently statistically
indistinguishable from the best, which suggests that our proposed bias estimate (by taking pointwise
minimum of the three) is robust and adaptive.

Comparisons across additional experimental conditions. In Figure 4 and Figure 5, we compare
our new estimators, DRs-direct and DRs-upper, with baselines across various conditions (apart from
deterministic versus stochastic rewards from the main paper). We first investigate the performance
under friendly logging (logging and evaluation policies are derived from the same deterministic
policy, π1,det), adversarial logging (logging and evaluation policies are derived from different
policies π1,det, π2,det), and uniform logging (logging policy is uniform over all actions). Then we
plot the performance in the small sample regime, where we aggregate the 108 conditions (6 logging
policies, 9 datasets, deterministic/stochastic reward) at just 200 bandit samples.

Comparisons across all reward predictors. In Table 6–Table 9, we compare the performance of
DRs-direct and DRs-upper against baselines across various choices of reward predictors. Specifically,
we consider cases when DRs is employing model selection to pick from two predictors and construct
a separate comparison table for each of the following sets: {η̂ ≡ 0,MRDR}, {η̂ ≡ 0, z ≡ 1},
{η̂ ≡ 0, z = w} as well as {η̂ ≡ 0, z = w2} (matching the setting of the main paper). We report
the number of conditions where each estimator is statistically indistinguishable from the best, and
the number of conditions where each estimator statistically dominates all others. DRs-upper is most
often in the top group and most often the unique winner. DRs-direct is also better than snIPS, snDR,
and SWITCH. These results suggest that our shrinkage estimators are robust to different choices of
reward predictors, and not just limited to the recommended set {η̂ ≡ 0, z = w2}.

Robustness of DRs-direct and DRs-upper (w.r.t. inclusion of more reward predictors) In Fig-
ure 6, we test the robustness of our proposed methods as we incorporate more reward predictors.
Our practical suggestions is to use {η̂ ≡ 0, z = w2} (shown as DRs-direct and DRs-upper in the
figure). Here we also evaluate these methods when selecting from all reward predictors in the set
{η̂ ≡ 0, z ≡ 1, z = w, z = w2,MRDR} (shown as DRs-direct (all) and DRs-upper (all) in the figure).
For DRs-direct, the curves almost match, suggesting that it is quite robust. However, DRs-upper is
less robust to including additional reward predictors.
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η̂ ≡ 0 z ≡ 1 z = w z = w2 MRDR
DM 0 (0) 54 (30) 59 (23) 35 (4) 24 (6)
DR 28 (1) 94 (11) 85 (0) 85 (1) 85 (0)
snDR 65 (7) 86 (7) 79 (0) 72 (0) 71 (0)
DRs 14 (9) 51 (17) 65 (14) 54 (6) 47 (4)

DRps DRos
η̂ ≡ 0 13 59
z ≡ 1 29 55
z = w 26 66
z = w2 30 67
MRDR 29 63

Table 4: Ablation analysis for deterministic target policy π1,det across experimental conditions.L̇eft:
we compare reward predictors using a fixed estimator (with oracle tuning if applicable). We report
the number of conditions where a regressor is statistically indistinguishable from the best and, in
parenthesis, the number of conditions where it statistically dominates all others. Right: we compare
different shrinkage types using a fixed reward predictor (with oracle tuning) reporting the number of
conditions where one statistically dominates the other.

Dir-all Dir-naive Dir-opt Dir-pes Up-all Up-naive Up-opt Up-pes
0-pes 71 67 74 78 63 60 79 79
0-opt 75 68 71 81 64 62 66 81
0-best 63 59 67 74 56 54 64 76
w2-pes 47 41 5 3 72 71 5 3
w2-opt 47 40 3 2 73 70 3 2
w2-best 47 42 4 3 75 72 4 3
best-pes 51 46 7 5 69 70 6 5
best-opt 49 46 7 3 69 70 5 3
best-best 50 46 8 4 71 70 6 4
all-best 49 46 7 6 65 67 6 6

Table 5: Comparison of model selection methods when paired with different reward predictor sets
and shrinkage types. As in other tables, we record the number of conditions in which this model
selection method is statistically indistinguishable from the best, for fixed reward predictor set and
shrinkage types. Columns are indexed by model selection methods, “Dir” denotes taking sample
average and “Up” denotes inflating sample averages with twice the standard error. “Naive” denotes
directly estimating bias, “opt” denotes estimating optimistic bias bound, “pes” denotes pessimistic
bias bound, and “all” denotes taking the pointwise minimum of all three. Rows are indexed by reward
predictors: η̂ ≡ 0, z = w2, “best” denotes selecting over both, and “all” denotes selecting over these
and additionally z = 1, z = w, and MRDR. Rows are also indexed by shrinkage type, optimistic,
pessimistic, and best, which denotes model selection over both.

snIPS DM snDR SWITCH DRs-direct DRs-upper
Best or Tied 5 36 5 4 43 63
Unique Best 0 15 0 0 13 46

Table 6: Significance testing for different estimators across all conditions (DM, snDR use reward
z = w2, while SWITCH and DRs use reward from {η̂ = 0, z = w2}). In the top row, we report the
number of conditions where each estimator is statistically indistinguishable from the best, and in the
bottom row we report the number of conditions where each estimator is the uniquely best.

0.2 0.5 0.8 1.0 1.2 1.5
Relative Error w.r.t. snIPS

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

CDF of relative error: friendly logging

DM
snDR
SWITCH
DRs-direct
DRs-upper
snIPS

0.3 0.5 0.8 1.0 1.2 1.5
Relative Error w.r.t. snIPS

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

CDF of relative error: adversary logging

DM
snDR
SWITCH
DRs-direct
DRs-upper
snIPS

Figure 4: CDF plots of normalized MSE aggregated across all conditions with friendly scenario (left)
and adversary scenario (right).
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Figure 5: CDF plots of normalized MSE aggregated across all conditions with uniform logging policy
scenario (left) and small data regime (right).
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Figure 6: Robustness test for DRs-direct and DRs-upper. DRs-direct (all) and DRs-upper (all) means
the corresponding method with reward predictor select from all possible cases {η̂ = 0, z = 1, z =
w, z = w2} and MRDR.

snIPS DM snDR SWITCH DRs-direct DRs-upper
Best or Tied 10 17 8 10 37 73
Unique Best 0 7 0 0 17 57

Table 7: Significance testing for different estimators across all conditions (DM, snDR use reward
estimated from MRDR, while SWITCH and DRs use reward from {η̂ = 0,MRDR}). In the top row,
we report the number of conditions where each estimator is statistically indistinguishable from the
best, and in the bottom row we report the number of conditions where each estimator is the uniquely
best.

snIPS DM snDR SWITCH DRs-direct DRs-upper
Best or Tied 10 39 19 15 25 49
Unique Best 0 23 3 1 5 43

Table 8: Significance testing for different estimators across all conditions (DM, snDR use reward
z = 1, while SWITCH and DRs use reward from {η̂ = 0, z = 1}). In the top row, we report the
number of conditions where each estimator is statistically indistinguishable from the best, and in the
bottom row we report the number of conditions where each estimator is the uniquely best.

snIPS DM snDR SWITCH DRs-direct DRs-upper
Best or Tied 3 44 5 5 30 58
Unique Best 0 23 0 0 6 51

Table 9: Significance testing for different estimators across all conditions (DM, snDR use reward
z = w, while SWITCH and DRs use reward from {η̂ = 0, z = w}). In the top row, we report the
number of conditions where each estimator is statistically indistinguishable from the best, and in the
bottom row we report the number of conditions where each estimator is the uniquely best.
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