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Abstract—Machine learning has recently enabled large ad-
vances in artificial intelligence, but these tend to be highly cen-
tralized. The large datasets required are generally proprietary;
predictions are often sold on a per-query basis; and published
models can quickly become out of date without effort to acquire
more data and re-train them. We propose a framework for
participants to collaboratively build a dataset and use smart
contracts to host a continuously updated model. This model
will be shared publicly on a blockchain where it can be free
to use for inference. Ideal learning problems include scenarios
where a model is used many times for similar input such as
personal assistants, playing games, recommender systems, etc.
In order to maintain the model’s accuracy with respect to some
test set we propose both financial and non-financial (gamified)
incentive structures for providing good data. A free and open
source implementation for the Ethereum blockchain is provided
at https://github.com/microsoft/0xDeCA10B.

Index Terms—Decentralized AI, Blockchain, Ethereum,
Crowdsourcing, Prediction Markets, Incremental Learning

I. INTRODUCTION

We propose a framework for sharing and improving a
machine learning model. In this framework, anyone can freely
access the model’s predictions or provide data to help im-
prove the model. An important challenge is that the system
must be robust and incentivize participation, but discourage
manipulation. Our framework is modular, and we propose and
justify three example choices of “incentive mechanisms” with
different advantages.

There exist several proposals to combine machine learning
and blockchain frameworks. In systems such as DInEMMo [l1]],
access to the trained model is limited to a marketplace. This
allows contributors to profit based on a model’s usage, but it
limits access to those who can pay. DanKu proposes storing
already trained models in smart contracts for competitions,
which does not allow for continual updating and collaborative
training [2]. In contrast, the goal of this work is to address
the current centralization of artificial intelligence by sharing
models freely. Such centralization includes machine learning
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expertise, siloed proprietary data, and access to machine
learning model predictions (e.g. charged on a per-query basis).

A. Overview

By leveraging advances in Al, prediction markets, and
blockchain platforms, we can demonstrate the capabilities
of a new framework to collect vast amounts of data, allow
contributors to potentially profit, and host a shared machine
learning model as a public resource. The model can be
collaboratively trained by many contributors yet remain open
and free for others to use the model for inference. This is
accomplished with several configurable components:

o the incentive mechanism

o the data handler

o the machine learning model
A smart contract is created and initialized with choices for
these components. It then accepts “add data” actions from
participants, with the incentive mechanism possibly triggering
payments or allowing other actions. Adding data involves
validation from the incentive mechanism, storing in the data
handler, and finally calling the update method on the model’s
contract, as shown in Fig. [I] Prediction is done off-chain by
calling the predict function provided for convenience in the
model’s smart contract code.

The goal of our system is not for the creators to profit:
the goal is to create valuable shared resources. It is possible
for the data contributors to profit financially (depending on the
incentive mechanism) but this is mainly a result of mechanisms
designed to penalize the contributors who submit bad data.

The dataset is also public because it can be found in the
blockchain’s transaction history or through emitted events
(if this feature is available to the blockchain framework).
Collecting large datasets can be costly using typical crowd-
sourcing platforms such as Figure Eight (formerly known as
Dolores Lab, CrowdFlower) and Amazon Mechanical Turk.
In crowdsourcing, filtering out “bad data” is a constant battle
with spammers, who can submit low-effort or nonsensical
data and still receive compensation for their work [3]. In
our incentive mechanisms, contributors do not benefit from
submitting bad data and can even pay a penalty; meanwhile,
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honest contributors are actively incentivized to correct others’
mistakes.

B. Machine Learning and Blockchain Background

We mainly considered supervised learning problems where
a dataset consists of labeled samples. For example, in a
recommender system, a movie or restaurant is given a label
from 1 to 5 stars. The term model refers to a machine learning
algorithm that has been trained on data. It is used to make
predictions, e.g. predict the label of a given example. It can
be represented as a neural network, a matrix of numbers, a
decision tree, etc.

Our framework applies to platforms where decentralized
networks agree on a shared sequence of computations. An
example is the Ethereum blockchain [4]]. A smart contract is
an object (in the sense of object-oriented programming) in
this shared code. It contains data fields and interacts with new
code and events via its method calls. A computation on-chain
means the computation is done inside of a smart contract.
The input and result of the computation are usually stored on
the blockchain. In contrast, off-chain means the computation
can be done locally on the client’s machine and does not
necessarily need to be public.

In Ethereum, reading and running code provided by a smart
contract has no cost if it does not write to the blockchain.
This means that one can use the model in a smart contract
for inference for free. When we discuss blockchains, smart
contracts, and examples throughout this paper, we are mainly
referring to Ethereum blockchain and the specifics of smart
contracts on the Ethereum platform. However, this design is
certainly not limited to only run on Ethereum.

C. Staking a Deposit

In conventional legal systems, violating an agreement may
result in a penalty or fine. Enforcing a penalty via a smart
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Fig. 1. Adding data consists of 3 steps. (1) The IncentiveMechanism validates
the transaction, for instance, in some cases a “stake” or monetary deposit is
required. (2) The DataHandler stores data and meta-data onto the blockchain.
This ensures that it is accessible for all future uses, not limited to this smart
contract. (3) The machine learning model is updated according to predefined
training algorithms. In addition to adding data, anyone can query the model
for predictions, and the incentive mechanism may be triggered to provide
users with monetary payments or virtual “karma” points.

contract is complicated because a user cannot be forced to
make a payment. Instead, many solutions in the blockchain
space require users to “stake” deposits that can be re-claimed
later if they obey rules Similarly to those systems, we will
also propose staking a deposit to simplify some incentive
mechanisms for submitting new data.

D. Organization

In section[[l] we describe the machine learning data handler
and model portion of the algorithm. In section we give our
incentive mechanisms. Then we discuss some implementation
details in section In section we present some reasons
for using a blockchain for this framework. We present our
responses to several potential issues in section Finally, we
motivate some future work in section

II. MACHINE LEARNING MODELS

This system can be used with various types of models
including supervised and unsupervised. The model architecture
(e.g. different types of neural networks, CRFs [7]], SVMs [8]],
etc.) chosen relates closely to the incentive mechanism chosen.
In our examples, we mainly consider training supervised
classifiers because they can be used for many applications. We
first propose to leverage the work in the Incremental Learning
space [9]] by using models capable of efficiently updating with
one sample. This should lower the transaction costs (‘‘gas”) to
update a model hosted in an Ethereum smart contract because
each data contribution will be small. One simple model with
“cheap” updates is a Nearest Centroid Classifier, also known
as a Rocchio Classifier [10]]. Online learning algorithms could
also be appropriate.

A. Initial Model

It is often helpful if the initially deployed model has
been trained to some extent. For example, if the model is
already somewhat useful, it is more likely to receive users
for inference, who are more likely to generate and provide
back data to improve the model. Also, for some but not all of
our incentive mechanisms, having an initial level of accuracy
allows better validation of contributed data. We stress that
although this can be helpful, in many cases the model does
not need to be pre-trained or highly accurate.

B. Limitations

Due to limitations such as the cost of memory in the
Ethereum blockchain, our examples usually focus on applica-
tions related to handling small input that can be compressed
easily, such as text. Text can easily be compressed using
vocabulary dictionaries or with common shared encoders such
as the Universal Sentence Encoder in [11]. Complex models
such as deep neural networks capable of processing images
may be costly to store and update using Ethereum. Just
uploading the raw images would be costly. For example,

'E.g. many solutions using Proof-of-Stake (PoS) such as in Tendermint
[S] and the Casper system for Ethereum [6] involve staking a deposit to be
considered eligible to participate.



uploading all of the popular MNIST dataset of handwritten
digits would cost about 275 ether at a modest gas price of
4gwei according to [2]]. At the time of this writing (May
2019) that is about 65,000USD. Of course this cost would
be amortized amongst all data contributors.

The transactions could incur high gas costs especially for
the initial model deployment if the model or smart contract
is large. With high gas costs it is possible that nodes will
reject the transaction. Currently (May 2019) Ethereum has a
limit of around 8 million gas. In our experiments 8M gas is
enough to deploy simple models and to submit complex data
samples. Even if the entire model is too large to submit when
the contract is first deployed, the model can be added to the
contract in several transactions after the contract is created.

C. Experiment

We trained a single layer perceptron model [12] on the
IMDB reviews dataset introduced in [[13]]. The model has 100
binary features which are the presence of the 100 common
words used in the dataset. Thus 100 weights are initially
deployed with the model. Table[[]shows the gas cost for various
interactions with the model, h, using the Ethereum blockchain.
When data is added, = is the features and y is the label
assigned to z. The gas costs for adding data are calculated
by adding data via the main contract entry point (not directly
to the model contract). When using more features, initial
deployment cost increases but the cost to add data is similar
because the features in data have a sparse representation.

III. INCENTIVE MECHANISMS

The proposed incentive mechanisms (IM) encourage con-
tributors to submit data that will improve the model’s accuracy.
This can be measured in various ways. The most natural proxy
is to measure the performance with respect to a specific test
set. We will also discuss ways to measure performance if a
test set cannot be provided. The purpose of this paper is to
present the general framework with motivating examples, as
such, each incentive mechanism will be analysed further in
future work.

We refer to good data in the following sections as data that
is objectively correct. E.g. for a picture of the number 1, the
label “1” is clearly better than the label “0”. Data can also be
bad (i.e. wrong) or ambiguous.

TABLE I
GAS CoSTS
Action Gas Cost | USDP
Deploy model contract 3,845,840 $4.06
Add data with 15 words (h(z) = y)® 177,693 $0.19
Add data with 15 words (h(x) # y)* | 249,037 $0.26

aPerceptron models are only updated when h(z) # y.
PIn May 2019 with a modest gas price of 4gwei.

A. Gamification

We first propose a baseline with no financial incentives in
any form with the goal of reducing the barrier to entry. This
is the Wikipedia [14] for Models & Datasets. This proposal
relies solely on the willingness of contributors to collaborate
for free, for a common good.

Additionally, points and optionally badges can be awarded
to data contributors, i.e. stackexchangification [[15]. Badges in
Stack Exchange have been shown to be effective by [16l]. The
points and badges can be recorded on-chain in a smart contract
using the contributor’s wallet address as a key or identification.
Here are some examples of measurements for awarding points
or badges to a user:

« a specified number of data samples has been contributed
o submitting diverse data samples

o submitting data with different labels

o submitting data routinely (e.g. weekly)

Further experiments must be done into how these metrics
can be explicitly computed efficiently on-chain or expanded
off-chain.

B. Rewards Mechanism Based on Prediction Markets

In this section, we describe a monetary reward-based system
for incentivizing contribution of correct data. This design
extends proposals of [17] and [[18] for collaborative machine
learning contests. An outside party, such as an academic
institution or a company, provides (1) a pool of reward funds
and (2) a test dataset. Participants are rewarded according to
how well they improve the model’s performance as measured
by the test data.

When this provider is available, we will be able to give
very robust incentives for participation. The mechanism is
also resilient against manipulative or malicious providers and
participants. For cases where there is no outside party, we
suggest the mechanism in section [[II-C

1) Overview: The mechanism is given in Fig. [2] There are
three phases. In the commitment phase, the provider deposits
the bounty and defines a loss function L(h,D). This is a
measure of loss (or a surrogate or proxy metric) of any model
h on any dataset D (typically the average loss on points in
the dataset). Finally, the provider cryptographically commits
to a test dataset, a small random fraction of which is initially
revealed, similar to how data is revealed in [2].

In the participation phase, people add data or otherwise
provide updates to the model. Each participant is required to
deposit or “stake” 1 unit of currency along with their update
After an end condition is met (such as a maximum time limit
or amount of data), this phase ends. A new cycle can begin if
a new provider decides to commit new test data.

For the purposes of this description, each interaction is considered a
separate participant. This is useful because participants cannot gain anything
by creating false identities.



A. Commitment Phase

1: Provider deposits B units of currency.

2: Provider defines a loss function L(h, D).

3: Provider secretly divides a test dataset into 100 equal parts
and uploads their 100 cryptographic hashes.

4: Smart contract randomly selects 10 of these hashes.

5: Provider uploads 10 partial datasets. If they do not match
the 10 hashes, abort.

6: Provider specifies end condition (e.g. time limit).

B. Participation Phase
1: Smart contract contains an initial model, hy.

2: for each participant ¢ = 1,2,...,7 until end condition is
met: do
3: Participant deposits a stake of 1 unit of currency

: Participant provides data.
5: Model is updated from h;_; to hy.

C. Reward Phase
Provider uploads 90 partial datasets; call them D. If they
do not match the remaining 90 hashes, abort.
Let by =1 for all ¢ /I balance initially equals stake
Let list S = (1,...,T) // list initially contains everyone
fori=1,...,B do
for each participant ¢ in S do
Let ¢ be previous participant in S, or 0 if none.
Participant ¢’s balance is changed:

bt — bt + L(ht/, D) — L(ht, D)

—_

A o

8: Let list S = (¢t € S: b, > 1). // all who can re-stake
1 stay in S
9: Each participant ¢ is paid b;.

Fig. 2. Bounty-based Incentive Mechanism. We use % to denote a machine
learning model and D for a dataset. The loss function L(k, D) is clipped to
the range [0, 1] by the smart contract.

In the reward phase, the provider uploads the test dataset
and the smart contract checks that it satisfies the commitment[]
Then, the smart contract determines rewards for all partici-
pants, as discussed next.

2) Reward calculation.: First imagine that the bounty B =
1, so that each participant ¢’s reward is their stake plus the
following number:

L(hy_1, D) — L(hy, D). (1)

This is exactly the reward function proposed in [17], based
on automated-market-maker or scoring-rule based prediction
markets [19]. It can be pictured as follows: The smart contract
first pays L(hg, D) to the first participant. Their data updated
the model to hy, so they pay L(hy, D) to the second partici-
pant. This continues down the line until the last participant
pays L(hr,D) back to the smart contract. The better h;
performs, the less participant ¢ has to pay forward, so they are

3We note that, because the test data is not uploaded until the end,
participants do not see the current performance of the model on the final
test set and cannot overfit to it.

incentivized to provide data that is as useful as possible relative
to the (expected) test set. (If h; performs worse than the
previous model, ¢ loses some or all of their stake.) In total, the
smart contract pays out a net amount of L(hg, D)— L(hr, D),
which is the total improvement from all contributions. It is at
most 1 by assumption on the loss function.

Finally, we must scale this mechanism for a bounty of B >
1. The approach of [[17] would require that all participants
stake B, which is infeasible. Therefore, instead, we use the
approach of iterating the mechanism B times. Each iteration,
the participant stakes 1 unit, then receives a reward. If she can
no longer stake 1 unit due to losses, she drops outﬂ Although
this is slightly complex, it still remains that the better h;, the
more reward t gets, so we believe incentives for participation
are strongly aligned.

3) Untrusted provider, commitment, and value burning:
The provider can potentially manipulate by first, the choice
of dataset, and second, by participating or partnering with
some participants. As we describe next, the defenses against
manipulation are the cryptographic commitment scheme along
with value “burning”, which occurs when some value that was
deposited to the smart contract is not returned to anyone.

The cryptographic commitment scheme forces the provider
to reveal in advance a random 10% of the dataset (of course,
the numbers of 10 and 100 can be adjusted as desired). If
the provider does not comply, the process is aborted and the
reward B stays stuck in the contract (not refunded). Assuming
the provider complies, participants learn something about the
final dataset. This prevents the following problematic attack:
the provider secretly chooses a dataset with incorrect labels,
then participates anonymously with corresponding updates.
The provider could then not only gain back most of the original
reward, but also earn significant amounts from the stakes of
the honest participants, which they would lose because their
data is not helpful for this test set. The commitment scheme
reveals a representative part of the test set up front, so that
participants would likely be alerted to such an attack and
refuse to participate.

At the end of the process, a significant amount of the
original bounty is likely to remain stuck in the contract.
Specifically, only the following amount is distributed:

B [L(hy, D) — L(hr, D). o)

While this is not ideal, the benefit is that there is no incentive
for the provider to choose an incorrect dataset in hopes of
having significant value left over. The smart contract could
instead donate left over funds to some predetermined account
(such as a charity), but that would be open to manipulation.
In summary, the provider must expect to lose the entire
bounty. Therefore, it will only participate if the benefit from

40f course, our mechanism can be modified to allow participants to stake
more than 1 unit in order to cover more losses, but it is not clear if this would
be beneficial to them.



the trained model is worth this cost, so that only honest
providers have an incentive to joinE]

C. Deposit, Refund, and Take: Self-Assessment

Ideally, one could enforce a fine or penalty on those submit-
ting bad data. One way to determine if data is bad is to have
other contributors validate it as is common in conventional
crowdsourcing methods. However, enforcing a penalty at a
later time via a smart contract is difficult as established in
section To facilitate penalties, this proposal enforces a
deposit when contributing data.

This IM is an alternative where one does not need to
rely on a benevolent agent to submit a test set as described
previously. Instead it is possible to rely on the data contributors
to indirectly validate and pay each other. As a proxy to verify
data, we propose using the deployed model, h, to validate new
contributions. The caveat is that the initially deployed model
needs to already be trained and generally already correctly
classify samples with some accepted degree of accuracy.

Here are the highlights of the proposal:

e Deploy a model, h, already trained with some data.

o Deposit: Each data contribution with data x and label y
also requires a deposit, d. Data and meta-data for each
contribution is stored in the data handler.

e Refund: To claim a refund on their deposit, after a time ¢
has passed and if the current model, h, still agrees with
the originally submitted classification, i.e. if h(zx) ==
y, then the contributor can have their entire deposit d
returned.

— We now assume that (z,y) is “good” data.
— The successful return of the deposit should be
recorded in a tally of points for the wallet address.

o Take: A contributor that has already had data validated in
the Refund stage can locate a data point (x,y) for which
h(z) # y and request to take a portion of the deposit, d,
originally given when (z,y) was submitted.

If the sample submitted, (z,y) is incorrect or invalid, then
within time ¢, other contributors should submit (x,y’) where
y' is the correct or at least generally preferred label for z
and gy’ # y. This is similar to how one generally expects bad
edits to popular Wikipedia articles to be corrected in a timely
manner.

1) Time to Wait for Refund: The creator of the contract
must select, ¢, how much time contributors need to wait before
they can claim a refund on their deposit. As a guideline, we
propose setting ¢ to be enough time for other contributors to
submit corrections with different labels if they disagree with
the data. For example, ¢ > one week.

Models that are not very sensitive might need to allow more
time to pass in order for enough samples to be provided to
teach the model about a new use case.

A colleague points out that a provider may be able to gain back some of
the bounty by participating using the portion of the initially revealed test set.
However, this is not harmful to the final performance of the model.

Very sensitive models could allow malicious contributors
to claim refunds for “bad” data before another contributor
has a chance to “correct” their bad submission. Such models
should also require a deposit high enough to dissuade bursts
of malicious data submissions. Special care needs to be taken
and experiments should be done before setting ¢.

Certainly ¢ does not have to be constant. It could somehow
depend on the provided data sample, frequency of data sub-
mitted, or even the certainty of the model on the data point.
Le. if the model has a measure of probability of correctness,
P(h(xz) = y), for submission (x,y) then it can be used to
reduce t because it’s unlikely to be changed later.

1
P(h(x) =y)
2) Varying Deposit: Requiring a deposit has a few goals:
« Introduce value to the system allowing others the chance
to profit after they have contributed correct data.

« Inhibit too frequent changes to the model.
e Reduce spam (incorrect or invalid data).

t X

To achieve these goals we propose
1
X = .
time since last update

Le. it is costly for contributors to send many updates in a short
amount of time. This should give those using the prediction
function of the models a more consistent experience. E.g.
consider a personal assistant in one’s home that behaves too
differently to the same spoken request uttered several times a
day, such as a request to play the news.

3) Taking Another’s Deposit: We introduce some guide-
lines for a contributor that is reporting “bad” data to take
some of the deposit from the original contributor, c. Note that
contributed data and meta-data about it can be found in the
data handler or emitted events.

First some definitions:

e Let r(c,,d) be the reward that the contributing reporter,

¢, receives for reporting data (z,y) with deposit d.

e Let n(c) be the number of data samples for which
contributor c received a refund (assumed good data).

Guidelines:

e h(z) # y: The current model disagrees with the label.
So we assume the data is “bad”.

e n(c,) > 0: The reporter should have already had data
refunded. This enforces that they hopefully already sub-
mitted “good” data before they can try to profit from the
system.

e ¢, # c: The reporter cannot be the original contributor.
Otherwise contributors can easily attempt to reclaim their
deposit for “bad” data.

o The reward should be shared amongst “good” contribu-

tors.
n(c,)

Zall c TL(C)
— This protects against Sybil attacks where a contrib-
utor can use a second account to take back their

r(cr,d) ocd x @)



entire deposit. They can still claim back some of
their reward from another account but they will have
to wait and get refunded for some “good” data using
that other account.

e 7(cr,d) > € > 0: The reward should be at least some
minimal value to cover potential transaction costs.

o The data handler must keep track of the remaining deposit
that can be claimed, d, < d.

dy + d, —r(cp,d)
rerd) < dy < d

o Since n(c) changes over time, the ratio in (3) changes
while reporters are claiming their share of d. Therefore,
it possible that some reporters get a smaller proportion of
d. We discuss some possible solutions to this in

4) Biasing the Model: With the proposal, contributors can
be tempted to only submit data the model already agrees with
(h(x) = y) at submission time and hope the model still agrees
with at refund time. This could create a bias in the model
towards data it already “knows”. Contributors would normally
still have to pay a transaction fee so in effect they still pay a
nominal fee to deposit and claim their refund. The model and
training method must be carefully chosen and the designer can
consider how to handle duplicate or similar data. The IM can
even reject too much duplicate or similar data.

5) Preventing Lock-ups: In this section we discuss ways to
avoid funds getting “locked-up* or “stuck inside” the smart
contract. It is possible that contributors omit to collect their
refunds or that contributors do not take their portion of the
deposit leaving value “stuck inside” the contract. To avoid
this we introduce two new parameters:

e t.: The amount of time the creator has to wait to take the
entire remaining refund (d,.) for a specific contribution.
Where ¢, > t. Additionally, this gives creators some
incentive to deploy a model as they may get a chance to
claim a significant portion of d. Contracts may want to
enforce that this is much greater than the amount of time
to wait for attempting a refund, which gives contributors
even more time to get the deposit back and not allow the
creator take too much (t. > t).

e tq: The amount of time anyone has to wait to take the
entire remaining refund (d,). Where ¢, > t. > t. in case
the creator omits to take “stuck” value from the contract.

Certainly there can be more variants of these such as a value,
tq, for data contributors with refunded submissions (n(c) > 0)
where t, > tg > t..

6) Experiment: We developed simulations to test parame-
ters for incentive mechanisms and models. For one simulation,
we initially trained a Perceptron model [12] with 8% of
the IMDB reviews training dataset introduced in [13]]. The
model has 1000 binary features which are the presence of
the 1000 most frequent words in the dataset. Fig [3 shows
the results of a simulation where for simplicity, we show just
one honest contributor and one malicious contributor but these
contributors effectively represent many contributors submitting

the remaining 92% of the training data over time. Details for
the simulation can be found with our source code.

IV. IMPLEMENTATION

In this section we discuss some implementation details for
our proposed framework.

A. Floating Point Numbers

In our examples we use integers for data representations
because Ethereum does not support floating point numbers.
Whenever we expect a floating point number, we take in an
integer that has already been multiplied by some value, e.g.
10° (9 decimal places of precision). All operations are done
considering this transformation.

B. Inversion of Control

To favor clarity and ease development, our examples use the
Inversion of Control [20] principle favoring composition over
inheritance. In Ethereum smart contracts using inheritance can
be cheaper than ones using composition according to [21].
Some subtleties such as ownership and publicity of contained
contracts need to be considered. Fig. ] shows a class diagram
for the proposed framework.

Since the model will exist as its own contract it will need
to have its update method exposed publicly. Only the owner
of the model (the CollaborativeTrainer) can call the model’s
update method because this owner is responsible for using the
incentive mechanism.

V. BENEFITS OF BLOCKCHAIN

Using a blockchain (such as Ethereum [4]]) provides us with
many advantages compared to traditional source code hosting
and deployment:

Balances & Accuracy on Hidden Test Set
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Fig. 3. Balance percentages and model accuracy in a simulation where an
adversary, "Bad Agent” is willing to spend about twice as much on deposits
than an honest contributor, "Good Agent”. The adversary is only submitting
data about one sixth as often. Despite the malicious efforts, the accuracy can
still be maintained and the honest contributors profit.



A. Public, Persistent & Decentralized

The model is a shared and publicly visible resource. One
can essentially trust that the model will persist and be available
on one of many decentralized nodes.

B. Versioning

It is easy to revert to an earlier version of the model by
only updating your node’s version of the blockchain up to the
particular block where your application is satisfied with the
model, possibly measuring performance with respect to one’s
own hidden test set.

C. Models Evolve Over Time

Smart contracts on a blockchain allow models to evolve as
the environment changes, for example recognize novel words.

D. Transparency & Trust

Typically a machine learning or data collection service
would be set up with a REST API or some other system where
users interface with code running on some servers. Users can
submit or request data from the servers but there is no way
for the user can be completely certain of the source code
running on the servers. Code running in an Ethereum smart
contract is completely public and the result of a particular
execution can be deterministically evaluated. Essentially, data
contributors can trust that the model updates and that they will
be compensated for their contributions.

VI. POTENTIAL ISSUES

Data contributors and smart contract creators should con-
sider several vulnerabilities when using our framework. Many
possible issues have already been addressed for systems with
static models in [2]. This section analyzes issues specific to
systems where models can be trained.

A. Submitting Bad Data

A wealthy and determined agent can corrupt a model
deployed by submitting incorrect or nonsensical training data.

CollaborativeTrainer

+addData(...)
!

IncentiveMechanism DataHandler Model
+addedData:mapping
+@handleAddData(...) +@handleAddData(...) +@update(...)

l l +predict(...)

v

Ownable

+owner:address (read-only)
+@transfer(newOwner:address)
[modifier] +onlyOwner() [@]

Fig. 4. Overview of the class diagram for the framework; other members and
methods exist. We use “@” before a method to indicate that only the owner
may call the method.

Response: The incentive mechanism should make it
costly and unbeneficial to submit bad data. Furthermore, many
blockchains have transactions fees making it very costly to
submit a lot of data. Even if a model is corrupted, the users
of the model can just revert back to an earlier version of the
model since it is on a blockchain. Additionally, analysis can
be done to salvage “good” data already submitted.

B. Ambiguous Data

Those using this framework must carefully consider the type
of model, IM, and how submitting ambiguous data can affect
the system. For example, the sentiment of “The movie is okay”
if the options for the label are “happy” or “sad”. Ambiguous
data is always an issue when crowdsourcing but is especially
concerning here since contributors can lose funds. It is safest
for contributors to keep their data unambiguous.

C. Overwhelming the Network

Some applications relying on public blockchains have had
reliability issues due to network congestion. This can be an
issue for this framework when adding data which requires
creating new transactions. Inference should not be affected
because running inference just involves reading which is
normally free and can be done locally with the latest local
version of the model.

D. Requiring a Deposit

Many new contributors might not be familiar with the estab-
lished practice of blockchain applications requiring a deposit.
Small fees are already required to process any transaction in
most of the popular blockchains such as Bitcoin [22] and
Ethereum [4].

There are some ways to hide these fees from end users. A
third-party can hide the deposit cost by providing their own
interface to a public system and validating data contributions
themselves. Perhaps this third party believes they have algo-
rithms and better means to validate data. They could then
reward users under their own scheme which may not even
involve financial incentives.

VII. FUTURE WORK

There are a few areas where the presented framework can
be configured and built upon.

A. Models

More research needs to be done on the types of models that
will work well within this framework.

1) Unsupervised Models: The examples discussed mainly
use supervised classifiers because we focus on validating data
with labels. Test sets and incentive mechanisms to validate the
data contributions can still be used with unsupervised models.
Some examples are:

o Clustering: Developing clustering models especially for

outlier detection can be very useful.

o Generative models such as autoencoders and GANs. For

example, a model could be built that attempts to generate
text or draw pictures.



2) Complex Models: There are cost limitations as described
in section We propose more research in pre-computing
as much as possible off-chain and only performing necessary
steps in a smart contract. Techniques such as fine-tuning (in the
transfer learning field) [23] or off-chain training as proposed
for DeepChain [24]] can help. One can use a common encoder
(shared in more conventional ways such as via web APIs or
publicly posting source code to a website) off-chain to encode
the input and then fine-tune the encoded result on-chain with
a simple neural network or even just a single layer. While the
encoder should be static, it is possible for it to change slightly
as long as the input to the fine-tuning component is similar
enough to previously seen training data.

Complex models can even be interfaced via an API through
the smart contract using a system such as Provable (formerly
Oraclize) [25]. Hiding the model behind an API means the
model is not necessarily public which is not in the spirit of this
proposal. Complex models can also be built up by combining
several “layers” of smart contracts using this framework.

3) Recovering Corrupted Models: Work can be done in
how to recover a model corrupted by bad data (as described
in section [VI-A). Once a dataset is collected it can be further
refined through various methods (e.g. clustering data). The
cleaned dataset can be used to train a new model. This new
model could be kept private by those that organize cleaning
efforts and used in their production system. The model could
also be used to start a new instance of the collaborative training
process and collect more training data.

B. Incentive Mechanisms

More exploration, analysis, and experiments with incentive
mechanisms in this space needs to be done with emphasis on
the type of model each incentive mechanism works well with.

The incentive mechanisms imposed by the smart contract
could be hidden to end users by 3rd party services that
build services around this proposed framework. These services
could validate data contribution themselves offering their own
rewards to users of their platforms that do not wish to interact
with these smart contracts.

C. Privacy

Contributors may not want to publish their data to a public
blockchain. Initially we propose to only use this for framework
for data that is safe to become public. E.g. certain queries to
a personal assistant such as, “What will the weather be like
tomorrow?”, which contains no personal data.

Future work can be done to not submit data directly to
the smart contract and instead just submit model updates as
discussed in section [VII-AZ] and in DeepChain [24].

VIII. CONCLUSION

We have presented a configurable framework for training
a model and collecting data on a blockchain by leveraging
several baseline incentive mechanisms and existing types of
machine learning models for incremental learning. Ideal sce-
narios have varying data with generally agreed upon labels.

Currently, this framework is mainly designed for models that
can be efficiently updated but we hope to see future research
in scaling to more complex models.
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