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Modern memory allocators have to balance many simultaneous demands, including performance, security,
the presence of concurrency, and application-specific demands depending on the context of their use. One
increasing use-case for allocators is as back-end implementations of languages, such as Swift and Python,
that use reference counting to automatically deallocate objects. We present mimalloc, a memory allocator
that effectively balances these demands, shows significant performance advantages over existing allocators,
and is tailored to support languages that rely on the memory allocator as a backend for reference counting.
Mimalloc combines several innovations to achieve this result. First, it uses three page-local sharded free
lists to increase locality, avoid contention, and support a highly-tuned allocate and free fast path. These free
lists also support temporal cadence, which allows the allocator to predictably leave the fast path for regular
maintenance tasks such as supporting deferred freeing, handling frees from non-local threads, etc. While
influenced by the allocation workload of the reference-counted Lean and Koka programming language, we
show that mimalloc has superior performance to modern commercial memory allocators, including tcmalloc
and jemalloc, with speed improvements of 7% and 14%, respectively, on redis, and consistently out performs
over a wide range of sequential and concurrent benchmarks. Allocators tailored to provide an efficient runtime
for reference-counting languages reduce the implementation burden on developers and encourage the creation
of innovative new language designs.
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1. INTRODUCTION
Modern memory allocators have to balance many simultaneous demands, including performance,
security, parallelism, and application-specific demands depending on the context of their use. One
increasing use-case for allocators is as back-end implementations of languages, such as Swift (Wilde
et al., 2011), that use reference counting to automatically deallocate objects, or like Python (Sanner
and others, 1999), that typically allocate many small short-lived objects.
When developing a shared runtime system for the Lean (Moura et al., 2015) and Koka (Lei-

jen, 2017, 2014) languages, these two use cases caused issues with current allocators. First of all,
both Lean and Koka are functional languages that perform many small short-lived allocations. In
Lean, using a custom allocator for such small allocations outperformed even highly optimized
allocators like jemalloc (Evans, 2006). Secondly, just like Swift and Python, the runtime system uses
reference counting (Ullrich and Moura, 2019) to manage memory. In order to limit pauses when
deallocating large data structures, we also need to support deferred decrementing of reference
counts. To do this well, cooperation from the allocator is required – as the best time to resume a
deferred decrement is when there is memory pressure.

To address these issues, we implemented a new allocator that uses various novel ideas to achieve
excellent performance:

• The main idea is to use extreme free list sharding: instead of one large free list per size class,
we instead have a free list permimalloc page (usually 64KiB). This keeps locality of allocation
as malloc allocates inside one page until that page is full, regardless of where other objects
are freed in the heap.

• Moreover, we use separate thread-free lists for frees by other threads to avoid atomic opera-
tions in the fast path of malloc. These thread-free lists are also sharded per page to minimize
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contention among them. Such list is moved to the local free list atomically every once in a
while which effectively batches the remote frees (Liétar et al., 2019).

• Finally, we use a third local-free list per page for thread-local frees. When the allocation free
list becomes empty, the local-free list becomes the new free list. This design ensures that the
generic allocation path is always taken after a fixed number of allocations, establishing a
temporal cadence. This routine can now be used to amortize more expensive operations: 1)
do free-ing for deferred reference count decrements, 2) maintain a deterministic heartbeat,
and 3) collect the concurrent thread-free lists. Using the separate local-free list thus enables
us to have a single check in the fast allocation path to handle all the above scenarios through
the generic “collection” routine.

• We highly optimize the common allocation and free code paths and defer to the generic
routine in other cases. This means that the data structures need to be very regular in order to
minimize conditionals in the fast path. This consistent design also reduces special cases and
increases code reuse – leading to more regular and simpler code. The core library is less than
3500 LOC, much smaller than the core of other industrial strength allocators like tcmalloc
(~20k LOC) and jemalloc (~25k LOC).

• There are no locks, and all thread interaction is done using atomic operations. It has bounded
worst-case allocation times, and meta-data overhead is about 0.2% with at most 16.7% ( 18 th)
waste in allocation size classes.

We tested mimalloc against many other leading allocators over a wide range of benchmarks and
mimalloc consistently outperforms all others (Section). Moreover, we succeeded to outperform
our own custom allocators for small objects in Lean. Our results show that mimalloc has superior
performance to modern commercial memory allocators, including tcmalloc and jemalloc, with speed
improvements of with speed improvements of 7% and 14%, respectively, on redis, and consistently
out performs over a wide range of sequential and concurrent benchmarks with similar peak memory
usage.
Historically, allocator design has focused on performance issues such as reducing the time in

the allocator, reducing memory usage, or scaling to many concurrent threads. Less often, allocator
design is primarily motivated by improving the reference locality of the application. For example
VAM (Feng and Berger, 2005) and early versions of PHKmalloc also use free list sharding to ensure
that sequential allocations often come from the same page. mimalloc also improves application
memory reference locality and improves on VAM by implementing multi-threading and adding
additional sharded free lists to reduce contention and support amortizing maintenance tasks. Our
design demonstrates that allocators focused on improving application memory locality can also
provide high allocator performance and concurrent scalability.
In the rest of this paper, we present the design of mimalloc, including motivating the three

free lists, consider issues such as security and portability, and evaluate its performance against
many state of the art allocator implementations. mimalloc is implemented in C, and runs on Linux,
FreeBSD, MacOSX, and Windows, and is freely available on github (Leijen, 2019b), and with its
simplified and regular code base, is particularly amenable to being integrated into other language
runtimes.

2. FREE LIST SHARDING
We start with an overview of the specifics of free list sharding, the local free list, and the thread free
list. After this, Section 3 goes into the details of the full heap layout (Figure 1) and the implementation
of malloc and free, followed by the benchmark results in Section 4.
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2.1. The Allocation Free List
The allocation pattern for functional style programming is to allocate and free many small objects.
Many allocators use a single free list per size class which can lead to bad spatial locality where
objects belonging to a single structure can be spread out over the entire heap. Consider for example
the following heap state (A) where the free list spans a large part of the heap:

free

freep

(A)

(B)

When allocating a list p of three elements, we end up in state (B) where the newly allocated list
is also spread out over a large part of the heap with bad spatial locality. This is not an uncommon
situation. On the contrary, most functional style programs will converge to this form of heap state.
This happens in particular when folding over older data structures and building new data structures
of a different size class where the interleaved allocation leads to these spread-out free lists.
To improve the spatial locality of allocation, mimalloc use free list sharding where the heap is

divided into pages (per size-class) with a free list per page (where pages1 are usually 64KiB for
small objects). The previous heap state will now look like following situation (A), where each page
has a small free list:

After allocating the three element p list, we end up in state (B) where the list is now fully allocated
within the page with much better spatial locality. We believe that the good performance ofmimalloc
comes in a large part from the improved allocation locality.
To test this, we did an experiment in the Lean compiler (Moura et al., 2015). Version 3 of the

compiler had a custom allocator for allocating small objects where it used a single free list. We
replaced this implementation with just a sharded free list per slab (page) and on some benchmarks
with large data structures in a 1GiB heap, we saw performance improvements of over 25% with this
single change! Early work by Feng and Berger (2005) on the locality improving VAM allocator also
used a sharded free list design and they measured a significant reduction in the L2 cache misses.

2.2. No Bump Pointer
The allocation path for allocating inside a page can now simply pop from the page local list:

void* malloc_in_page( page_t* page, size_t size ) {

block_t* block = page->free; // page-local free list

1Do not confuse the word pagewith OS pages. Amimalloc page is larger and corresponds more closely to a superblock (Berger
et al., 2000) or subslab (Liétar et al., 2019) in other allocators.
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if (block==NULL) return malloc_generic(size); // slow path

page->free = block->next;

page->used++;

return block;

}

where
struct block_t { struct block_t* next; }

There is just a single conditional and a pop in the fast path now. The used increment is needed to
be able to efficiently determine when all objects in a page are freed. Many allocators use a reap
design where a bump pointer is used initially when the page is empty (Berger et al., 2002; Feng and
Berger, 2005; Liétar et al., 2019). We tested a variant of mimalloc with bump pointer allocation but
across our benchmarks it was consistently about 2% worse. One reason might be that adding bump
pointer allocation means there are now 2 conditionals in the fast path: either use the bump pointer,
or use the free list. Moreover, these conditionals cannot be predicted well as each one depends on
the page where one happens to allocate in. Moreover, for security reasons it is not good to allocate
predictably in a sequential way which rules out bump pointers too. As shown in Section 3.5, we
initialize the free list in a fresh page in a randomized way.

2.3. The Local Free List
For the Koka and Lean runtimes, we wanted to bound the worst-case allocation and free times. In
particular, when freeing large data structures, the number of recursive free calls need to be limited.
Koka and Lean use reference counting in the runtime (similar to Swift and Python), but the problem
occurs in any language with large data structures. Limiting the number of free calls with reference
counting can be done with a simple limit counter and pushing the remaining pointers on a deferred
decrement list.
The question is when to free again from this deferred decrement list? Here cooperation from

allocator is necessary since the best time to do this is when the allocator is under pressure and needs
to find more free space. The mimalloc allocator calls a user defined deferred_free callback when
that happens. This is called from the slow path in mimalloc in the malloc_generic routine exactly
when the page local free list is empty. This nicely combines with the single conditional in the fast
path. We will see that we reuse this technique again, and put any more expensive operations into
the generic routine guarded by the single conditional.

However, this does not quite work yet as there is no guarantee that the generic routine is called
regularly: a user may free and allocate repeatedly within one page with the free list in the page
never becoming empty. What we want instead is to ensure the generic routine is called after some
fixed number of allocations.
Therefore, we shard the free list once more: we add a sharded local free list to each page and

while we allocate from the regular free list, we put any freed objects on the local free list instead.
This guarantees that the free list becomes empty after a fixed number of allocations. In the generic
routine we can now simply move the local free list to the free list and keep allocating:

page->free = page->local_free; // move the list

page->local_free = NULL; // and the local list is empty again

Note again that we did not need to add a conditional in the fast path for this situation and put
the work into the slow path. Now that deferred_free is guaranteed to be called regularly after
a bounded number of allocations, we can also use it as a deterministic heartbeat. This is used in
Lean as a form of portable timer to time-out threads if they take too long (for proofs). In that case
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we cannot use wall-clock time since that would not be deterministic across machines while the
heartbeat is.

2.4. The Thread Free List
In mimalloc, pages belong to a thread-local heap and allocation is always done in the local heap.
This way no locks are needed for thread local allocations. Nevertheless, any thread can free an
object. To avoid locks for thread local frees as well, we shard the free list one more final time and
add a sharded thread free list per page, where other threads push freed objects in that page.
If a non-local free happens, we use atomic operations to push the freed object p atomically on

the thread free list:
atomic_push( &page->thread_free, p );

where
void atomic_push( block_t** list, block_t* block ) {

do { block->next = *list; }

while (!atomic_compare_and_swap(list, block, block->next));

}

The beauty of the sharded thread free list is that it also reduces contention among threads since
threads freeing in different pages do not contend with each other. On current architectures, un-
contended atomic operations are very efficient and usually implemented as part of the cache
consistency protocol (Schweizer et al., 2015).

Again, we use the generic routine to collect the thread free list and add it to the free list, just as
we did with the local free list:

tfree = atomic_swap( &page->thread_free, NULL );

append( page->free, tfree );

Since the entire thread free list is moved at once, this effectively batches non-local free calls as
well. This is especially important for asymmetric concurrent work loads where some threads
predominantly free objects and others predominantly allocate. The snmalloc allocator (Liétar et
al., 2019) was especially created to handle this situation well and also uses a batching technique
to reduce expensive synchronization. This workload is tested by the xmalloc-testN benchmark in
Section 4.

3. IMPLEMENTATION
Given the sharded free lists, we can now understand the full design of the allocator, where Figure 1
shows a detailed overview of the layout of the heap. Except for the sharded lists, the overall design
is otherwise quite similar to other size-segregated thread-caching allocators.

3.1. Malloc
To allocate an object,mimalloc first gets a pointer to the thread local heap (tlb). From there it needs
to find a page of the right size class. For small objects under 1Kb the heap contains a direct array of
pointers to the first available page in that size class. For small object allocation, the code becomes:

void* malloc_small( size_t n ) { // 0 < n <= 1024

heap_t* heap = tlb;

page_t* page = heap->pages_direct[(n+7)>>3]; // divide up by 8

block_t* block = page->free;

if (block==NULL) return malloc_generic(heap,n); // slow path

page->free = block->next;
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Fig. 1. Heap layout

page->used++;

return block;

}

which expands to efficient assembly with only one conditional.
As seen in Figure 1, the pages and the page meta-data all live in large segments (sometimes called

slab or arena in other allocators). These segments are 4MiB (or larger for huge objects that are over
512KiB), and start with the segment- and page meta data, followed by the actual pages where the
first page is shortened by the size of the meta data plus a guard page. There are three page sizes:
for small objects under 8KiB the pages are 64KiB and there are 64 in a segment; for large objects
under 512KiB there is one page that spans the whole segment, and finally huge objects over 512KiB
have one page of the required size. The reason to still use a segment and single page for large and
huge objects is to simplify the data structures and reduce the code size and complexity by having a
consistent interface and code with few special cases. This pays off in practice and the code size of
mimalloc is far smaller than most other allocators.

3.2. Free
Pages and their meta data are allocated in a segment mostly to reduce expensive allocation calls to
the underlying OS, but there is another important reason: when freeing a pointer, we need to be
able to find the page meta data belonging to that pointer. The way this is done in mimalloc is to
align the segments to a 4MiB boundary. Finding the segment holding a pointer p can then be done
by masking the lower bits. The code for free becomes:

void free( void* p ) {

segment_t* segment = (segment_t*)((uintptr_t)p & ~(4*MB));

if (segment==NULL) return;

page_t* page = &segment->pages[(p - segment) >> segment->page_shift];

block_t* block = (block_t*)p;
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if (thread_id() == segment->thread_id) { // local free

block->next = page->local_free;

page->local_free = block;

page->used--;

if (page->used - page->thread_freed == 0) page_free(page);

}

else { // non-local free

atomic_push( &page->thread_free, block);

atomic_incr( &page->thread_freed );

}

}

The free function first gets the segment pointer by masking the lower bits of the freed pointer p.
When the pointer is NULL, the segment will be NULL too and we check for that. In the generated
assembly this removes an explicit comparison operation as the bitwise and sets the zero-flag if the
result is zero. From there we can calculate the page index by taking the difference and shifting by
the segment page_shift: for small pages this is 16 (= 64KiB), while for large and huge pages it is
22 (= 4MiB) such that the index is always zero in those cases (as there is just one page). Again, by
using a uniform representation we avoid special cases and conditionals in the fast path.

The main conditional tests whether this is a thread local free, or a free by another thread. Here
mimalloc relies on an efficient thread_id() call to get the id of the current thread and comparing
that to the thread_id field of the segment. On most operating systems this can be done very
efficiently by loading the thread id from a fixed address of the thread local data (for example, on
Linux on 64-bit Intel/AMD chips this at offset 0 relative to the fs register).
If the free is done by another thread, the object is pushed atomically on the thread_free list.

Otherwise, the free is local and we simply push the object on the local_free list. We also test here
if all objects are freed in that page and free the page in that case. We could skip this and instead
only collect full free pages when looking for a fresh page in the slow path, but for certain work
loads it turns out to be more efficient to try to make such pages available as early as possible.
Note that we read the thread shared thread_freed count without a read-barrier meaning there

is tiny probability that we miss that all objects in the page were just all freed. However, that is
okay – since we are guaranteed to call the generic allocation routine sometimes, we can collect any
such pages later on (and indeed – on asymmetric workloads where some threads only allocate and
others only free, the collection in the generic routine is the only way such pages get freed).

3.3. Generic Allocation
The generic allocation routine, malloc_generic, is our “slow path” which is guaranteed to be called
every once in a while. This routine gives us the opportunity to do more expensive operations whose
cost is amortized over many allocations, and can almost be seen as a form of garbage collector. In
pseudo code:

void* malloc_generic( heap_t* heap, size_t size ) {

deferred_free();

foreach( page in heap->pages[size_class(size)] ) {

page_collect(page);

if (page->used - page->thread_freed == 0) {

page_free(page);

}

else if (page->free != NULL) {
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return malloc(size);

}

}

.... // allocate a fresh page and malloc from there

}

void page_collect(page) {

page->free = page->local_free; // move the local free list

page->local_free = NULL;

... // move the thread free list atomically

}

The generic routine linearly walks through the pages of a size class and frees any pages that
contain no more objects. It stops when it finds the first page that has free objects. In the actual
implementation not all pages are immediately freed but some are retained a bit in a cache for
possible future use; also, the maximum number of freed pages is bounded to limit the worst-case
allocation time. When a page is found with free space, the page list is also rotated at that point so
that a next search starts from that point.

3.4. The Full List
The implementation as described already performs very well on almost all of our wide range of
benchmarks – except some. In particular, on the SpecMark gcc benchmark we observed a 30%
slowdown compared to some other allocators. This anecdote shows that there is no silver bullet
and an industrial strength memory allocator needs to address many corner cases that might show
up only for particular workloads.

In the case of the gcc benchmark it happens to use its own custom allocators and allocate many
large objects initially that than stay live for a long time. For mimalloc this leads to many (over
18000) full pages that are now traversed linearly every time in the generic allocation routine.

The solution that we implemented is to have a separate full list that holds all the pages that
are full, and move those back to the regular page lists when an object is freed in such page. This
fixes the gcc benchmark but unfortunately this seemingly small change introduces significant
complexity for the multi-threaded case.
In particular, on a non-local free of an object in a full page, we need to somehow signal the

owning heap that the page is no longer full, and if possible without taking an expensive lock. We
are going to do this through a heap-owned list of thread delayed free blocks. In the generic routine,
we first atomically take over this list and free all the blocks in the delayed free list normally –
possibly moving pages from the full list back to the regular lists.

But how does a non-local free know whether to push on the page local thread free list, or whether
do push on the owning heap thread delayed free list? For this we use the 2 least significant bits in
the thread free list pointer to atomically encode 3 states: NORMAL, DELAYED, and DELAYING. Usually,
the state is NORMAL and we push on the local thread free list. When a page is moved to the full list,
we set the DELAYED state – signifying that non-local free operations should push on the owning
heap delayed free list. While doing that, the DELAYING state is temporarily set to ensure the owning
heap structure itself stays valid in case the owning thread terminates in the mean time. After
a delayed free, the state is always set to NORMAL again since we only need one delayed free per
page to check if the page is no longer full. This turns out to be an important optimization: again,
with asymmetric concurrent workloads the freeing thread may free many objects and we should
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ensure the more expensive initial delayed free is only done once. Without this optimization, the
xmalloc-test benchmark is 30% slower.

3.5. Security
The design of mimalloc lends itself well to implement various security mitigations that one would
consider required in browser environments for example. For a good overview we refer to Novark
and Berger (2010) and Berger and Zorn (2006). We implemented a secure variant ofmimalloc (called
smimalloc) that implements various security mitigations:

• It puts OS guard pages in-between every mimalloc page such that heap overflow attacks are
always limited to one mimalloc page and can never overflow into the heap meta data.

• The initial free list in a page is initialized randomly such that there is no predictable allocation
pattern (to protect against heap feng shui (Sotirov, 2007)). Also, on a full list, the secure
allocator will sometimes extend instead of using the local free list to increase randomness
further.

• To guard against heap block-overflow attacks that overwrite the free list, we xor-encode the
free list in each page. This prevents overwriting with known values but also allows efficient
detection of such attack.

• Already, mimalloc efficiently supports multiple heaps. This can further increase security
by allocating internal objects like virtual method tables etc. in a separate heap from other
application allocated objects.

As we see in Section 4, the secure version ofmimalloc is on average about 3% slower plainmimalloc.
This was quite surprising to us as we initially expected much larger slowdowns due to the above
mitigations.

4. EVALUATION
We tested mimalloc against many other top allocators over a wide range of benchmarks, ranging
from various real world programs to synthetic benchmarks that see how the allocator behaves under
more extreme circumstances. The benchmark suite is fully scripted and available on Github (Lei-
jen, 2019a).
Allocators are interesting as there exists no algorithm that is generally optimal – for a given

allocator one can usually construct a workload where it does not do so well. The goal is thus to find
an allocation strategy that performs well over a wide range of benchmarks without suffering from
underperformance in less common situations (which is what the second half of our benchmark set
tests for).

In our benchmarks,mimalloc always outperforms all other leading allocators (jemalloc, tcmalloc,
Hoard, etc), and usually uses less memory (up to 25% more in the worst case). A nice property is
that it does consistently well over the wide range of benchmarks: only snmalloc shares this property
while all other allocators exhibit sudden (severe) underperformance in certain situations. We try to
highlight and explain these situations in the text and hope these insights can lead to improvements
in other allocator designs as well.

4.1. Allocators
We tested mimalloc with 9 leading allocators over 12 benchmarks and the SpecMark benchmarks.
The tested allocators are:

• mi: The mimalloc allocator (Leijen, 2019b), using version tag v1.0.0. We also test a secure
version of mimalloc as smi which uses the techniques described in Section 3.5.
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• tc: The tcmalloc allocator (Google, 2014) which comes as part of the Google performance tools
and is used in the Chrome browser. Installed as package libgoogle-perftools-dev version
2.5-2.2ubuntu3.

• je: The jemalloc allocator by Evans (2006) is developed at Facebook and widely used in
practice, for example in FreeBSD and Firefox. Using version tag 5.2.0.

• sn: The snmalloc allocator is a recent concurrent message passing allocator by Liétar et
al. (2019). Using git-0b64536b.

• rp: The rpmalloc allocator uses 32-byte aligned allocations and is developed by Jansson (2017)
at Rampant Pixels. Using version tag 1.3.1.

• hd: The Hoard allocator by Berger et al. (2000). This is one of the first multi-thread scalable
allocators. Using version tag 3.13.

• glibc: The system allocator. Here we use the glibc allocator (which is originally based on
Ptmalloc2), using version 2.27.0. Note that version 2.26 significantly improved scalability
over earlier versions.

• sm: The Supermalloc allocator by Kuszmaul (2015) uses hardware transactional memory to
speed up parallel operations. Using version git-709663fb.

• tbb: The Intel TBB allocator that comes with the Thread Building Blocks (TBB) library
(Intel, 2017; Kukanov and Voss, 2007; Hudson et al., 2006). Installed as package libtbb-dev,
version 2017~U7-8.

All allocators run exactly the same benchmark programs on Ubuntu 18.04.1 and use LD_PRELOAD

to override the default allocator. The wall-clock elapsed time and peak resident memory (rss) are
measured with the time program. The average scores over 5 runs are used. Performance is reported
relative to mimalloc, e.g. a time of 1.5× means that the program took 1.5× longer than mimalloc.

4.2. Benchmarks
The first set of benchmarks are real world programs and consist of:

• cfrac: by Dave Barrett, implementation of continued fraction factorization which uses many
small short-lived allocations – exactly the workload we are targeting for Koka and Lean.

• espresso: a programmable logic array analyzer, described by Grunwald, Zorn, and Hender-
son (1993b) in the context of cache aware memory allocation.

• barnes: a hierarchical n-body particle solver (Barnes and Hut, 1986) which uses relatively
few allocations compared to cfrac and espresso. Simulates the gravitational forces between
163840 particles.

• leanN: The Lean compiler by de Moura et al (2015), version 3.4.1, compiling its own standard
library concurrently using N threads (./lean --make -j N). Big real-world workload with
intensive allocation.

• redis: running the redis 5.0.3 server on 1 million requests pushing 10 new list elements and
then requesting the head 10 elements. Measures the requests handled per second.

• larsonN: by Larson and Krishnan (1998). Simulates a server workload using 100 separate
threads which each allocate and free many objects but leave some objects to be freed by
other threads. Larson and Krishnan observe this behavior (which they call bleeding) in actual
server applications, and the benchmark simulates this.

The second set of benchmarks are stress tests and consist of:
• alloc-test: a modern allocator test developed byOLogNTechnologies AG (ITHare.com) (2018).
Simulates intensive allocation workloads with a Pareto size distribution. The alloc-testN
benchmark runs on N cores doing 100·106 allocations per thread with objects up to 1KiB in
size. Using commit 94f6cb (master, 2018-07-04)
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• sh6bench: by MicroQuill (2006) as part of SmartHeap. Stress test where some of the objects
are freed in a usual last-allocated, first-freed (LIFO) order, but others are freed in reverse
order. Using the public source (retrieved 2019-01-02)

• sh8benchN: by MicroQuill (2006) as part of SmartHeap. Stress test for multi-threaded allo-
cation (with N threads) where, just as in larson, some objects are freed by other threads, and
some objects freed in reverse (as in sh6bench). Using the public source (retrieved 2019-01-02)

• xmalloc-testN: by Lever and Boreham (2000) and Christian Eder. We use the updated version
from the SuperMalloc repository (Kuszmaul, 2015). This is a more extreme version of the
larson benchmark with 100 purely allocating threads, and 100 purely deallocating threads
with objects of various sizes migrating between them. This asymmetric producer/consumer
pattern is usually difficult to handle by allocators with thread-local caches.

• cache-scratch: by Berger et al. (2000). Introduced with the Hoard allocator to test for passive-
false sharing of cache lines: first some small objects are allocated and given to each thread;
the threads free that object and allocate immediately another one, and access that repeatedly.
If an allocator allocates objects from different threads close to each other this will lead to
cache-line contention.

4.3. On a 16-core AMD EPYC
Figure 2 (and 6 for memory in the Appendix) shows the benchmark results on a r5a.4xlarge (Amazon
EC2, 2019) instance consisting of a 16-core AMD EPYC 7000 at 2.5GHz with 128GB ECC memory,
running Ubuntu 18.04.1 with LibC 2.27 and GCC 7.3.0. We excluded SuperMalloc here as it use
transactional memory instructions that are usually not supported in a virtualized environment.
In the first five benchmarks we can see mimalloc outperforms the other allocators moderately,

but we also see that all these modern allocators perform well – the times of large performance
differences in regular workloads are over. In cfrac and espresso, mimalloc is a tad faster than
tcmalloc and jemalloc, but a solid 10% faster than all other allocators on espresso. The tbb allocator
does not do so well here and lags more than 20% behindmimalloc. The cfrac and espresso programs
do not use much memory (~1.5MB) so it does not matter too much, but still mimalloc uses about
half the resident memory of tcmalloc.

The leanN program is most interesting as a large realistic and concurrent workload and there is
a 8% speedup over tcmalloc. This is quite significant: if Lean spends 20% of its time in the allocator
that means thatmimalloc is 1.3× faster than tcmalloc here. This is surprising as that is not measured
in a pure allocation benchmark like alloc-test. We conjecture that we see this outsized improvement
here because mimalloc has better locality in the allocation which improves performance for the
other computations in a program as well.
The redis benchmark shows more differences between the allocators where mimalloc is 14%

faster than jemalloc. On this benchmark tbb (and Hoard) do not do well and are over 40% slower.
The larson server workload which allocates and frees objects between many threads shows even

larger differences, where mimalloc is more than 2.5× faster than tcmalloc and jemalloc which is
quite surprising for these battle tested allocators – probably due to the object migration between
different threads. This is a difficult benchmark for other allocators too where mimalloc is still 48%
faster than the next fastest (snmalloc).

The second benchmark set tests specific aspects of the allocators and shows even more extreme
differences between them.

The alloc-test is very allocation intensive doing millions of allocations in various size classes. The
test is scaled such that when an allocator performs almost identically on alloc-test1 as alloc-testN
it means that it scales linearly. Here, tcmalloc, snmalloc, and Hoard seem to scale less well and do
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Fig. 2. Time benchmark on a 16-core AMD Epyc r5a-4xlarge instance. Benchmarks ending with
"N" run in parallel on all cores.

more than 10% worse on the multi-core version. Even the best allocators (tcmalloc and jemalloc)
are more than 10% slower as mimalloc here.

Also in sh6bench mimalloc does much better than the others (more than 2× faster than jemalloc).
We cannot explain this well but believe it is caused in part by the “reverse” free-ing pattern in
sh6bench.
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Again in sh8bench the mimalloc allocator handles object migration between threads much better
and is over 36% faster than the next best allocator, snmalloc. Whereas tcmalloc did well on sh6bench,
the addition of object migration caused it to be almost 3 times slower than before.
The xmalloc-testN benchmark simulates an asymmetric workload where some threads only

allocate, and others only free. The snmalloc allocator was especially developed to handle this case
well as it often occurs in concurrent message passing systems. Here we see that the mimalloc
technique of having non-contended sharded thread free lists pays off and it even outperforms
snmalloc. Only jemalloc also handles this reasonably well, while the others underperform by a
large margin. The optimization on mimalloc to do a delayed free only once for full pages is quite
important – without it mimalloc is almost twice as slow (as then all frees contend again on the
single heap delayed free list).
The cache-scratch benchmark also demonstrates the different architectures of the allocators

nicely. With a single thread they all perform the same, but when running with multiple threads the
allocator induced false sharing of the cache lines causes large run-time differences, wheremimalloc
is more than 18× faster than jemalloc and tcmalloc! Crundal (2016) describes in detail why the
false cache line sharing occurs in the tcmalloc design, and also discusses how this can be avoided
with some small implementation changes. Only snmalloc and tbb also avoid the cache line sharing
like mimalloc. Kukanov and Voss (2007) describe in detail how the design of tbb avoids the false
cache line sharing.

4.4. On a 4-core Intel Xeon workstation
Figure 3 and 7 show the benchmark results on an HP Z4-G4 workstation with a 4-core Intel® Xeon®
W2123 at 3.6 GHz with 16GB ECC memory, running Ubuntu 18.04.1 with LibC 2.27 and GCC 7.3.0.
This time SuperMalloc (sm) is included as this platform supports hardware transactional memory.
Unfortunately, there are no entries for SuperMalloc in the leanN and xmalloc-testN benchmarks as
it faulted on those. We also add the secure version of mimalloc as smi.

Overall, the relative results are quite similar as before. Most allocators fare better on the larsonN
benchmark now – either due to architectural changes (AMD vs. Intel) or because there is just less
concurrency. Unfortunately, the SuperMalloc faulted on the leanN and xmalloc-testN benchmarks.
The secure mimalloc version uses guard pages around each (mimalloc) page, encodes the free

lists and uses randomized initial free lists, and we expected it would perform quite a bit worse –
but on the first benchmark set it performed only about 3% slower on average, and is second best
overall.

4.5. SpecMark 2019
We also ran SpecMark 2019 benchmarks. Most benchmarks there do not allocate a lot and all the
modern allocators perform mostly identical for most of them. There are only 4 of them that show
larger differences, which we show in Figure 4 and 5: 602.gcc, 620.omnetpp, 623.xalancbmk, and
648.exchange2.
On these benchmarks mimalloc does well but is slightly slower than tcmalloc, jemalloc, and

snmalloc, on omnetpp and xalancbmk. As discussed in Section 3.4, the gcc benchmarks allocates a
lot of initial long lived data and we needed the full list to avoid long searches. We conjecture this
is happening in tcmalloc and tbb as well, as both have a similar underperformance of about 30%
(just like mimalloc before the optimization). We see something similar happen in the xalancbmk
benchmark for rp and glibc but we are not sure what is the cause of that.
In Figure 5 the relative peak memory usage is shown. Interestingly, the gcc benchmark shows

two outliers too, but this time Hoard and tbb underperform by 30%. On the exchange2 benchmark
it is surprising to see that both tcmalloc and jemalloc use significantly more memory thanmimalloc
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Fig. 3. Time benchmark on a 4-core Intel Xeon workstation. Benchmarks ending with "N" run in
parallel on all cores.

even though especially jemalloc is optimized to reduce the resident memory usage for long running
server programs.
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Fig. 4. Time benchmark on a 4-core Intel Xeon workstation for selected SpecMark 2019 benchmarks.
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Fig. 5. Peak memory usage on a 4-core Intel Xeon workstation for selected SpecMark 2019 bench-
marks.

5. RELATEDWORK
Feng and Berger’s VAM (Feng and Berger, 2005) is the allocator design most closely related to
mimalloc. VAM pioneered the idea of prioritizing application reference locality over reducing
memory fragmentation and our sharded free list design improves on VAM’s original design. VAM
maintained free lists per 4k hardware page and supported bump-pointer allocations (which we
considered but rejected). As many allocators contemporaneous with VAM did, VAM treated large
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and medium-sized objects differently than small objects by incorporating inline meta data with
each object to support a best-fit allocation strategy. VAM was not a multi-threaded allocator design,
as mimalloc is, and its implementation is not currently available for measuring.

Grunwald et al. (1993a) highlight the impact of allocator design on overall application reference
locality and argue that a segregated size-class approach, as implemented in QuickFit (Weinstock
and Wulf, 1988) would provide better reference locality. While Grunwald argues that QuickFit is
only part of a more general allocator solution, unlike Grunwald or VAM, mimalloc demonstrates
that a uniform approach to object representation across all sizes leads to significant benefits in
reduced complexity and improved performance.

The Intel TBB (Thread Building Block) multi-threaded allocator (Kukanov and Voss, 2007; Hudson
et al., 2006) has elements in common with mimalloc. It uses size-segregated bins, has thread-local
free lists, allocates from a private free list and and has a public free list per bin that foreign threads
return local objects to. Unlike mimalloc, TBB does not have a separate private free list that local
objects are returned on, choosing instead to immediately reuse freed objects instead of deferring
reuse. As our results show, the mimalloc allocate/free fast past is significantly faster than TBB (e.g.,
50% faster in the redis benchmark) and mimalloc also scales better than TBB in the multi-threaded
benchmarks on both 4 and 16-core systems.
snmalloc is a recently published allocator that focuses on improving the performance of multi-

threaded producer/consumer workloads (Liétar et al., 2019), as exemplified by the xmalloc-testN
benchmark. snmalloc supports high performance sharing of objects between threads, introducing a
novel radix-tree structure to avoid potential bottlenecks with different consumer threads contending
with each other on returning an object to the same producer.mimalloc handles contention between
threads performing frees of non-local objects by sharding the thread free list in every page.

6. CONCLUSION
We present mimalloc, an allocator motivated by the need to support deferred reference decrements
in language runtimes and focused on improving the overall reference locality of an application.
mimalloc provides three sharded free lists per software page (64KiB), increasing overall locality,
reducing multi-threaded contention, and supporting temporal cadence, where slow-path operations
are deferred but guaranteed to happen with regularity. To avoid costly branches on the fast
path, mimalloc simplifies object representation and eliminates complexities such as doing bump-
pointer allocation, representing medium-objects differently, etc. Comparing against state-of-the-art
commercial allocator implementations, we show that mimalloc consistently outperforms other
allocators in their default configuration including on both single-threaded workloads, such as
redis, as well as on multi-threaded stress tests. mimalloc is implemented in C, is freely available on
github (Leijen, 2019b) and with its simple and small code base is particularly amenable to being
integrated into other language runtimes.
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Fig. 6. Peak memory usage on a 16-core AMD Epyc r5a-4xlarge instance. (xmalloc-testN is not
normalized and should be disregarded)

APPENDICES
A. EVALUATION OF PEAKWORKING MEMORY
Figures 6 and 7 show the peak workingmemory (RSS) relative tomimalloc. These figures correspond
to the earlier performance figures 2 and 3 respectively. Note that the memory usage of xmalloc-testN
should be disregarded as the faster the benchmark runs, the more memory it uses. Also the cfrac,
espresso, and cache-scratchN benchmarks use just little active memory and the differences in RSS
are not very important here.
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Fig. 7. Peak memory usage on a 4-core Intel Xeon workstation. (xmalloc-testN is not normalized
and should be disregarded)

B. FREE LISTS

Created with Madoko.net.
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Fig. 8. Freeing objects

21



Fig. 9. Allocating objects
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