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1. Introduction to LWE/SIS.




Matrix-form LWE: input security parameter A, choose parameters n,q, m
and two distribution Ds, De.

» sample uniform A € Z5*".

» sample s according to Ds.

» sample “small” e according to De.

Problem: given (A, b) where b = As + e (mod q), recover s (or e).

Eg. n=0(\); g =n®°10): m=0O(nlogq); Ds uniform on Lq, De discrete
Gaussian with a = 2,/n/q.




» Search version: Given (A.,b), find s (or e).

» Decisional version: Given samples (A, b) (either LWE or uniform),
decide whether they are LWE samples or uniformly random samples.




ISIS (inhomogeneous short integer solution)

Matrix-form ISIS: input security parameter A, choose parameters n, g. m
and a distribution De.

> sample uniform B € Zg*™.

» sample “small” e according to De.

Problem: given (B, t) where t = Be, recover e.







LWE variants

Variants of LWE b = As + e.

Distribution of s, e (“small” means standard):

» s uniform, e small.

» Normal form: s small, e small.

» variant 1: s uniform, e tiny. (e.g. binary error LWE)

» variant 2: s tiny, e tiny. (e.g. binary secret-error LWE)
variant 3: s tiny, e small. (e.g. binary secret LWE)

» variant 4: s sparse, e small. (e.g. sparse secret LWE)

» More variants: # samples restricted; Modulus g large.

Lots of applications: signatures (Dilithium, gTESLA), KE (Newhope,
Kyber) and HE schemes (HElib, SEAL) and many others.

Combinations of distributions, number of samples, e.g. give variants with
various difficulty — concrete security level needs to be carefully analyzed.




Three types of algorithms

» Algebraic: Arora-Ge algorithm and variants.
» Combinatoric: Blum-Kalai-Wasserman (BKW) algorithm and variants.

» Geometric: phrase the LWE instance as some lattice problem and
solve this problem using lattice solvers (e.g. lattice reduction or

sieving).

More attacks on structured LWE problem (of the aforementioned variants)
using algebraic structure: Elias-Lauter-Ozman-Stange '15;
Chen-Lauter-Stange '16, '17; Castryck-lliashenko-Vercauteren '16; Peikert

16.

We will focus on LWE in general g-ary lattice in this talk.




Algebraic algorithms

Algebraic attacks, e.g. Arora-Ge algorithm and variants.

» Binary error LWE:
» Poly. with samples m = O(n?).
» Subexp. with samples m = O(nloglog n) (Albrecht-Cid-Faugere-Perret
147).
» m Z n for the reduction to SIVP-+ with poly. 7 in dimension
©(n/log n) (Micciancio-Peikert '13).
» Tiny error LWE:

» 20(a*d). thus already subexp for ag < /n with enough (same)
samples.

» Small (standard) error LWE:

» 20(nloglogn) for vg = /n. Slower than sieving/BKW.
» 290" using Grobner basis (Albrecht-Cid-Faugere-Perret 14').

2

For full power, need # Samples =~ n“" where w bounds the width of error.




Combinatoric algorithms

Combinatoric attacks: BKW-like algorithms (Blum-Kalai-Wasserman '99).

> LPN (g'= 2}
» 20(n/logn) samples /time.
» 20(n/loglogn) time with n'*¢ samples (Lyubashevsky '05).

» Binary secret-error LWE:
» 20(n/loglogn) time with n samples (Kirchner-Fouque '15).

> LWE: 29" (Albrecht-Faugere-Fitzpatric-Perret '14).

Also meet-in-the-middle type algorithms: useful for sparse s or e.




Geometric algorithms

Geometric methods: turn the LWE into a problem on lattices (tools:
lattice reduction and lattice sieving).

Feature: # LWE samples are usually small.
Quick summary (asymptotic running-time):
» LWE: 20(n)

» Binary secret-error LWE: 20(n).
» Binary secret but small error LWE: 29(n).

» Binary error but small/uniform secret LWE: 2°9(7).

» Tiny error but larger modulus, polynomial time (Laine-Lauter '15).

Thus, these lattice algorithms are mostly relevant in terms of concrete
security levels.




2. Lattices




Euclidean lattice

An integral lattice can be defined as the Z-linear combination of n
independent vectors b; € Z"

L(b1, bz, -, bp) = {Z Zb,-}.

Let B=[b1 by --- by] then A= L(B) = {Bx |x € Z"}.




Euclidean lattice

An integral lattice can be defined as the Z-linear combination of n
independent vectors b; € Z"

L(b1, b2, -, bpy) = {Z Zb,-}.

Let B=[b1 by --- by] then A= L(B) = {Bx | x € Z"}.

The volume of a lattice A is |det(B)|, which is independent of the choice
of the basis.




Lattice minimum

Lattice minimum

A1(A) =min ( [|bl:beA\O0




Lattice minimum

Lattice minimum

A1(A) =min (||bl:beA\0)




Computational problems for lattices

Shortest vector problem (SVP)

Input: B € Z"*" a basis matrix of A.
Output: s € A\ 0 shortest.

The difficulty heavily depends on the “shape” of the input basis B. In
cryptography, a "bad” B is given.
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SVP-v

Cryptography needs to use a relaxed version: SVP-v s.t. v depends on n.

» SVP-1: enumeration or sieving.
» SVP-~: Block Korkine-Zolotarev (BKZ) reduction.

» ~ is exponential in n: Lenstra-Lenstra-Lovasz (LLL) algorithm.
» ~ is polynomial /sub-exponential in n: cryptography.

Algorithms for SVP-~+ and algorithms for SVP-1 are reciprocal.




SVP-v

Cryptography needs to use a relaxed version: SVP-v s.t. 7 depends on n.

» SVP-1: enumeration or sieving.
» SVP-~: Block Korkine-Zolotarev (BKZ) reduction.

» ~ is exponential in n: Lenstra-Lenstra-Lovasz (LLL) algorithm.
» ~ is polynomial /sub-exponential in n: cryptography.

Algorithms for SVP-~+ and algorithms for SVP-1 are reciprocal.
(1) Best algorithm for SVP-1:

» Enumeration 29(7°€") (Kannan-Fincke-Pohst '83).
» Sieving 290" (Ajtai-Kumar-Sivakumar '01).

(2) Best algorithm for SVP-v: BKZ whose complexity is dominated by
SVP-1 in smaller dimensions.




Two g-ary lattices: m > n

n

/\qL(B) ={ecZ™|Be=0 (mod g

Ng(A) ={y |y = Ax (mod q),Vx € Z"}

Sometimes, B = A" In such case,

/\ﬁ{(AT) — ¢ /\q(A)*

where Ay (A)* is the dual lattice of Ay(A).

Refer them as: image/column lattice and kernel lattice.




3. Lattice algorithms for LWE: summary of strategies.
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First strategy (primal): direct decoding attack.
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First strategy (primal): direct decoding attack.

Main idea: e is short.

The image lattice Aj(A) ={y |y = Ax (mod q),Vx € Z"}.

» Solve CVP/BDD on A4(A) given target point b.
» The lattice has rank m and volume g™~ ".
» Convert to uSVP using Kannan's embedding.

» The concrete security depends on the number of samples m given.

nlog g

» For best asymptotics, m ~ — el

Asymptotic running-time with above m:

n logq)

(nlog q)O(nog2a

log® a

Note: binary error LWE does not change the asymptotics 29"




First strategy (primal): direct decoding attack.

Kannan's embedding: BDD — uSVP.

In LWE/BDD b = As + e + cq, thus b is close to the lattice point As + cq
in Ag(A) where e is the small “shift”. Let L be the basis of A;(A).

Construct

, (L b
L_(M).

“(1)=(%)

where * is (negative) coefficients in generating the lattice point As + cq.




Lattice algorithms for LWE: summary of strategies.
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Second strategy (dual): convert to ISIS-like using left-kernel.
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Second strategy (dual): convert to ISIS-like using left-kernel.

LWE — ISIS-like — BDD — uSVP, solve by BKZ.

A*b=A‘t(As+e)=At-e (mod q).

Find e by solving a ISIS-like problem.

General way to solve ISIS: B-e =t (mod q).

» Find arbitrary (not necessarily short) y such that B-y =t (mod q).
> Kernel lattice A;(B) = {x € Z™ | Bx =0 (mod q)}.

» Call BDD/CVP with target point y in the kernel lattice. This gives v
closest to vy.

Bv - By =Be =1t (mod g).

The lattice has rank m and volume g™~ ". Only e is used.




Third strategy (primal): another way to convert to ISIS-like.
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Third strategy (primal): another way to convert to ISIS-like.

Given b = As + e (mod g), re-write as

b=[All,]- . —A"-s" (mod q).

— —

: Y [ ;
» Find short in the kernel lattice of A’

e

» [he information of s is retained.

» The lattice has rank m + n and volume g"".

» |f s and e are not balanced, re-balance the lattice (B.-Galbraith, '14).

These methods are sometimes equivalent, but not always, depending on
the parameters given.




Fourth strategy: distinguishing attack using the dual.




Fourth strategy: distinguishing attack using the dual.

The previous dual /ISIS method:

A*b=A"(As+e)=A"-e (modq).

Consider the kernel lattice of AT: {x € Z™ | ATx =0 (mod q)}.

» Find short vectors w in the kernel lattice.
» Then (w,b) = (w,e) is much smaller than q.

» Repeat this for many w for higher confidence.

Note this removes the information on s.




Fourth strategy: distinguishing attack using the dual.

To keep s, consider the solution x to {x € Z™ | ATx =y (mod q)} for
any short y. Equivalently this is,

[AT]1,] - 5 =0 (mod q).

—

Let (w,v) be a short solution. Then

(w.b) = (v.s) + (w.e) < gq.

When s and e are not balanced, one can re-balance the lattice (Albrecht
'17). This leads to

(c-v,s)+ (w,e)

where two parts contribute similar.
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Fourth strategy: distinguishing attack using the dual.

To keep s, consider the solution x to {x € Z™ | A"x =y (mod q)} for
any short y. Equivalently this is,

—

(AT]1,] - 5 =0 (mod q).

—

Let (w,v) be a short solution. Then

(w,b) = (v,s) + (w,e) < g.

When s and e are not balanced, one can re-balance the lattice (Albrecht
'17). This leads to

(c-v,s) + (w,e)

where two parts contribute similar.




Hybrid strategies: lattice reduction 4+ combinatoric (meet-in-the-middle)
algorithms.

Hybrid attacks:

» Hoffstein, Howgrave-Graham and Silverman '07; Howgrave-Graham
'07 on NTRU.

» Wunderer '16 on uSVP/BDD from LWE.
» Buchmann, Gopfert, Player, Wunderer '16 on binary error LWE.
» Albrecht '17 on binary secret LWE.

» Sometimes a better algorithm (usually when s or e are sparse).

The aforementioned 4 strategies can be combined with combinatoric
(meet-in-the-middle) algorithms.




Hybrid attack on the fourth strategy (dual, distinguising) (Albrecht
17)

Given b = As + e (mod g). Guess (exhaustive search) the second half s;
of length k of s. Then b = Ay;s; + Azsy +e (mod q).

Find dual of A;: short solution w of A/ w = v (mod g) for some short v.
Then

(w,b) = (w, Azsy) + ((v,s1) + (w,e)).

The RHS is small. Above is a new LWE problem with secret s5.

» For each guessed s,, check if the difference is small.

» Alternatively, memory-time tradeoff.




Strategy of dual, distinguishing, combinatoric.
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So far, we used the SVP-solvers as oracles.




Strategy of dual, distinguishing, combinatoric.
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So far, we used the SVP-solvers as oracles.




4. uSVP/BDD solver.




Solving SVP-~

SVP-~ problem: find 0 < [[s|| < v - A1(A). The main tool is the so-called
BKZ algorithm with parameter /3.

» To solve approximated SVP-+y where v = exp(nlog 3/3), we need
BKZ-13 that takes 2 (best asymptotic) for some c.

> v > exp(n &2 polynomial time;

log n
R

> 7 = poly(n), 3 =O(n);

uSVP-~ (Unique Shortest Vector Problem) (e.g. promised gap
¥ 2 A3/ A1)

—n/m

First strategy: lattice of dim m with v ~ =——. This gives running-time
(for BKZ):

(,,.qu>o($f) |

log® a




SVP-3 tours in BKZ-3

BKZ-3 “smooth” over the basis vectors with many invokes of SVP-/3.

The building elements for BKZ-like reductions are block-wise-3 SVP
reductions on projected sublattices,

L,‘ — [’/T,'(b,‘). e Wj(b,q_,g__l)].
If the block is SVP-reduced, then

b1l < /75 - det(Li)M7.

If the block is dual-SVP-reduced, then

The BKZ, Slide reduction (Gama-Nguyen '08), self-dual BKZ reduction
(Micciancio-Walter '15) use a combination of above strategies locally; and
update these changes globally by “tours” over the whole basis.




Simple BKZ

Algorithm 1: BKZ-3

while Changes during SVP process or reached a threshold do

fori=1ton—3+1do
Solve SVP on block L;;

fori=n—3+2ton—1do
Solve SVP on tail blocks:;

After each tour, the basis is “smoothed” by bringing the “shorter” vectors
to the front.




Example: BKZ-40
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Example: BKZ-40
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Average behavior of reduction algorithms

In cryptanalysis, we need the average quality /behavior of the algorithm.
Denote v, the volume of unit ball.

» substitute the bound using ~v5 by Gaussian heuristic:

1 ,
GH(L) ~ T \'(i)l(L)l/n.
Vn'

» behavior of SVP in local blocks.

» behavior of tours in globally.

What Hermite factor o can we achieve in BKZ-/3 and how long does

BKZ-/3 takes?
e |b1|] )1/"
_) ‘»‘_fj. L — ) .
o(B, L) (\'()I(L)l/”




log(||7;;1])

205

200

195

0 20

40

60

80

100




Quantifying the quality after BKZ.




Average behavior of reduction algorithms

In cryptanalysis, we need the average quality/behavior of the algorithm.
Denote v, the volume of unit ball.

» substitute the bound using 5 by Gaussian heuristic:

1
GH(L) ~ —7 - vol(L)Y/".
Vn

» behavior of SVP in local blocks.

» behavior of tours in globally.

What Hermite factor o can we achieve in BKZ-/3 and how long does

BKZ-3 takes?
oy by || )1/"
_) ‘»‘_31 L — y .
! ) (\'()I(L)l/”




For experiments

It has been shown experimentally that GH is pretty accurate for random
lattice (Gama-Nguyen '08). But the local blocks in BKZ may not be
random. E.g., ||b1|| can be smaller than GH. This was observed in
experiments of Chen-Nguyen ('12) and Ducas-Yu ('17).

In our context [ = n. Just for comparison purpose we denote,

» Minkowski upper-bound:

M) £2.

» Expected value:

E(A1(L))
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In cryptanalysis, we need the average quality /behavior of the algorithm.
Denote v, the volume of unit ball.

» substitute the bound using 5 by Gaussian heuristic:

1

GH(L) ~ -vol(L)Y/".

= 4
Vn/
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random. E.g., ||b1|| can be smaller than GH. This was observed in
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It seems that the average behavior BKZ algorithm is even better than the
Gaussian heuristic estimate: the ||bj||'s are smaller than GH predicates for
first several indices.




Better simulating the quality of BKZ

We model this using the distribution of lengths of lattice vectors in a
random lattice (B.-Stehlé-Wen, '18). For a random n-dimensional
unit-volume lattice £, the \;(L) (Sodergren, '11) follows

Y = X¥".GH(L)

where X is a random variable distributed as the exponential distribution

with parameter 1/2. We used this idea to improve the simulator of
Chen-Nguyen "12.

» Sample X according to Expo[1/2].

> If ||b}||> XY/7 - GH(L(m;(b;), - - -, Ti(Bmin(n.i+5-1)))); update this
b7

Heuristic analysis using order statistics (after K SVPs):

E( Yk min) = (2/K)YP -T(1+1/8) = E(A\(L))/KY?,
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Better simulating the quality of BKZ

We model this using the distribution of lengths of lattice vectors in a
random lattice (B.-Stehlé-Wen, "18). For a random n-dimensional
unit-volume lattice £, the A\;(L) (Sodergren, '11) follows

Y = X¥".GH(L)

where X is a random variable distributed as the exponential distribution

with parameter 1/2. We used this idea to improve the simulator of
Chen-Nguyen "12.

» Sample X according to Expo[1/2].

> If ||bY||> X1/7 . GH(L(m;(b;), - - -, Ti(Bmin(n.i+5-1)))); update this
b7 .

Heuristic analysis using order statistics (after K SVPs):

E( Yk min) = (2/K)? -T(1+1/8) = E(\(L))/KY?.




Quality (seems fine) and time (tricky)

The aforementioned simulator seems to provide a good quality estimate to
the BKZ algorithm.

However, simulating the concrete cost of BKZ seems tricky. There are
various models:

» |Local SVP-/3 cost:
» By sieving or,
» By pruned enumeration:;

» Number of tours (thus the number of local SVP-73).

» Alternative reduction strategies may change the number of tours.




Some questions

A more extensive study of hybrid attacks to LWE using the
aforementioned strategies.

Removing gaps between reduction /best-attacks in variants of LWE.

Estimating the running-time of BKZ-/3 more precisely.

Sieving v.s. enumeration. Sieving outperforms enum. in practice
recently (but memory is the bottleneck in real world).

Better algorithm (strategies) for BKZ-like reduction?

How to better use the algebraic structures in lattice reduction ?
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Better simulating the quality of BKZ

We model this using the distribution of lengths of lattice vectors in a
random lattice (B.-Stehlé-Wen, "18). For a random n-dimensional
unit-volume lattice £, the \;(L£) (Sodergren, '11) follows

Y = X¥".GH(L)

where X is a random variable distributed as the exponential distribution

with parameter 1/2. We used this idea to improve the simulator of
Chen-Nguyen "12.

» Sample X according to Expo[1/2].

> If ||bf||> X7 - GH(L(7i(b;), -, Ti(Bmin(n.i+5-1)))); update this
b7

Heuristic analysis using order statistics (after K SVPs):

E(Yi.min) = (2/K)Y? - T(1+1/8) = E(A(L))/KY.




Solving SVP-~

SVP-~ problem: find 0 < [|s|| < v - A1(A). The main tool is the so-called
BKZ algorithm with parameter /3.

» To solve approximated SVP-+ where v = exp(nlog 3/3), we need
BKZ-13 that takes 2" (best asymptotic) for some c.

> v > exp(n &2 polynomial time;
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> 7 = poly(n), 3 =©O(n);

uSVP-~ (Unique Shortest Vector Problem) (e.g. promised gap
¥ 2 Az /A1)

—n/m

First strategy: lattice of dim m with v ~ =——. This gives running-time
(for BKZ):
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