
ATTENTION IN RECURRENT NEURAL NETWORKS FOR RANSOMWARE DETECTION

Rakshit Agrawal∗? Jack W. Stokes† Karthik Selvaraj, Mady Marinescu±

? University of California, Santa Cruz, Santa Cruz, CA 95064 USA
† Microsoft Research, One Microsoft Way, Redmond, WA 98052 USA
± Microsoft Corp., One Microsoft Way, Redmond, WA 98052 USA

ABSTRACT
Ransomware, as a specialized form of malicious software, has
recently emerged as a major threat in computer security. With
an ability to lock out user access to their content, recent ran-
somware attacks have caused severe impact at an individual
and organizational level. While research in malware detection
can be adapted directly for ransomware, specific structural
properties of ransomware can further improve the quality of
detection. In this paper, we adapt the deep learning meth-
ods used in malware detection for detecting ransomware from
emulation sequences. We present specialized recurrent neu-
ral networks for capturing local event patterns in ransomware
sequences using the concept of attention mechanisms. We
demonstrate the performance of enhanced LSTM models on
a sequence dataset derived by the emulation of ransomware
executables targeting the Windows environment.

Index Terms— Ransomware Detection, Attention Mech-
anisms, Deep Learning, Long Short-Term Memory, LSTM

1. INTRODUCTION

Ransomware, with recent massive scale attacks, has demon-
strated the adverse effects of malicious software and has
exposed a severe cybersecurity threat. A widespread ran-
somware attack has the potential to impact many worldwide
organizations within a short period of time. Ransomware de-
tection systems incorporate both expert-based as well as ma-
chine learning-based methods to increase detection rates. Ma-
chine learning methods for ransomware detection can be in-
spired by the wide body of research in malware detection.

A major family of malware detection methods emerges
from the use of emulation sequences derived using Portable
Executable (PE) files. These files are processed in a secure
environment, and their actions are captured as a sequence
of events with each event corresponding to a specific system
call. Deep learning methods for sequence learning, such as
[1, 2, 3, 4], have demonstrated strong results in malware de-
tection. Since the ransomware executables can be emulated
using an antimalware engine, similar methods can be adapted
for ransomware detection.

∗The first author performed the work while at Microsoft Research.

The high detection accuracy of sequence learning mod-
els is mostly powered by the ability of recurrent neural net-
works, such as an LSTM (Long Short-Term Memory) [5, 6],
to bind inter-relatedness between events occurring in a certain
sequential order. While such order can be captured similarly
in ransomware sequences, we believe that these sequences ex-
hibit certain additional properties. As presented in the paper,
an analysis of ransomware executables reveals the presence of
a large number of short repeating event sequences within the
longer sequence. An ability to capture this local repeating be-
havior along with the general sequence learning can therefore
improve the performance of ransomware detection systems.

In the recent years, sequence learning methods have incor-
porated the use of attention mechanisms [7, 8] to strengthen
learning by focusing at specific regions within the sequence
during overall learning. In case of ransomware sequences, we
believe that attention mechanisms can help capture the short
locally repeating patterns.

In this paper, we present an enhanced neural cell to in-
corporate attention in learning from ransomware sequences,
known as ARI (Attended Recent Inputs). The ARI cell, while
processing the input sequence, also learns from a recent his-
tory in the form of a subsequence. It learns attention weights
corresponding to each recent input and uses their correspond-
ing significance when processing the input.

We present an implementation of the ARI cell with LSTM
networks, called ARI-LSTM. We enhance the LSTM cell
by incorporating ARI mechanism within the cell, and use
the resulting neural network for sequence learning with ran-
somware. Through evaluation on a ransomware dataset for
the Windows operating system environment, we show that
ARI-LSTM improves the performance of an LSTM in detect-
ing ransomware from emulation sequences.

The paper first explains the significance of repeated local
patterns in ransomware sequences and relates the use of at-
tention mechanisms for such tasks. We then describe the ARI
cell in detail with its LSTM adaptation. This is followed by
the system description for using ARI-LSTM in ransomware
detection. We then present results on a large dataset in Win-
dows environment, concluding with a discussion of the de-
scribed approach.



(a) Ransomware PE Sequences

(b) General Malware PE Sequences

(c) Benign PE Sequences

Fig. 1: Visual representation of commonly observed ransomware, general malware and benign executable files. Each value on
the y-axis corresponds to a Windows API call. The x-axis represents each timestep in the sequential run of the file.

2. BACKGROUND AND MOTIVATION

The adverse impact caused by ransomware on computing sys-
tems poses a major threat to everyday users and society in
general. With continuous growth in ransomware with newer
malicious families emerging every month, the need for strong
defensive methods increases every day. While expert-based
systems are developed over time, this rate of growth in ran-
somware creates a need for self evolving methods of defense
that can learn from available data and improve over time.
Deep learning methods, in particular, can provide this ability
to improve learning with the increasing availability of data.

Learning methods inspired by malware detection, such as
[1, 2, 4], act as a base design for using deep learning in ran-
somware detection. However, such methods do not learn spe-
cific properties of ransomware, which may not be observed in
general malware. We performed an analysis of the execution
behavior of ransomware Portable Executable files and com-
pared them with regular malware, as well as with benign ex-
ecutable files. Figure 1 illustrates the behavior of executables
in the three categories. Each plot represents the execution
of a commonly observed file, where the y-axis corresponds
to enumerated event IDs, and the x-axis represents the time
steps. Each file category refers to the same list of event APIs.
Therefore, a single plot displays the pattern of different API
calls observed during the file execution.

As can be seen in the figure 1, ransomware executables
display a significantly high repetition of small local patterns.
While repeating patterns are often observed in both malware
and benign files as well, the counts of repeating events is ex-
ceedingly high in the case of ransomware. Intuitively, this
can be assumed as expected ransomware behavior, since such
software often repeatedly apply an encryption operation on
the files in the system. However, in order to efficiently use
this behavior in ransomware detection, we must use methods
that can utilize repeating behaviors while still maintaining a
learning of the outer sequence of events.

Attention Mechanisms [7, 8] provide a family of deep
learning tools where significance of specific data within a
large structure can be directly related to its use within the
remaining problem. They have demonstrated superior per-
formance in machine translation [7, 8, 9], speech [10], lan-
guage [11, 12], and image captioning [13] tasks. Attention is
also used in more complex neural systems such as the Mem-
ory networks [14], Neural Turing Machine [15] and the Dif-
ferential Neural Computer [16]. Improved architectures of at-
tention [17, 9, 18, 19, 20] have also been developed allowing
finer use of the information focused within specific regions in
the input. Inspired by these models, we believe that the objec-
tive of utilizing smaller repeating patterns while processing a
longer sequence can be addressed by attention mechanisms.



3. METHODS

In the previous section, we discussed the motivation behind
using attention mechanisms while processing executable se-
quences for ransomware detection. In this section, we de-
scribe a neural component, called the Attended Recent Inputs
(ARI) cell. An ARI cell, while processing a sequence, can si-
multaneously provide additional input information by learn-
ing attention weights for upto L recent inputs.

For a given primary input xt ∈ Rn at timestep t,
where n is the input dimension to the ARI, and a set St =
{xt−L,xt−(L−1) . . . ,xt−1} of nearby inputs needs to be at-
tended, we first represent the set St as a matrix Rt ∈ Rn×L

where each row is a recent input vector at timestep t. The
computation process for ARI using Rt is then defined as:

Rt = MATRIX(St)
Mt = DENSE(Wd ∗Rt)

αt = softmax(ωTMt)

rt = Rtα
T
t

(1)

where L is the number of recent inputs in Rt and Mt ∈
Rn×L is the attended vector over recent inputs using an at-
tention learning function fn = DENSE neural network layer.
αt ∈ R1×L is the computed soft weight distribution across
Rt. rt ∈ Rn is the derived vector for input xt providing
a combined measured attention of recent inputs to be used
along with xt. Wd is the weight matrix for the dense layer,
and ωT is the transposed weight vector ω used for aligning the
attended vector. The ARI cell is also illustrated in Figure 2,
where fn refers to the DENSE learning operation used by the
ARI cell.

The ARI cell, therefore, performs attention at the input
of a recurrent neural network (RNN). In order to use such
cells in sequence learning, we need to adapt them with an
RNN architecture. For instance, the ARI cell can be used as
Simple Recurrent Neural Network (SimpleRNN) and Long
Short-Term Memory variants.

SimpleRNN: At each timestep t, a Simple Recurrent Neural
Network uses the activation ht−1 from the previous timestep
when processing input xt in order to influence the activation
ht. With σ denoting a non-linearity, we can express a Simple
RNN as:

ht = σ(Whht−1 +Wxxt) (2)

where Wh ∈ Rk×k and Wx ∈ Rk×n are trainable projection
matrices for the hidden input ht−1 and input xt, respectively.
k is the output/hidden dimension of the RNN cell, and n is
the input dimension. Using the additional input rt from ARI
at each timestep t, we derive the equations for ARI-RNN as:

ht = σ(Whht−1 +Wxxt +Wrrt) (3)

xtxt-1xt-2xt-3xt-L

fn fn fn fn

SOFTMAX

dot

rt

Fig. 2: An illustration of the ARI cell which operates on re-
current inputs and generates a learned vector rt using the at-
tention mechanism fn.

where Wr ∈ Rk×n is a trainable projection matrix for the
ARI input in the cell.

Long Short-Term Memory: An LSTM [5] is a memory-
based gated cell for RNNs most commonly used with long
sequences. LSTMs use three kinds of gates (input, output
and forget), along with an explicit cell memory. For input xt

at timestep t, LSTMs using ARI can be adapted into ARI-
LSTM as:

it = σ(Whiht−1 +Wxixt +Wrirt)

ft = σ(Whfht−1 +Wxfxt +Wrfrt)

ot = σ(Whoht−1 +Wxoxt +Wrort)

ct = ft � ct−1 + it � tanh(Whcht−1 +Wxcxt +Wrcrt)

ht = ot � tanh(ct)

(4)

where σ is the logistic sigmoid function, it, ft,ot, ct are input
gate, forget gate, output gate and cell activation, respectively.
Wh are the recurrent weight matrices for each gate, and Wx

are the input weight matrices. Wr in this equation refers to
the recent weight matrices, which are the weight matrices as-
sociated with information on recent inputs for each element
in the sequence.

While we use the basic definition of attention mechanisms
in ARI, more complex cells can also be generated to perform
larger attentions similar to [21, 22]. Our objective in defining
ARI is the ability to integrate recent input attention within the
larger cell operating directly on a sequence. By providing an
implicit input attention, we help utilize the attention weights
at each timestep in measuring both the hidden activation from
the cell, as well as the cell memory. For problems sensitive to
relations with recent inputs, we believe this use of attention



0.0 20.0 40.0 60.0 80.0 100.0
False Positive Rate (%)

0.0

20.0

40.0

60.0

80.0

100.0

Tr
ue

Po
si

tiv
e

R
at

e
(%

)

LSTM only (area = 0.96)
ARI (L=5) (area = 0.97)
ARI (L=8) (area = 0.97)

Fig. 3: ROC curves for the LSTM and ARI-LSTM cells in
the LaMP model for ransomware detection.

within the cell provides a direct influence factor that cannot
easily be captured by the LSTM.

4. EVALUATION

Inspired by the ransomware analysis in section 2, the design
of the Attended Recent Inputs (ARI) cell was described in the
previous section. In this section, we present results from their
evaluation on ransomware detection.

4.1. Experiment Setup

We based our learning setup for ransomware detection on the
LSTM and Max Pooling (LaMP) model for malware detec-
tion presented in [4]. While the LaMP model uses the LSTM
as the recurrent neural network, we evaluate the ransomware
dataset with both an LSTM and an ARI-LSTM . For our task,
the learning objective of LaMP is to perform binary classifi-
cation on input sequences where a label of 1 corresponds to
an inference as ’ransomware’ and a label of 0 means ’benign’.
We used a dataset of unique file sequences consisting of ran-
somware and benign executables for the Windows operating
system captured from client computers. We trained the model
on 12,500 sequences, with a 50% distribution over the labels.
We used the Keras [23] deep learning framework, with Ten-
sorflow [24] backend for the training and inference stages
of our experiments. All the models were trained using back-
propagation with the Adam optimizer [25].

4.2. Results

We evaluate the performance of each model on a larger test-
ing dataset with 26,300 samples. In order to evaluate per-
formance of each model, we compare the receiver operating
characteristic (ROC) curves. As shown in the Figure 3, ARI-
LSTM performs consistently better than the standard LSTM

0.0 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0
False Positive Rate (%)

0.0

20.0

40.0

60.0

80.0

100.0

Tr
ue

Po
si

tiv
e

R
at

e
(%

)

LSTM only (area = 0.96)
ARI (L=5) (area = 0.97)
ARI (L=8) (area = 0.97)

Fig. 4: ROC curves for the LSTM and ARI-LSTM cells in
the LaMP model for ransomware detection, zoomed into a
maximum FPR = 2%.

Table 1: Accuracy comparison for ransomware detection

Model Accuracy

LSTM 0.87
ARI-LSTM (L=5) 0.93
ARI-LSTM (L=8) 0.91

for the objective of ransomware detection. We further observe
the performance at a much finer scale with False Positive Rate
(FPR) set at 2% in Figure 4. This focused observation fur-
ther shows better performance by ARI-LSTM even at very
small values of FPR. We also compare the overall accuracy
of each model under this setting, with results presented in ta-
ble 1. Across both the metrics, ARI-LSTM shows signifi-
cantly better performance than LSTM, proving the efficiency
of learning local patterns through attention mechanisms.

5. CONCLUSION

This paper serves an important problem in cybersecurity for
ransomware detection. We perform a detailed analysis of ran-
somware executables in order to identify structural properties
that can be exploited by machine learning systems. We iden-
tify an existence of small repeating patterns within long se-
quences of ransomware potentially corresponding to repeated
encryption operations. We present a novel recurrent neural
network component for exploiting the repeating patterns by
incorporating attention mechanisms on the inputs of a se-
quence learning module. We present an LSTM variant of
our cell called ARI-LSTM . With empirical results on a ran-
somware dataset, we show that ARI-LSTM performs signif-
icantly better than an LSTM for the task of ransomware de-
tection. With the ARI cell, we present an approach for incor-
porating attention at the inputs of a sequence, which can be
used by problems sensitive to relations within recent inputs.



6. REFERENCES

[1] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu,
and A. Thomas, “Malware classification with recur-
rent networks,” in 2015 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
April 2015, pp. 1916–1920.

[2] B. Athiwaratkun and J. W. Stokes, “Malware classifica-
tion with lstm and gru language models and a character-
level cnn,” in 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
March 2017, pp. 2482–2486.

[3] R. Agrawal, J. W. Stokes, M. Marinescu, and K. Sel-
varaj, “Neural sequential malware detection with pa-
rameters,” in 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
April 2018, pp. 2656–2660.

[4] R. Agrawal, J. W. Stokes, M. Marinescu, and K. Sel-
varaj, “Robust neural malware detection models for
emulation sequence learning,” in MILCOM 2018 -
2018 IEEE Military Communications Conference (MIL-
COM), Oct 2018, pp. 1–8.

[5] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-
term memory,” Neural Computation, vol. 9, pp. 1735–
1780, 1997.

[6] Felix A. Gers, Jürgen Schmidhuber, and Fred A. Cum-
mins, “Learning to forget: Continual prediction with
lstm,” Neural Computation, vol. 12, pp. 2451–2471,
2000.

[7] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio, “Neural machine translation by jointly learning to
align and translate,” CoRR, vol. abs/1409.0473, 2015.

[8] Minh-Thang Luong, Hieu Pham, and Christopher D.
Manning, “Effective approaches to attention-based neu-
ral machine translation,” CoRR, vol. abs/1508.04025,
2015.

[9] Michal Daniluk, Tim Rocktäschel, Johannes Welbl, and
Sebastian Riedel, “Frustratingly short attention spans in
neural language modeling,” CoRR, vol. abs/1702.04521,
2017.

[10] Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk,
Kyunghyun Cho, and Yoshua Bengio, “Attention-based
models for speech recognition,” in NIPS, 2015.

[11] Alexander M. Rush, Sumit Chopra, and Jason Weston,
“A neural attention model for abstractive sentence sum-
marization,” in EMNLP, 2015.

[12] Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and Jan
Kleindienst, “Text understanding with the attention sum
reader network,” CoRR, vol. abs/1603.01547, 2016.

[13] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron C. Courville, Ruslan Salakhutdinov, Richard S.
Zemel, and Yoshua Bengio, “Show, attend and tell:
Neural image caption generation with visual attention,”
in ICML, 2015.

[14] Jason Weston, Sumit Chopra, and Antoine Bordes,
“Memory networks,” CoRR, vol. abs/1410.3916, 2014.

[15] Alex Graves, Greg Wayne, and Ivo Danihelka, “Neural
turing machines,” CoRR, vol. abs/1410.5401, 2014.

[16] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim
Harley, Ivo Danihelka, et al., “Hybrid computing us-
ing a neural network with dynamic external memory,”
Nature, vol. 538, pp. 471–476, 2016.

[17] Alexander H. Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason Weston,
“Key-value memory networks for directly reading doc-
uments,” in EMNLP, 2016.

[18] Scott E. Reed and Nando de Freitas, “Neural
programmer-interpreters,” CoRR, vol. abs/1511.06279,
2016.

[19] Jimmy Ba, Geoffrey E. Hinton, Volodymyr Mnih,
Joel Z. Leibo, and Catalin Ionescu, “Using fast weights
to attend to the recent past,” in NIPS, 2016.

[20] Çaglar Gülçehre, Sarath Chandar, Kyunghyun Cho, and
Yoshua Bengio, “Dynamic neural turing machine with
continuous and discrete addressing schemes,” Neural
Computation, vol. 30, no. 4, 2018.

[21] Jimmy Ba, Geoffrey E. Hinton, Volodymyr Mnih,
Joel Z. Leibo, and Catalin Ionescu, “Using fast weights
to attend to the recent past,” 2016.

[22] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L ukasz
Kaiser, and Illia Polosukhin, “Attention is all you need,”
in Advances in Neural Information Processing Systems
30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, Eds., pp.
5998–6008. Curran Associates, Inc., 2017.

[23] François Chollet et al., “Keras,” https://keras.
io, 2015.

[24] Martı́n Abadi, Ashish Agarwal, Paul Barham, et al.,
“TensorFlow: Large-scale machine learning on hetero-
geneous systems,” 2015, Software available from ten-
sorflow.org.

[25] Diederik P. Kingma and Jimmy Ba, “Adam: A method
for stochastic optimization,” CoRR, vol. abs/1412.6980,
2015.


