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ABSTRACT
We present a tool (“cwl_eval”) which unifies many metrics typically

used to evaluate information retrieval systems using test collections.

In the C/W/L framework metrics are specified via a single function

which can be used to derive a number of related measurements: Ex-
pected Utility per item, Expected Total Utility, Expected Cost per item,

Expected Total Cost, and Expected Depth. The C/W/L framework

brings together several independent approaches for measuring the

quality of a ranked list, and provides a coherent user model-based

framework for developing measures based on utility (gain) and

cost. Here we outline the C/W/L measurement framework; de-

scribe the cwl_eval architecture; and provide examples of how to

use it. We provide implementations of a number of recent metrics,

including Time Biased Gain, U-Measure, Bejewelled Measure, and

the Information Foraging Based Measure, as well as previous met-

rics such as Precision, Average Precision, Discounted Cumulative

Gain, Rank-Biased Precision, and INST. By providing state-of-the-

art and traditional metrics within the same framework, we promote

a standardised approach to evaluating search effectiveness.

ACM Reference Format:
Leif Azzopardi, Paul Thomas, and Alistair Moffat. 2019. cwl_eval: An Evalu-

ation Tool for Information Retrieval. In Proceedings of the 42nd International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR ’19), July 21–25, 2019, Paris, France.ACM, New York, NY, USA, 4 pages.

https://doi.org/10.1145/3331184.3331398

1 INTRODUCTION
Effectiveness evaluation has played a central role in the develop-

ment of information retrieval systems [11]. Over the years many

metrics have been proposed, with the more recent ones employing

multi-valued and/or discounted relevance values (Discounted Cu-

mulative Gain (DCG) [3] and Rank Biased Precision (RBP) [5]); cost

(or time) associated with viewing result items (Time Biased Gain

(TBG) [12]); and the way in which users adapt their interactions ac-

cording to their goals and constraints (INST [7], Bejewelled Player

Model (BPM) [14], and Information Foraging Theory (IFT) [1]).

With each metric proposed a new evaluation script is typically in-

troduced (or sometimes not), with the explanation in part that the

metrics are more sophisticated and go beyond the typical assump-

tions made by trec_eval, and in part because of the complexity
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already present in trec_eval. The growth in the diversity of tools

means that researchers wanting to use “state-of-the-art” metrics

in their work need to obtain a variety of independent scripts (if

they exist), and manage their differing input formats [9]. As a con-

sequence there has been slow uptake of newer metrics despite

evidence that metrics like INST, TBG, BPM, and IFT are able, in

various ways, to make more accurate predictions of performance,

and/or are more correlated with user satisfaction than traditional

approaches; and despite the standard set of trec_eval metrics mak-

ing questionable modelling assumptions (Average Precision (AP)

[8]), or having mathematical infelicities (Reciprocal Rank (RR) [2]).

We describe a common, extensible, open-source resource for

evaluation metrics, ensuring back-compatibility with trec_eval, so

that previous measurements of performance remain available in

a single tool, and allowing the community to also employ these

newer measures. In its simplest form, cwl_eval takes the same input

as trec_eval, but also provides additional options.

To provide the theoretical underpinnings we draw upon the

C/W/L framework proposed by Moffat et al. [8]. This framework

provides a standardised and intuitive way to encode a wide range of

metrics, and enables reporting of not just Expected Utility per item

inspected, the rate at which gain is acquired, but also the related

measurements of Expected Total Utility, the gain accumulated from

the whole list; Expected Cost per item inspected; Expected Total Cost,
the cost incurred in examining the results list; and Expected Depth,
the number of items a searcher examines given the user model

encoded within the metric.

The C/W/L framework is described in detail elsewhere [1, 7, 8].

In brief, it models the manner in which probabilistic users examine a

ranked list, assuming that each user reads top down and is governed

by a conditional continuation probability 0 ≤ Ci ≤ 1 that indicates

the fraction that proceed to examine the item at depth i + 1, given
that they have examined the item at depth i . Different choices of
C = ⟨Ci ⟩ then reflect different beliefs about user behaviour and

hence define different metrics. A vector of weightsW = ⟨Wi ⟩ can

be derived from C, where Wi is an assessment of the expected

proportion of user attention directed at the item at rank i . Using
these weights the expected utility (EU) of a ranking is computed

as the dot product between the relevance (that is, gain) vector and

W; and the expected total utility (ETU), how much the user takes

from the interaction as a whole, via a similar computation. We

can also calculate the expected cost (EC) of examining an item,

the dot product between the weights and a cost vector [1, 12], and

the expected total cost (ETC). The costs used for the latter two

computations can be in units of documents, characters, reading

seconds, and so on. For example, the U-Measure [10] calculates

cost in characters, while TBG and IFT use seconds. Finally, we can

calculate the expected depth (ED), that is, how far down the ranked

list a randomly-selected user will go.
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Fundamentally, the C/W/L framework generates a wide range

of measurements regarding the predicted user interactions with

the ranked list of search results; and hence, conversely, allows for a

wide range of observational information to be used to derive metrics

that relate to user behaviour, and thus to useful measurement.

2 TOOLKIT, APP AND NOTEBOOKS
Toolkit. cwl_eval defines three core classes. First, the Ranking
class is minimally composed of two ordered lists representing the

gains and costs of the items returned from the search. Attributes

such as total gain and total relevant items are calculated from these

two lists. The ranking is then passed to the CWLRuler, which
is composed of a number of CWLMetrics; or directly to a single

CWLMetric. The latter produces the measurements.

The heart of the toolkit is the CWLMetric class, which is used

as the basis of different measures. It requires the definition of the

C, W and/or L vectors. (Moffat et al. [6] define the connections

between them.) Typically, C is the easiest commencement point,

and W and L are computed from it by the base class. By creating a

Ranking object, and a Metric object, it is possible to ask the Metric

for C, W, or L for that Ranking. The examples below show how

this is useful in exploring how metrics behave, and the different

kinds of user models that they encode. Adding a new metric to the

toolkit is simple: first inherit from the CWLMetric class, and then

describe the C vector.

Graded Gain Values. Järvelin and Kekäläinen [3] make use of

graded gains and non-binary relevance judgements; Moffat and

Zobel [5] similarly allow fractional utility. cwl_eval also allows

fractional gains to be input as part of a standard TREC qrels file.

Residuals. In their description of RBP Moffat and Zobel [5] in-

troduce the notion of residuals, the score uncertainty introduced

by unjudged documents. In an ideal evaluation, all documents in

the ranking would have associated gain values, and metric score

measurements would be precise. Howevere, in most practical ex-

perimentation only a small subset of the documents in the ranking

have been judged. The standard (and trec_eval) approach is to

regard unjudged documents as being non-relevant, with a gain of

zero. The same convention is adopted in cwl_eval, and as a result,

most (but not all) C/W/L metrics are computed as lower bounds

on the “true” score. The residual is then the difference between that

lower score and a matching upper value that arises from supposing

that every single unjudged document—right through to the end of

the collection—is fully relevant.

In particular, high residual values indicate an experimental con-

text inwhich theremight be non-trivial imprecision in themeasured

values, with further relevance judgements being the only way to

be sure whether that is in fact the case. Note that residuals should

not be thought of as being confidence intervals, or as having any
statistical basis. Their sole purpose is to provide a bounding range

on the eventual score, based on the partial evidence supplied by

incomplete relevance judgements.

Application. The program cwl_eval.py provides a similar inter-

face to trec_eval, and in simplest form is used via

python cwl_eval.py <TREC -QRELs > <TREC -RESULTS >

where <TREC-QRELS> is the name of a standard four-column TREC-

formatted relevance file, and <TREC-RESULTS> a standard six-column

TREC-formatted result file. When no cost file is specified, cwl_eval

assumes the cost of each item to be 1.0. If a cost file is specified

via the flag “-c <COSTS>”, then document-specific costs are used to

calculate expected (and total) costs.

Note the relationship between the measurements: EU (the ex-

pected rate at which gain is acquired per item viewed, averaged over

all users) multiplied by ED yields ETU. Similarly, EC (the expected

cost per item examined, in the cost units supplied), multiplied by

ED, is equal to ETC. Reporting one measurement (EU, the per-item-

viewed rate at which gain is accumulated, as is typically the case

with Precision and RBP, for example) provides part of the picture;

reporting both the expected number of items per unit of cost, and

the expected cost, provides more information. Further, note that the

rate of gain per unit of cost can be calculated by taking ETU and

dividing it by ETC. As already noted, costs can be specified in any

units, for example, documents, seconds, characters, kilobytes, etc.

If seconds are used, then EC and ETC are seconds per document,

and total seconds, respectively.

By default cwl_eval outputs a list of metric scores (Precision,

RR, AP, RBP, INST, and so on). It can also be readily configured

to report other sets of metrics, using the flag “-m <METRICS>” and

listing the metrics to be reported in a file, one per line, for example:

PrecisionCWLMetrics(k=10)

INSTCWLMetric(T=2.5)

APCWLMetric ()

RBPCWLMetric(theta =0.3)

TBGCWLMetric(h=20)

It is straightforward to select and configure metrics. For example,

cwl_bpm.py provides an implementation of the Bejewelled Player

measure [14], which minimally takes two parameters: T , the total
amount of benefit desired, and K , the total amount of cost available

to be spent. Adding BPMCWLMetric(T=4, K=10) to the list of metrics

means that the static Bejewelled Player Model will be computed.

For convenience, three other flags can be set: “-b <BIBFILE>”,

to save the BibT
E
X associated with the metrics specified/used; “-n”

to include the column names of each measurement in the output;

and “-r” to compute and report residuals where it is appropriate to

do so. Note that all output is provided on a per query/topic basis,

the presumption being that a subsequent processing phase will

compute average scores over topics and also (if required) carry out

statistical tests.

Tests. As part of the development, we checked cwl_eval’s output of

a range of traditional metrics (P@k , AP, NDCG@k) for consistency
with trec_eval. For this we used standard TREC test collections,

and then ranked the documents for the corresponding topics using

BM25. Those runs were then fed into both evaluation tools, and the

scores for the metrics were compared.

One issue that needed to be addressed was the internal sorting

performed by trec_eval, which ignores the provided ranking, and

sorts the list by score, and then reverse document identifier (see

Yang et al. [13] for further discussion). When we re-sorted the runs

according to this criteria, cwl_eval provided the same scores as

trec_eval. Scripts for all of these validation tests are provided in

the cwl_evalGitHub repository. We also checked the results against



those of inst_eval1 [4], and the internal tests of the irmetrics

package
2
, to verify that the scores were equivalent; scores agreed

to within rounding error.

Implementation. The C/W/L Evaluation Toolkit, and cwl_eval,

is available at https://github.com/ireval/cwl. A demonstration of

using the toolkit in Jupyter Notebooks is provided at https://github.

com/ireval/cwl-examples.

3 C/W/L EXAMPLES
To provide examples of how the C/W/L framework can be used

to see the inner workings of the different metrics, we created a

number of Jupyter Notebooks, which show: (i) how the different

metrics can be instantiated; (ii) how to access the different vectors;

and (iii) how to plot them.

Example Topics. For the examples below, we have assumed that

we have two topics (T1 and T2). The table below shows the cor-

responding gain vectors (in the range 0–1) and cost vectors (item

inspection times, in seconds), to depth ten in each case.

rank i 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

T1 Gain 0.0, 0.0, 0.2, 0.4, 1.0, 0.2, 0.0, 0.0, 1.0, 0.0, 0.0, 0.4, 0.0, 0.0, 0.0

Cost 1.2, 0.6, 0.4, 0.6, 3.6, 1.6, 0.6, 2.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 1.8

T2 Gain 1.0, 0.0, 1.0, 0.4, 0.0, 0.2, 0.0, 0.0, 1.0, 0.2, 0.0, 0.4, 0.0, 0.0, 0.0

Cost 3.2, 1.6, 1.4, 0.6, 3.6, 1.6, 0.6, 1.6, 2.6, 0.2, 1.2, 0.2, 0.2, 0.6, 1.8

Sample Output. Below we have included two examples of the

output from cwl_eval, where: (i) no cost information is included,

and (ii) cost information is included. Table 1 shows the resulting

output when costs are not provided (only T1 is reported). Here, the

default cost per item is assumed to be one (a unit cost), and so the

Expected Cost per item viewed is one, and the Expected Total Cost

is the same as Expected Depth.

Table 2 shows the output when the document costs are provided.

Now the expected cost per item depends on how much time it takes

to process each item, and the proportion of attention allocated to

each item. In this example the expected total cost is now different

from the expected depth, by a factor related to the weighted cost of

processing the inspected items. Costs are in the units provided, so

here the output units are seconds/document (EC) or seconds (ETC).

Inside Metrics. The repository includes a Jupyter Notebook to

show how we can visualise and inspect the models within the

1
https://github.com/ielab/inst_eval

2
https://github.com/Microsoft/irmetrics-r

Table 1: cwl_eval output without cost information.

Topic Metric EU ETU EC ETC ED

T1 AP 0.2722 1.6000 1.0000 5.8776 5.8776

T1 RR 0.0667 0.2000 1.0000 3.0000 3.0000

T1 P@5 0.3200 1.6000 1.0000 5.0000 5.0000

T1 NDCG-k@10 0.2270 1.0314 1.0000 4.5436 4.5436

T1 INST-T=2 0.1545 0.6069 1.0000 3.9220 3.9292

T1 TBG-H@2 0.1752 0.5981 1.0000 3.4142 3.4142

T1 BPM-Dynamic-... 0.3200 1.6000 1.0000 5.0000 5.0000

T1 IFT-... 0.0659 0.1097 1.0000 1.6649 1.6649

Figure 1: C/W/L function plots for three metrics for Topics T1

and T2. Top row: RBP, ϕ = 0.8; middle row, TBG, H = 2; bottom

row, BPM, T = 2, K = 10.0, hc = 0.5, hb = 0.5

metrics. Figure 1 shows the C/W/L functions for a subset of the

metrics on the two example topics. For RBP the plots are the same

for topics T1 and T2—this is because RBP is not sensitive to either

the cost values or the gain values. Both TBG and BPM consider

both the gain and cost vectors to determine how likely a user is

to continue down the ranked list (C), and hence the proportion of

attention that is paid to each result (W) and how likely the user is

to stop at a given rank (L).

Visualising the Measurements. Since cwl_eval outputs a series

of measurements given the metric, it is now possible to contextu-

alise the usual Expected Utility measurement with respect to the

Expected Depth, and to visualise how the EU and ED change when

Table 2: cwl_eval output with costs information.

Topic Metric EU ETU EC ETC ED

T1 AP 0.2722 1.6000 1.1681 6.8653 5.8776

T1 RR 0.0667 0.2000 0.7333 2.2000 3.0000

T1 P@5 0.3200 1.6000 1.2800 6.4000 5.0000

T1 NDCG-k@10 0.2270 1.0314 1.1827 5.3738 4.5436

T1 RBP@0.6 0.1287 0.3218 1.0208 2.5520 2.5000

T1 TBG-H@2 0.2143 0.7195 1.1513 3.8663 3.3582

T1 BPM-Dynamic... 0.3200 1.6000 1.2800 6.4000 5.0000

T1 IFT... 0.0748 0.1269 1.0857 1.8412 1.6959
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Figure 2: Example of how measurements change over metric parameters. Left column: RBP (where θ was varied from 0.1 to 0.9); middle:

TBG (where the half-life parameter is varied from 0.25 to 2); Right: BPM (where T was varied from 0.5 to 4.0). Top row: Expected Utility (EU)

per item inspected vs Expected Depth (ED); middle: Expected Total Utility (ETU) vs ED; bottom: Expected Total Cost (ETC) vs ED.

the parameters of the metrics are varied. Figure 2 shows how Ex-

pected Utility and Expected Total Utility, and Expected Total Cost,

vary as a function of ED for three metrics. Each plotted point rep-

resents a particular parameter setting combination for the metric

and its corresponding predictions.

4 SUMMARY
We have described the C/W/L evaluation framework, a toolkit

and an application for evaluating information retrieval systems.

This work represents the unification of various metrics within one

package, enabling direct comparison between the estimates of such

metrics. It also provides the foundations for the development of

new utility- and cost-based metrics.

REFERENCES
[1] Leif Azzopardi, Paul Thomas, and Nick Craswell. Measuring the utility of search

engine result pages: An information foraging based measure. In Proc. SIGIR,
pages 605–614, 2018.

[2] Norbert Fuhr. Some common mistakes in IR evaluation, and how they can be

avoided. SIGIR Forum, 52(2):32–41, 2017.

[3] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of IR

techniques. ACM Trans. Inf. Syst., 20(4):422–446, 2002.

[4] Bevan Koopman and Guido Zuccon. A test collection for matching patient trials.

In Proc. SIGIR, pages 669–672, 2016.
[5] Alistair Moffat and Justin Zobel. Rank-biased precision for measurement of

retrieval effectiveness. ACM Trans. Inf. Syst., 27(1):2:1–2:27, 2008.
[6] Alistair Moffat, Paul Thomas, and Falk Scholer. Users versus models: What

observation tells us about effectiveness metrics. In Proc. CIKM, pages 659–668,

2013.

[7] Alistair Moffat, Peter Bailey, Falk Scholer, and Paul Thomas. INST: An adaptive

metric for information retrieval evaluation. In Proc. Aust. Doc. Comp. Symp.,
pages 5:1–5:4, 2015.

[8] Alistair Moffat, Peter Bailey, Falk Scholer, and Paul Thomas. Incorporating user

expectations and behavior into the measurement of search effectiveness. ACM
Trans. Inf. Syst., 35(3):24:1–24:38, 2017.

[9] Joao Palotti, Harrisen Scells, and Guido Zuccon. Trectools: an open-source python

library for information retrieval practitioners involved in trec-like campaigns. In

Proc. SIGIR, 2019.
[10] Tetsuya Sakai and Zhicheng Dou. Summaries, ranked retrieval and sessions:

A unified framework for information access evaluation. In Proc. SIGIR, pages
473–482, 2013.

[11] Mark Sanderson. Test collection based evaluation of information retrieval systems.

Foundations and Trends in Information Retrieval, 4(4):247–375, 2010.
[12] MarkD. Smucker and Charles L. A. Clarke. Time-based calibration of effectiveness

measures. In Proc. SIGIR, pages 95–104, 2012.
[13] Ziying Yang, Alistair Moffat, and Andrew Turpin. How precise does document

scoring need to be? In Proc. AIRS, pages 279–291, 2016.
[14] Fan Zhang, Yiqun Liu, Xin Li, Min Zhang, Yinghui Xu, and Shaoping Ma. Evalu-

ating web search with a bejeweled player model. In Proc. SIGIR, pages 425–434,
2017.


	Abstract
	1 Introduction
	2 Toolkit, App and Notebooks
	3 C/W/L Examples
	4 Summary
	References

