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ABSTRACT

Detecting cyber attacks in large computer networks is crucial
for many organizations. To that purpose, different types of
detectors capture the important signals resembling a security
attack from individual computers and bring that to the atten-
tion of a security analyst. Unfortunately, the analyst some-
times has no indications about why the particular computer
was identified as being “under attack”. In addition, the ana-
lyst may have no method to provide feedback to the detector
if the computer was actually identified for some benign rea-
son. In this paper, we use a state-of-the-art anomaly detector
called an Isolation Forest [1] for attack detection and generate
explanations about why the detector identified certain com-
puters as anomalous. These explanations allow the analyst to
direct their investigation in order to save time. We then take
the feedback from the analyst in the form of true and false
positives and update the anomaly detector to capture signals
that align better with the given feedback. Our experiments on
actual network data show that the explanations give more in-
sight into the detections, and the analyst’s feedback increases
the attack detection rate.

Index Terms— Anomaly Explanation, Expert Feedback,
Cyber Security, Cyber Attack Detection

1. INTRODUCTION

Detecting cyber attacks using machine learning techniques
is a promising new field, and a number of supervised meth-
ods have been employed for that purpose [2, 3]. However,
one of the major problems of these techniques is that they
require a large number of labeled attack examples, which is
very challenging to obtain in practice. Furthermore, new and
novel types of attacks will continue to occur in the future.
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As a result, unsupervised techniques such as anomaly detec-
tion [4, 5, 6, 7, 8] are becoming popular in detecting these
new and diverse types of attacks. In general, anomaly de-
tection techniques rely on some generic “statistical measure”
which, unfortunately, sometimes selects benign activity as an
anomaly that has nothing to do with a security risk. As a
result they tend to produce a large number of false positives
which require a security expert (i.e., analyst) to manually ver-
ify each one through a costly and time consuming investi-
gation. When an analyst is presented with a set of anoma-
lies, they usually have no knowledge of why the items are
actually considered anomalous since the underlying detection
technique is a black-box which does not reveal what features
led to each sample’s selection. Some recent work has tried
to mitigate this issue by providing explanations for anomaly
detection [9, 10, 11, 12]. We use one such simple explanation
method called Sequential Feature Explanation [9] described
in Section 3. Once the analyst reviews the explanation, they
can direct their research only to the associated features to save
time from unnecessary investigation.

After each completed investigation, the analyst usually
provides a conclusion of the case as a true positive (TP), false
positive (FP) or unknown. An example is labeled as unknown
if they are unable to decide if it is a TP or FP with certainty
due to the lack of information within their investigational time
constraints. Some recent works [13, 14, 15, 16, 17] have pro-
posed improving the anomaly detection performance by in-
corporating this type of user feedback. We employ one such
state-of-the-art technique [13] described in Section 4 that is
shown to be simple and superior to others.

The anomaly detector we use in our system is called the
Isolation Forest [1] (see Section 2). One major benefit of the
Isolation Forest is that it is inherently an ensemble tree-based
technique which can be implemented efficiently in distributed
systems. We leveraged this advantage so that each tree can be
built and updated independently in different computers within
a distributed system, and also the anomaly score can be com-



puted in parallel. The first contribution of this paper is the
implementation of the Isolation Forest anomaly detector for
large distributed systems, which is crucial for processing mas-
sive amount of data produced by large organizations. Previ-
ous research has separately explored explanations for density-
based detectors [9] and feedback with Isolation Forest [13]. In
this study, we combine explanations and feedback for Isola-
tion Forest-based anomaly detction. Thus, the second contri-
bution is the production of explanations for the Isolation For-
est anomaly detector by adapting the technique in [9] that was
originally proposed for the density-based anomaly detectors.
The third contribution is the evaluation and incorporation of
feedback from a professional security analyst on production
data using existing methodologies [13] that demonstrates the
efficacy and validity of deploying such systems in practice.

2. ANOMALY DETECTION

Suppose we have collected some network activity data for a
certain amount of time from M computers within an organi-
zation, and xij ∈ Rn is a set of count-based features repre-
senting the activities that occurred in the ith interval from the
jth computer. Let, X = {x11, x12, ..., x1j , ..., xij , ..., xiM}
be the collection of all the activity instances across all the
computers. X contains both the benign (i.e., normal) activ-
ity as well as the malicious (i.e., attack) events. We assume
that the time interval is large enough to capture a malicious
event within that period, and if a malicious event is split be-
tween two consecutive time intervals, then one of the intervals
should have enough data to capture the malicious activity. We
also assume that the majority of the data consists of benign ac-
tivity, while the malicious activity is only a small fraction of
the entire dataset. Our goal is to detect all the time intervals
containing the malicious events.

We use anomaly detection over the dataset X to identify
the time intervals that are anomalous compared to all other
time intervals. We assume that during an attack, the activities
of the victim’s computer are somewhat different than typical
or regular activity. We employ the Isolation Forest [1] as the
anomaly detector, which has been shown to be the state-of-
the-art by a recent anomaly detection benchmark study [18].
The Isolation Forest builds a collection of trees from the train-
ing data, where each internal node is a random threshold test
on a random feature sampled uniformly from the input data,
and leaf nodes are input instances that followed particular
paths from the root node to the leaves based on the thresh-
old tests. The basic intuition is that on average, an anomalous
instance should be isolated from the rest of the data with a
small number of such random threshold tests and should re-
side on a shallow leaf on the tree. Each instance falls into
an individual leaf node on each tree, and the average depth
across all the trees gives the anomaly score Score(x) for the
instance x (low score indicates high anomalousness and vice
versa). We rank instances based on this anomaly score and

report the most anomalous instances to the analyst for further
investigation.

3. ANOMALY EXPLANATION

In this section we describe how we compute explanations
for the Isolation Forest. We use a feature-based explanation
method called Sequential Feature Explanation (SFE) which
was proposed in [9]. The goal is to identify a set of salient
features, in order of their contribution, which cause a high
anomaly score for a particular instance x. We use the greedy
technique called Sequential Marginal [9] originally proposed
for a joint density function f(x). Sequential marginal greed-
ily chooses the first feature as the one with the lowest den-
sity among all the univariate marginal densities. The second
feature is chosen from the remaining features that has lowest
bivariate density along with the previously chosen feature and
so on. Since the Isolation Forest produces a score (Score(x))
instead of density estimate, we compute the marginal score
for an instance x under a feature subset s as Score(xs), which
is the marginalized score computed by considering the thresh-
old tests involving features only from s across all trees. Es-
sentially, the marginal anomaly score Score(xs) is obtained
by traversing branches of all internal tree nodes whenever the
corresponding threshold test on feature F does not belong to
the set s, i.e., F /∈ s. The resultant score is computed recur-
sively by weighting the left and right subtree scores with the
fraction of instances that went to left and right branches dur-
ing training. This method of marginalization is very effective
for the Isolation Forest as shown by [19], where the authors
call the method “proportional distribution”. They considered
the set of features not present in the set s as missing value
which allows one to compute an anomaly score with any ar-
bitrary set of missing features. Finally, a desired length k
explanation E = (e1, e2, ..., ek) can be computed as follows:

ei = argmin
j /∈E1:(i−1)

Score(xE1:(i−1)∪j ) (1)

4. INCORPORATING FEEDBACK

We present the most anomalous instances to the analyst along
with their explanations to obtain their labels. The analyst in-
vestigates one or more items and labels each as either a true
positive or false positive. We incorporate this feedback us-
ing a recent work [13] that shows that feedback can improve
the anomaly detection performance significantly. Essentially,
they introduce a weight on each internal tree node across all
the trees which gives a linear representation of the anomaly
score function Score(x) = wTφ(x), where w is the weight
vector, and φ(x) is a feature function that transforms x into a
high-dimensional binary vector based on which threshold test
is true for x from the root to the leaf for each tree. If we set
all the initial weights to 1, the linear function will replicate



the initial Isolation Forest score exactly. Once we have some
labeled instances after the analyst’s investigation, we can up-
date the weights so that the score computed from the updated
weights are more aligned with the feedback. For example, if
we have an instance labeled as a false positive, we do not want
to see the instance as well as any other similar instances at the
top of the ranking again, and for the true positives, we do want
to see more similar instances at the top. To that purpose, the
authors in [13] introduced some convex loss functions, which
allow simple and efficient online weight updates. We use the
following linear loss function from [13]:

Lt(wt) = ytScore(xt;wt) (2)

yt =
{ +1 if xt is

′′true positive′′

−1 otherwise
(3)

Here, yt is set according to the feedback. If the current in-
stance xt is a false positive, we set yt = −1, which makes the
loss function become negative of the Score. Thus, we need to
adjust the weightswt to make the Score as large as possible to
minimize the lossLt(wt) and vice versa for true positive feed-
back. We update the weights according to the Online Mirror
Descent (OMD) algorithm described in [13]. Instead of up-
dating the weights for each individual sample’s feedback, we
update them as a batch. If the analyst is able to investigate
20 instances in one round, we update the weights using feed-
back from all 20 instances at once. This can save time for the
analyst since they do not have to wait for recomputed scores
before starting each new investigation.

5. EXPERIMENTS

We collected data from over two millions of computers re-
porting during a two week period. To protect the identify of
the users, we anonymized the user account and the computer
name. We divided the data from computers into two classes,
servers and clients, based on their operating system. Since
servers tend to have significantly different types of activity
than client computers, we filtered them out to focus the ana-
lyst’s time on the majority computer type. For each of these
client computers, we collected network activity containing lo-
gon events, RDP and SQL connections. The Isolation Forest
anomaly detector consumes numeric vectors as input. Thus,
we chose a window size with a time resolution of 30 minutes
and counted the different types of activity that occurred in that
interval. In total, we used 23 count-based features (Table 1)
that gave us a numeric vector of size 23 for each 30 minutes
interval, i.e., a total of 672 numeric vectors per computer we
calculated over the two weeks of activity. We then filtered out
the vectors that did not have any activity, i.e., all of the val-
ues were 0. After preprocessing, the final dataset contained
approximately 300 million vectors for the client computers.

Anomaly Detector Setup. To create the Isolation Forest
model we trained 500 trees, where each tree is grown with

Table 1. List of Features
SuccessfulLogonRDPPortCount
UnsuccessfulLogonRDPPortCount
RDPOutboundSuccessfulCount
RDPOutboundFailedCount
RDPInboundCount
SuccessfulLogonSQLPortCount
UnsuccessfulLogonSQLPortCount
SQLOutboundSuccessfulCount
SQLOutboundFailedCount
SQLInboundCount
NtlmCount
SuccessfulLogonTypeInteractiveCount
SuccessfulLogonTypeNetworkCount
SuccessfulLogonTypeUnlockCount
SuccessfulLogonTypeRemoteInteractiveCount
SuccessfulLogonTypeOtherCount
UnsuccessfulLogonTypeInteractiveCount
UnsuccessfulLogonTypeNetworkCount
UnsuccessfulLogonTypeUnlockCount
UnsuccessfulLogonTypeRemoteInteractiveCount
UnsuccessfulLogonTypeOtherCount
DistinctSourceIPCount
DistinctDestinationIPCount

10,000 unique instances (vectors), and the tree is grown until
each instance is isolated to its own leaf. One major benefit of
the Isolation Forest is that each tree can be trained indepen-
dently. We leveraged this and constructed all the trees in par-
allel using Cosmos, Microsoft’s internal distributed MapRe-
duce platform. It took about 10 minutes in total to train the
entire model. We then computed the anomaly score for each
instance using the same distributed environment that allowed
us to compute anomaly scores for different instances in par-
allel. For all the instances the scoring process took about 2
hours. We then selected the top 1000 anomalous instances
and produced the explanation for each. The explanation cre-
ation process took about an hour.

Explanation Results. For each instance, we get the
anomaly score from the Isolation Forest along with the se-
quential feature explanation computed as described in Sec-
tion 3. Table 2 shows some of the example explanations, i.e.,
SFE with length 3. Note that the raw anomaly scores are
normalized according to [1] to make higher scores indicate
more anomalousness. The explanations tell the analyst what
features were most responsible for the high anomaly score.
Also, we report the individual marginal anomaly score along
with each accumulated feature, which gives a rough estima-
tion of how much each additional feature contributes to the
overall anomaly score. Note that the individual marginal
scores are each independent since they have a different set of
features, and hence it should not be expected that the overall
anomaly score somehow decomposes into them. The last two
rows in Table 2 show examples of some actual RDP brute
force attempts that correlate with the features shown in the
explanations. These examples indicate that the explanations
are inherently capturing some cause of the attack.

Incorporating Analyst’s Feedback. Once we have the



Table 2. Explanation examples along with anomaly scores
Anomaly Score Top 3 features Explanation

0.839
UnsuccessfulLogonTypeOtherCount = 40.0 is unusual with score 0.56
SuccessfulLogonTypeNetworkCount = 800.0 is unusual with score 0.70
SuccessfulLogonTypeInteractiveCount = 120.0 is unusual with score 0.77

0.836
SQLOutboundSuccessfulCount = 44.0 is unusual with score 0.54
UnsuccessfulLogonTypeInteractiveCount = 21.0 is unusual with score 0.70
SQLInboundCount = 1568.0 is unusual with score 0.77

0.834
UnsuccessfulLogonTypeOtherCount = 40.0 is unusual with score 0.56
SuccessfulLogonTypeInteractiveCount = 69.0 is unusual with score 0.70
SuccessfulLogonTypeNetworkCount = 547.0 is unusual with score 0.76

1.24
UnsuccessfulLogonTypeNetworkCount = 59.0 is unusual with score 0.54
RDPInboundCount = 368.0 is unusual with score 1.13
DistinctDestinationIPCount = 11.0 is unusual with score 1.17

1.24
UnsuccessfulLogonTypeNetworkCount = 79.0 is unusual with score 0.54
RDPInboundCount = 145.0 is unusual with score 1.13
DistinctDestinationIPCount = 1.0 is unusual with score 1.16

top ranked outliers along with their explanations, we present
this ranked list to the analyst. The analysts time is an ex-
tremely valuable resource, and we only had access to one
professional analyst who could investigate about 20 instances
per week in addition to their standard responsibilities. An-
alysts have access to much richer data logs than is available
in the features in our dataset which allows them to make a
confident assessment as to whether or not the anomalous ac-
tivity is malicious. After each investigation the analyst give us
their verdict as either “True Positive” or “False Positive”. In
some cases, the analyst is unable to decide if there is enough
information to make a certain decision, so the analyst just la-
bels that instance as “unknown”. We only incorporated “True
Positives” or “False Positives” in our feedback and ignored
the unknowns.

Detection Results. We performed two rounds of feed-
back with the help of a professional analyst and repeated three
iterations each time. Table 3 shows the number of true pos-
itives and false positives detected after each iteration of the
feedback round. In the first feedback round at iteration 1 we
only detect 1 TP and 11 FPs. After incorporating them we
discovered 9 TPs and 4 FPs in the next iteration. After we in-
cluded these new TPs in the third iteration the system became
really good at detecting TPs and detected 20 TPs without any
FPs. After further investigation, we found that all the TPs dis-
covered in this round belong to the same type of attack known
as RDP Brute Force Attempt. Next, we shifted our focus to
detecting examples from a different type of attack. To that
end, we started a second feedback round with the very first
model and intentionally incorporated all the previous TPs and
also all the FPs discovered so far as FPs. This strategy forced
the model to ignore the RDP Brute Force Attempts. We con-
tinue this round for another three iterations and detected 1 and
2 TPs in iteration 2 and 3 respectively. During this round, we
uncovered an additional attack behavior, that of network port

Table 3. Detection result after each feedback round
Feedback Round 1 Feedback Round 2

Iteration # 1 2 3 1 2 3
# TPs 1 9 20 0 1 2
# FPs 11 4 0 10 17 23

scanning. These results show that in just a few iterations, the
system can become very effective at discovering attacks with
a small false positive rate for the top K results. We also found
that providing TPs as feedback seems to be more effective at
discovering similar type of attacks, and FPs as feedback helps
to focus on finding something different than the type what the
FPs belong to.

6. CONCLUSION

We developed a human-in-the-loop security attack detector
using an anomaly detection technique that can provide expla-
nation about the detected anomaly and can improve its de-
tection capabilities using feedback from security experts. In
the future, it would be interesting to see how this type of sys-
tem can detect diverse attack examples with small supervision
from analysts.
Acknowledgments. We thank Tommy Blizard for helping
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