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ABSTRACT
Water managers in the western United States (U.S.) rely on longterm

forecasts of temperature and precipitation to prepare for droughts

and other wet weather extremes. To improve the accuracy of these

longterm forecasts, the U.S. Bureau of Reclamation and the Na-

tional Oceanic and Atmospheric Administration (NOAA) launched

the Subseasonal Climate Forecast Rodeo, a year-long real-time

forecasting challenge in which participants aimed to skillfully pre-

dict temperature and precipitation in the western U.S. two to four

weeks and four to six weeks in advance. Here we present and

evaluate our machine learning approach to the Rodeo and release

our SubseasonalRodeo dataset, collected to train and evaluate our

forecasting system.

Our system is an ensemble of two nonlinear regression models.

The first integrates the diverse collection of meteorological mea-

surements and dynamic model forecasts in the SubseasonalRodeo
dataset and prunes irrelevant predictors using a customized multi-

task feature selection procedure. The second uses only historical

measurements of the target variable (temperature or precipitation)

and introduces multitask nearest neighbor features into a weighted

local linear regression. Each model alone is significantly more accu-

rate than the debiased operational U.S. Climate Forecasting System

(CFSv2), and our ensemble skill exceeds that of the top Rodeo com-

petitor for each target variable and forecast horizon. Moreover,

over 2011-2018, an ensemble of our regression models and debiased

CFSv2 improves debiased CFSv2 skill by 40-50% for temperature

and 129-169% for precipitation. We hope that both our dataset and

our methods will help to advance the state of the art in subseasonal

forecasting.
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1 INTRODUCTION
Water and fire managers in the western United States (U.S.) rely on

subseasonal forecasts—forecasts of temperature and precipitation

two to six weeks in advance—to allocate water resources, manage

wildfires, and prepare for droughts and other weather extremes

[39]. While purely physics-based numerical weather prediction

dominates the landscape of short-term weather forecasting, such

deterministic methods have a limited skillful (i.e., accurate) forecast
horizon due to the chaotic nature of their differential equations

[24]. Prior to the widespread availability of operational numerical

weather prediction, weather forecasters made predictions using

their knowledge of past weather patterns and climate (sometimes

called the method of analogs) [27]. The current availability of ample

meteorological records and high-performance computing offers the

opportunity to blend physics-based and statistical machine learning

(ML) approaches to extend the skillful forecast horizon.

This data and computing opportunity, coupled with the critical

operational need, motivated the U.S. Bureau of Reclamation and

the National Oceanic and Atmospheric Administration (NOAA)

to conduct the Subseasonal Climate Forecast Rodeo [28], a year-

long real-time forecasting challenge, in which participants aimed

to skillfully predict temperature and precipitation in the western

U.S. two to four weeks and four to six weeks in advance. To meet

this challenge, we developed an ML-based forecasting system and

a SubseasonalRodeo dataset [14] suitable for training and bench-

marking subseasonal forecasts.

ML approaches have been successfully applied to both short-

term (< 2 week) weather forecasting [3, 7–12, 18, 19, 22, 29, 31, 43]
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and longer-term climate prediction [1, 4, 16, 35, 36], but mid-term

subseasonal outlooks, which depend on both local weather and

global climate variables, still lack skillful forecasts [33].

Our subseasonal ML system is an ensemble of two nonlinear

regression models: a local linear regression model with multitask

feature selection (MultiLLR) and a weighted local autoregression

enhanced with multitask k-nearest neighbor features (AutoKNN).
The MultiLLR model introduces candidate regressors from each

data source in the SubseasonalRodeo dataset and then prunes ir-

relevant predictors using a multitask backward stepwise criterion

designed for the forecasting skill objective. The AutoKNN model

extracts features only from the target variable (temperature or pre-

cipitation), combining lagged measurements with a skill-specific

form of nearest-neighbor modeling. For each of the two Rodeo tar-

get variables (temperature and precipitation) and forecast horizons

(weeks 3-4 and weeks 5-6), this paper makes the following principal

contributions:

(1) We release a new SubseasonalRodeo dataset suitable for

training and benchmarking subseasonal forecasts.

(2) We introduce two subseasonal regression approaches tai-

lored to the forecast skill objective, one of which uses only

features of the target variable.

(3) We introduce a simple ensembling procedure that provably

improves average skill whenever average skill is positive.

(4) We show that each regression method alone outperforms

the Rodeo benchmarks, including a debiased version of the

operational U.S. Climate Forecasting System (CFSv2), and

that our ensemble outperforms the top Rodeo competitor.

(5) We show that, over 2011-2018, an ensemble of our models

and debiased CFSv2 improves debiased CFSv2 skill by 40-50%

for temperature and 129-169% for precipitation.

We hope that this work will expose the ML community to an im-

portant problem ripe for ML development—improving subseasonal

forecasting for water and fire management, demonstrate that ML

tools can lead to significant improvements in subseasonal forecast-

ing skill, and stimulate future development with the release of our

user-friendly Python Pandas SubseasonalRodeo dataset.

1.1 Related Work
While statistical modeling was common in the early days of weather

and climate forecasting [27], purely physics-based dynamical mod-

eling of atmosphere and oceans rose to prominence in the 1980s

and has been the dominant forecasting paradigm in major climate

prediction centers since the 1990s [2]. Nevertheless, skillful statis-

tical machine learning approaches have been developed for short-

term weather forecasting with outlooks ranging from hours to two

weeks ahead [3, 7–12, 18, 19, 22, 29, 31, 43] and for coarse-grained

long-term climate forecasts with target variables aggregated over

months or years [1, 4, 16, 35, 36]. Tailored machine learning solu-

tions are also available for detecting and predicting weather ex-

tremes [23, 25, 30]. However, subseasonal forecasting, with its 2-6

week outlooks and biweekly granularity, is consideredmore difficult

than either short-term weather forecasting or long-term climate

forecasting, due to its complex dependence on both local weather

and global climate variables [39]. We complement prior work by

developing a dataset and an ML-based forecasting system suitable

for improving temperature and precipitation prediction in this tra-

ditional ‘predictability desert’ [37].

2 THE SUBSEASONAL CLIMATE FORECAST
RODEO

The Subseasonal Climate Forecast Rodeo was a year-long, real-time

forecasting competition in which, every two weeks, contestants

submitted forecasts for average temperature (
◦
C) and total precipi-

tation (mm) at two forecast horizons, 15-28 days ahead (weeks 3-4)

and 29-42 days ahead (weeks 5-6). The geographic region of interest

was the western contiguous United States, delimited by latitudes

25N to 50N and longitudes 125W to 93W, at a 1
◦
by 1

◦
resolution,

for a total of G = 514 grid points. The initial forecasts were issued

on April 18, 2017 and the final on April 3, 2018.

Forecasts were judged on the spatial cosine similarity between

predictions and observations adjusted by a long-term average. More

precisely, let t denote a date represented by the number of days

since January 1, 1901, and let year(t), doy(t), and monthday(t) re-
spectively denote the year, the day of the year, and the month-day

combination (e.g., January 1) associated with that date. We associate

with the two-week period beginning on t an observed average tem-

perature or total precipitation yt ∈ RG and an observed anomaly

at = yt − cmonthday(t ),
where

cd ≜ 1

30

∑
t : monthday(t )=d,
1981≤year(t )≤2010

yt

is the climatology or long-term average over 1981-2010 for the

month-day combination d . Contestant forecasts ŷt were judged

on the cosine similarity—termed skill in meteorology—between

their forecast anomalies ât = ŷt − cmonthday(t ) and the observed

anomalies:

skill(ât , at ) ≜ cos(ât , at ) = ⟨ât ,at ⟩
∥ât ∥2 ∥at ∥2 . (1)

To qualify for a prize, contestants had to achieve higher mean

skill over all forecasts than two benchmarks, a debiased version

of the physics-based operational U.S. Climate Forecasting System

(CFSv2) and a damped persistence forecast. The official contest

CFSv2 forecast for t , an average of 32 operational forecasts based on
4 model initializations and 8 lead times, was debiased by adding the

mean observed temperature or precipitation for monthday(t) over
1999-2010 and subtracting the mean CFSv2 reforecast, an average of

8 lead times for a single initialization, over the same period. An exact

description of the damped persistence model was not provided, but

the Rodeo organizers reported it relied on “seasonally developed

regression coefficients based on the historical climatology period

of 1981-2010 that relate observations of the past two weeks to the

forecast outlook periods on a grid cell by grid cell basis.”

3 OUR SUBSEASONALRODEO DATASET
Since the Rodeo did not provide data for training predictive mod-

els, we constructed our own SubseasonalRodeo dataset from a

diverse collection of data sources. Unless otherwise noted below,

spatiotemporal variables were interpolated to a 1
◦
by 1

◦
grid and

restricted to the contest grid points, and daily measurements were

replaced with average measurements over the ensuing two-week
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period. The SubseasonalRodeo dataset is available for download
at [14], and Appendix A provides additional details on data sources,

processing, and variables ultimately not used in our solution.

Temperature Daily maximum and minimum temperature

measurements at 2 meters (tmax and tmin) from 1979 onwards were

obtained from NOAA’s Climate Prediction Center (CPC) Global

Gridded Temperature dataset and converted to
◦
C; the same data

source was used to evaluate contestant forecasts. The official contest

target temperature variable was tmp2m ≜ tmax+tmin
2

.

Precipitation Daily precipitation (precip) data from 1979

onward were obtained from NOAA’s CPC Gauge-Based Analysis of

Global Daily Precipitation [42] and converted to mm; the same data

source was used to evaluate contestant forecasts. We augmented

this dataset with daily U.S. precipitation data in mm from 1948-1979

from the CPC Unified Gauge-Based Analysis of Daily Precipitation

over CONUS. Measurements were replaced with sums over the

ensuing two-week period.

Sea surface temperature and sea ice concentration NOAA’s

Optimum Interpolation Sea Surface Temperature (SST) dataset pro-

vides SST and sea ice concentration data, daily from 1981 to the

present [32]. After interpolation, we extracted the top three prin-

cipal components (PCs), (sst_i)3i=1
and (icec_i)3i=1

, across grid

points in the Pacific basin region (20S to 65N, 150E to 90W) based

on PC loadings from 1981-2010.

Multivariate ENSO index (MEI) BimonthlyMEI values (mei)
from 1949 to the present, were obtained from NOAA/Earth Sys-

tem Research Laboratory [40, 41]. The MEI is a scalar summary

of six variables (sea-level pressure, zonal and meridional surface

wind components, SST, surface air temperature, and sky cloudiness)

associated with El Niño/Southern Oscillation (ENSO), an ocean-

atmosphere coupled climate mode.

Madden-Julian oscillation (MJO) Daily MJO values since

1974 are provided by the Australian Government Bureau of Me-

teorology [38]. MJO is a metric of tropical convection on daily to

weekly timescales and can have significant impact on the western

United States’ subseasonal climate. We extract measurements of

phase and amplitude on the target date but do not aggregate over

the two-week period.

Relative humidity and pressure NOAA’s National Center

for Environmental Prediction (NCEP)/National Center for Atmo-

spheric Research Reanalysis dataset [17] contains daily relative

humidity (rhum) near the surface (sigma level 0.995) from 1948 to

the present and daily pressure at the surface (pres) from 1979 to

the present.

Geopotential height To capture polar vortex variability, we

obtained daily mean geopotential height at 10mb since 1948 from

the NCEP Reanalysis dataset [17] and extracted the top three PCs

(wind_hgt_10_i)3i=1
based on PC loadings from 1948-2010. No in-

terpolation or contest grid restriction was performed.

NMME The North American Multi-Model Ensemble (NMME)

is a collection of physics-based forecast models from various mod-

eling centers in North America [20]. Forecasts issued monthly from

the Cansips, CanCM3, CanCM4, CCSM3, CCSM4, GFDL-CM2.1-

aer04, GFDL-CM2.5 FLOR-A06 and FLOR-B01, NASA-GMAO-062012,

and NCEP-CFSv2 models were downloaded from the IRI/LDEO

Climate Data Library. Each forecast contains monthly mean predic-

tions from 0.5 to 8.5 months ahead. We derived forecasts by taking a

weighted average of the monthly predictions with weights propor-

tional to the number of target period days that fell into each month.

We then formed an equally-weighted average (nmme_wo_ccsm3_nasa)
of all models save CCSM3 and NASA (which were not reliably up-

dated during the contest). Another feature was created by averaging

the most recent monthly forecast of each model save CCSM3 and

NASA (nmme0_wo_ccsm3_nasa).

4 FORECASTING MODELS
In developing our forecasting models, we focused our attention on

computationally efficient methods that exploited the multitask, i.e.,
multiple grid point, nature of our problem and incorporated the un-

usual forecasting skill objective function (1). For each target variable

(temperature or precipitation) and horizon (weeks 3-4 or 5-6), our

forecasting system relies on two regression models trained using

two sets of features derived from the SubseasonalRodeo dataset.
The first model, described in Section 4.1, introduces lagged mea-

surements from all data sources in the SubseasonalRodeo dataset

as candidate regressors. For each target date, irrelevant regressors

are pruned automatically using multitask feature selection tailored

to the cosine similarity objective. Our second model, described in

Section 4.2, chooses features derived from the target variable (tem-

perature or precipitation) using a skill-specific nearest neighbor

strategy. The final forecast is obtained by ensembling the predic-

tions of these two models in a manner well-suited to the cosine

similarity objective.

4.1 Local Linear Regression with Multitask
Feature Selection (MultiLLR)

Our first model uses lagged measurements from each of the data

sources in the SubseasonalRodeo dataset as candidate regressors,

with lags selected based on the temporal resolution of the mea-

surement and the frequency of the data source update. The y-axis

of Fig. 2 provides an explicit list of candidate regressors for each

prediction task. The suffix anom indicates that feature values are

anomalies instead of raw measurements, the substring shiftℓ in-
dicates a lagged feature with measurements from ℓ days prior, and

the constant feature ones equals 1 for all datapoints.

We combine predictors using local linear regression with locality

determined by the day of the year
1
(Algorithm 1). Specifically, the

training data for a given target date is restricted to a 56-day (8-week)

span around the target date’s day of the year (s = 56). For example,

if the target date is May 2, 2017, the training data consists of days

within 56 days of May 2 in any year. We employ equal datapoint

weighting (wt,д = 1) and no offsets (bt,д = 0).

As we do not expect all features to be relevant at all times of year,

we use multitask feature selection tailored to the cosine objective

to automatically identify relevant features for each target date. The

selection is multitask in that variables for a target date are selected

jointly for all grid points, while the coefficients associated with

those variables are fit independently for each grid point using local

linear regression.

The feature selection is performed for each target date using a

customized backward stepwise procedure (Algorithm 2) built atop

1
As a matter of convention, we treat Feb. 29 as the same day as Feb. 28 when computing

doy, so that doy(t ) ∈ {1, . . . , 365}.
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Algorithm 1Weighted Local Linear Regression

input test day of year d∗; span s; training outcomes, features, off-

sets, and weights (yt,д , xt,д ,bt,д ,wt,д)t ∈T,д∈{1, ...,G }
D ≜ {t ∈ T :

365

2
− ||doy(t) − d∗ | − 365

2
| ≤ s}

for grid points д = 1 to G do
β̂д ∈ argminβ

∑
t ∈D wt,д(yt,д − bt,д − β⊤xt,д)2

output coefficients (β̂д)Gд=1

Algorithm 2Multitask Backward Stepwise Feature Selection

input test day of year d∗; set of feature identifiers F ; base regres-
sion procedure BaseReg; tolerance tol
D ≜ {t : doy(t) = d∗}; converged = False
v = LOYOCV(d∗, BaseReg,F )
while not converged do
for all feature identifiers j ∈ F do
(ât )t ∈D ← LOYOCV(d∗, BaseReg,F\{j})
vj =

1

|D |
∑
t ∈D skill(ât , at )

if tol > v −maxj ∈F vj then
j∗ = argmaxj ∈F vj ; v = vj∗ ; F = F\{j∗}

else
converged = True

output selected feature identifiers F

the local linear regression subroutine. At each step of the back-

ward stepwise procedure, we regress the outcome on all remaining

candidate predictors; the regression is fit separately for each grid

point. A measure of predictive performance (described in the next

paragraph) is computed, and the candidate predictor that decreases

predictive performance the least is removed. The procedure ter-

minates when no candidate predictor can be removed from the

model without decreasing predictive performance by more than

the tolerance threshold tol = 0.01.

Our measure of predictive performance is the average leave-one-

year-out cross-validated (LOYOCV) skill on the target date’s day-of-

year, where the average is taken across all years in the training

data. The LOYOCV skill for a target date t is the cosine similarity

achieved by holding out a year’s worth of data around t , fitting
the model on the remaining data, and predicting the outcome for

t . When forecasting weeks 3-4, we hold out the data from 29 days

before t through 335 days after t ; for weeks 5-6, we hold out the

data from 43 days before through 321 days after t . This ensures that
the model is not fitted on future dates too close to t . For n training

dates, Y training years, and d features, the MultiLLR running time

is O(nd2 + Yd3) per grid point and step. In our experiments in

Section 5, we run the per grid point regressions in parallel on each

step, d ranges from 20 to 23, and the average number of steps is 13.

4.2 Multitask k-Nearest Neighbor
Autoregression (AutoKNN)

Our secondmodel is a weighted local linear regression (Algorithm 1)

with features derived exclusively from historical measurements of

the target variable (temperature or precipitation). When predicting

Algorithm 3 Multitask k-Nearest Neighbor Similarities

input test date t∗; training anomalies (at )t ; lag ℓ; history H
for all training dates t do

simt =
1

H
∑H−1

h=0
skill(at−ℓ−h , at ∗−ℓ−h )

output similarities (simt )t

weeks 3-4, we include lagged temperature or precipitation anom-

alies from 29 days, 58 days, and 1 year prior to the target date; when

predicting weeks 5-6, we use 43 days, 86 days, and 1 year. These

lags are chosen because the most recent data available to us are

from 29 days before the target date when predicting weeks 3-4 and

58 days before the target date when predicting weeks 5-6.

In addition to fixed lags, we include the constant intercept ones
and the observed anomaly patterns of the target variable on similar

dates in the past (Algorithm 3). Our measure of similarity is tailored

to the cosine similarity objective: similarity between a target date

and another date is measured as the mean skill observed when

the historical anomalies preceding the candidate date are used to

forecast the historical anomalies of the target date. The mean skill

is computed over a history of H = 60 days, starting 1 year prior

to the target date (lag ℓ = 365). Only dates with observations fully

observed prior to the forecast issue date are considered viable. We

find the 20 viable candidate dates with the highest similarity to the

target date and scale each neighbor date’s observed anomaly vector

so that it has a standard deviation equal to 1. The resulting features

are knn1 (the most similar neighbor) through knn20 (the 20th most

similar neighbor). We find the k = 20 top neighbors for each of n
training dates in parallel, using O(knHG) time per date.

To predict a given target date, we regress onto the three fixed lags,

the constant intercept feature ones, and either knn1 through knn20
(for temperature) or knn1 only (for precipitation), treating each grid
point as a separate prediction task. We found that including knn2
through knn20 did not lead to improved performance for predicting

precipitation. For each grid point, we fit a weighted local linear

regression, with weightswt,д given by 1 over the variance of the

target anomaly vector. As with MultiLLR, locality is determined

by the day of the year. For predicting precipitation, we restrict

the training data to a 56-day span s around the target date’s day

of the year. For predicting temperature, we use all dates. In each

case, we use a climatology offset (bt,д = cmonthday(t ),д ) so that the

effective target variable is the measurement anomaly rather than

the raw measurement. Given d features and n training dates, the

final regression is carried out in O(nd2) time per grid point. In our

experiments in Section 5, per grid point regressions were performed

in parallel, and d = 24 for temperature and d = 5 for precipitation.

4.3 Ensembling
Our final forecasting model is obtained by ensembling the predic-

tions of the MultiLLR and AutoKNNmodels. Specifically, for a given

target date, we take as our ensemble forecast anomalies the average

of the ℓ2-normalized predicted anomalies of the two models:

â
ensemble

≜ 1

2

âmultillr

∥âmultillr ∥2
+ 1

2

âautoknn
∥âautoknn ∥2

.
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The ℓ2 normalization is motivated by the following result, which

implies that the skill of â
ensemble

is strictly better than the average

skill of â
multillr

and â
autoknn

whenever that average skill is positive.

Proposition 1. Consider an observed anomaly vector a andm
distinct forecast anomaly vectors (âi )mi=1

. For any vector of weights
p ∈ Rm with

∑m
i=1

pi = 1 and pi ≥ 0, let

ā(p) ≜
∑m
i=1

pi
âi
∥âi ∥2

be the weighted average of the ℓ2-normalized forecast anomalies.
Then,

sign(∑m
i=1

pi cos(âi , a)) = sign(cos(ā(p), a))
and

|∑m
i=1

pi cos(âi , a)| ≤ | cos(ā(p), a)|,
with strict inequality whenever

∑m
i=1

pi cos(âi , a) , 0. Hence, when-
ever the weighted average of individual anomaly skills is positive,
the skill of ā(p) is strictly greater than the weighted average of the
individual skills.

Proof The sign claim follows from the equalities∑m
i=1

pi cos(âi , a) =
∑m
i=1

pi ⟨ âi
∥âi ∥2

, a
∥a∥

2

⟩
= ⟨ā(p), a

∥a∥
2

⟩ = cos(ā(p), a) ∥ā(p)∥2.

Since the forecasts are distinct, Jensen’s inequality now yields the

magnitude claim as

|∑m
i=1

pi cos(âi , a)| = | cos(ā(p), a)| ∥ā(p)∥2

≤ | cos(ā(p), a)|
∑m
i=1

pi
∥âi ∥2
∥âi ∥2

= | cos(ā(p), a)|,

with strict inequality when

∑m
i=1

pi cos(âi , a) , 0. □

5 EXPERIMENTS
In this section we evaluate our model forecasts over the Rodeo

contest period and over each year following the climatology period

and explore the relevant features inferred by each model. Python

2.7 code to reproduce all experiments can be found at https://github.

com/paulo-o/forecast_rodeo.

5.1 Contest Baselines
For each target date in the contest period, the Rodeo organizers

provided the skills of two baseline models, debiased CFSv2 and

damped persistence. To provide baselines for evaluation outside

the contest period, we reconstructed a debiased CFSv2 forecast ap-

proximating the contest guidelines. We were unable to recreate the

damped persistence model, as no exact description was provided.

We first reconstructed the undebiased 2011-2018 CFSv2 forecasts

using the 6-hourly CFSv2 Operational Forecast dataset and, for

each month-day combination, computed long-term CFS reforecast

averages over 1999-2010 using the 6-hourly CFS Reforecast High-

Priority Subset [34]. For each target two-week period and horizon,

we averaged eight forecasts, issued at 6-hourly intervals. For weeks

3-4, the eight forecasts came from 15 and 16 days prior to the target

date; for weeks 5-6, we used 29 and 30 days prior. For each date t ,
we then reconstructed the debiased CFSv2 forecast by subtracting

the long-term CFS average and adding the observed target variable

average over 1999-2010 for monthday(t) to the reconstructed CFSv2
forecast. Our reconstructed debiased forecasts are available for

download at [15], and Appendix B provides more details on data

sources and processing.

While the official contest CFSv2 baseline averages the forecasts

of four model initializations, the CFSv2 Operational Forecast dataset

only provides the forecasts of one model initialization (the re-

maining model initialization forecasts are released in real time

but deleted after one week). Thus, our reconstruction does not

precisely match the contest baseline, but it provides a similarly

competitive benchmark.

5.2 Contest Period Evaluation
We now examine how our methods perform over the contest pe-

riod, consisting of forecast issue dates between April 18, 2017, and

April 17, 2018. Forecast issue dates occur every two weeks, so we

have 26 realized skills for each method and each prediction task.

Table 1 shows the average skills for each of our methods and each

of the baselines. All three of our methods outperform the official

contest baselines (debiased CFSv2 and damped persistence), and

our ensemble outperforms the top Rodeo competitor in all four

prediction tasks. Note that, while the remaining evaluations are

of static modeling strategies, the competitor skills represent the

real-time evaluations of forecasting systems that may have evolved

over the course of the competition.

In Fig. 1 we plot the 26 realized skills for each method. In each

plot, the average skill over the contest period is indicated by a

vertical line. The histograms indicate that both of the official contest

baselines have a number of extreme negative skills, which drag

down their average skill over the contest period. Our ensemble

avoids these extreme negative skills. For both precipitation tasks,

the worst realized skills of the two baseline methods are −0.8 or

worse; by contrast, the worst realized skill of the ensemble is −0.4.

5.3 Historical Forecast Evaluation
Next, we evaluate the performance of our methods over each year

following the climatology period. That is, following the template

of the contest period, we associate with each year in 2011-2017

a sequence of biweekly forecast issue dates between April 18 of

that year and April 17 of the following year. For example, forecasts

with submission dates between April 18, 2011 and April 17, 2012

are considered to belong to the evaluation year 2011. To mimic the

actual real-time use of the forecasting system to produce forecasts

for a particular target date, we train our models using only data

available prior to the forecast issue date; for example, the forecasts

issued on April 18, 2011 are only trained on data available prior

to April 18, 2011. We compare our methods to the reconstructed

debiased CFSv2 forecast.

Table 2 shows the average skills of our methods and the recon-

structed debiased CFSv2 forecast (denoted by rec-deb-cfs) in each

year, 2011-2017. MultiLLR, AutoKNN, and the ensemble all achieve

higher average skill than debiased CFSv2 on every task, save for

MultiLLR on the temperature, weeks 3-4 task. The ensemble im-

proves over the debiased CFSv2 average skill by 23% for temper-

ature weeks 3-4, by 39% for temperature weeks 5-6, by 123% for

precipitation weeks 3-4, and by 157% for precipitation weeks 5-6.

https://github.com/paulo-o/forecast_rodeo
https://github.com/paulo-o/forecast_rodeo
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Table 1: Average contest-period skill of the proposed models MultiLLR and AutoKNN, the proposed ensemble of MultiLLR and
AutoKNN (ensemble), the official contest debiased-CFSv2 baseline, the official contest damped-persistence baseline (damped),
and the top-performing competitor in the Forecast Rodeo contest (top competitor). See Section 5.2 for more details.

task multillr autoknn ensemble contest debiased cfsv2 damped top competitor

temperature, weeks 3-4 0.3079 0.2807 0.3451 0.1589 0.1952 0.2855

temperature, weeks 5-6 0.2562 0.2817 0.3025 0.2192 -0.0762 0.2357

precipitation, weeks 3-4 0.1597 0.2156 0.2364 0.0713 -0.1463 0.2144

precipitation, weeks 5-6 0.1876 0.1870 0.2315 0.0227 -0.1613 0.2162

temperature, weeks 3−4 temperature, weeks 5−6 precipitation, weeks 3−4 precipitation, weeks 5−6
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Figure 1: Distribution of contest-period skills of the proposedmodels MultiLLR and AutoKNN, the proposed ensemble of MultiLLR
and AutoKNN (ensemble), the official contest debiased-CFSv2 baseline, and the official contest damped-persistence baseline
(damped). See Section 5.2 for more details.
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Figure 2: Feature inclusion frequencies of all candidate variables for local linear regression with multitask feature selection
(MultiLLR) across all target dates in the historical forecast evaluation period (see Section 5.4).
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Table 2 also presents the average skills achieved by a three-

component ensemble of MultiLLR, AutoKNN, and reconstructed

debiased CFSv2. Guided by Proposition 1, we ℓ2-normalize the

anomalies of each model before taking an equal-weighted average.

This ensemble (denoted by ens-cfs) produces higher average skills
than the original ensemble in all prediction tasks. The ens-cfs en-
semble also substantially outperforms debiased CFSv2, with skill

improvements of 40% and 50% for the temperature tasks and 129%

and 169% for the precipitation tasks. These results highlight the

valuable roles that ML-based models, physics-based models, and

principled ensembling can all play in subseasonal forecasting.

Contribution of NMME. Interestingly, the skill improvements of

AutoKNN were achieved without any use of physics-based model

forecasts. Moreover, a Proposition 1 ensemble of just AutoKNN and

rec-deb-cfsv2 realizes most of the gains of ens-cfs without using
NMME. Indeed, this ensemble has mean skills over all years in

Table 2 of (temp. weeks 3-4: 0.354, temp. weeks 5-6: 0.31, precip.

weeks 3-4: 0.162, precip. weeks 5-6: 0.147).

While physics-based model forecasts contribute to MultiLLR
through the NMME ensemble mean, nmme_wo_ccsm3_nasa alone
achieves inferior mean skill (temp. weeks 3-4: 0.094, temp. weeks

5-6: 0.116, precip. weeks 3-4: 0.116, precip. weeks 5-6: 0.107) over

all years in Table 2 than all proposed methods and even the tem-

perature debiased CFSv2 baseline. One contributing factor to this

performance is the mismatch between the monthly granularity of

the publicly-available NMME forecasts and the biweekly granu-

larity of our forecast periods. As a result, we anticipate that more

granular NMME data would lead to significant improvements in

the final MultiLLR model.

5.4 Exploring MultiLLR
Fig. 2 shows the frequency with which each candidate feature was

selected by MultiLLR in the four prediction tasks, across all tar-

get dates in the historical evaluation period. For all four tasks, the

most frequently selected features include pressure (pres), the inter-
cept term (ones), and temperature (tmp2m). The NMME ensemble

average (nmme_wo_ccsm3_nasa) is the first or second most com-

monly selected feature for predicting precipitation, but its relative

selection frequency is much lower for temperature.

Although we used a slightly larger set of candidate features for

the precipitation tasks—23 for precipitation, compared to 20 for

temperature—the selected models are more parsimonious for pre-

cipitation than for temperature. The median number of selected

features for predicting temperature is 7 for both forecasting hori-

zons, while the median number of selected features for predicting

precipitation is 4 for weeks 3-4 and 5 for weeks 5-6.

5.5 Exploring AutoKNN
Fig. 3a plots the month distribution of the top nearest neighbor

learned by AutoKNN for predicting precipitation, weeks 3-4, as a

function of the month of the target date. The figure shows that

when predicting precipitation, the top neighbor for a target date is

generally from the same time of year as the target date: for summer

target dates, the top neighbor tends to be from a summer month

and similarly for winter target dates. The corresponding plot for

temperature (omitted due to space constraints) shows that this

pattern does not hold when predicting temperature; rather, the top

neighbors are drawn from throughout the year, regardless of the

month of the target date.

The matrix plots in Fig. 3b show the year and month of the top

20 nearest neighbors for predicting temperature, weeks 3-4, as a

function of the target date. In each plot, the vertical axis ranges

from k = 1 (most similar neighbor) to k = 20 (20th most similar

neighbor). The vertical striations in both plots indicate that the top

20 neighbors for a given target date tend to be homogeneous in

terms of both month and year: neighbors tend to come from the

same or adjacent years and times of year. Moreover. the neighbors

for post-2015 target dates tend to be from post-2010 years, in keep-

ing with recent years’ record high temperatures. The corresponding

plots for precipitation (omitted due to space constraints) show that

the top neighbors for precipitation do not disproportionately come

from recent years, and the months of the top neighbors follow a

regular seasonal pattern, consistent with Fig. 3a.

6 DISCUSSION
To meet the USBR’s Subseasonal Climate Forecast Rodeo challenge,

we developed an ML-based forecasting system and demonstrated

40-169% improvements in forecasting skill across the challenge

period (2017-18) and the years 2011-18 more generally. Notably, the

same procedures provide these improvements for each of the four

Rodeo prediction tasks (forecasting temperature or precipitation at

weeks 3-4 or weeks 5-6). In the short term, we anticipate that these

improvements will benefit disaster management (e.g., anticipating

droughts, floods, and other wet weather extremes) and the water

management, development, and protection operations of the USBR

more generally (e.g., providing irrigation water to 20% of western

U.S. farmers and generating hydroelectricity for 3.5 million homes).

In the longer term, we hope that these tools will improve our ability

to anticipate and manage wildfires [39].

Our experience also suggests that subseasonal forecasting is

fertile ground for machine learning development. Much of the

methodological novelty in our approach was driven by the unusual

multitask forecasting skill objective. This objective inspired our

new and provably beneficial ensembling approach and our custom

multitask neighbor selection strategy. We hope that introducing

this problem to the ML community and providing a user-friendly

benchmark dataset will stimulate the development and evaluation

of additional subseasonal forecasting approaches.
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A SUPPLEMENTARY SUBSEASONALRODEO DATASET DETAILS
The SubseasonalRodeo dataset is organized as a collection of Python Pandas DataFrames and Series objects [26] stored in HDF5 format (via

pandas.DataFrame.to_hdf or pandas.Series.to_hdf), with one .h5 file per DataFrame or Series. The contents of any file can be loaded

in Python using pandas.read_hdf. Each DataFrame or Series contributes data variables (features or target values) falling into one of three

categories: (i) spatial (varying with the target grid point but not the target date); (ii) temporal (varying with the target date but not the target

grid point); (iii) spatiotemporal (varying with both the target grid point and the target date). Unless otherwise noted in Section 3 or below,

temporal and spatiotemporal variables arising from daily data sources were derived by averaging input values over each 14-day period, and

spatial and spatiotemporal variables were derived by interpolating input data to a 1
◦ × 1

◦
grid using the Climate Data Operators (CDO

version 1.8.2) operator remapdis (distance-weighted average interpolation) with target grid r360x181 and retaining only the contest grid

points. In addition to the variables described in Section 3, a number of auxiliary variables were downloaded and processed but not ultimately

used in our approach.

A.1 Temperature and Precipitation Interpolation
The downloaded temperature variables tmin and tmax, global precipitation variable rain, and U.S. precipitation variable precip were

each interpolated to a fixed 1
◦ × 1

◦
grid using the NCAR Command Language (NCL version 6.0.0) function area_hi2lores_Wrap with

arguments new_lat = latGlobeF(181, "lat", "latitude", "degrees_north"); new_lon = lonGlobeF(360, "lon", "longitude",
"degrees_east"); wgt = cos(lat*pi/180.0) (so that points are weighted by the cosine of the latitude in radians); opt@critpc = 50 (to

require only 50% of the values to be present to interpolate); and fiCyclic = True (indicating global data with longitude values that do not

quite wrap around the globe). rain was then renamed to precip.

A.2 Data Sources
The SubseasonalRodeo dataset data were downloaded from the following sources.

• Temperature [5]: ftp://ftp.cpc.ncep.noaa.gov/precip/PEOPLE/wd52ws/global_temp/

• Global precipitation [42]: ftp://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/GAUGE_GLB/RT/

• U.S. precipitation [42]: https://www.esrl.noaa.gov/psd/thredds/catalog/Datasets/cpc_us_precip/catalog.html

• Sea surface temperature and sea ice concentration [32]: ftp://ftp.cdc.noaa.gov/Projects/Datasets/noaa.oisst.v2.highres/

• Multivariate ENSO index (MEI) [40, 41, 44]: https://www.esrl.noaa.gov/psd/enso/mei/

• Madden-Julian oscillation (MJO) [38]: http://www.bom.gov.au/climate/mjo/graphics/rmm.74toRealtime.txt

• Relative humidity, sea level pressure, and precipitable water for entire atmosphere [17]: ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis/

surface/

• Pressure and potential evaporation [17]: ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis/surface_gauss/

• Geopotential height, zonal wind, and longitudinal wind [17]: ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.dailyavgs/pressure/

• North American Multi-Model Ensemble (NMME) [20]: https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/

• Elevation [6]: http://research.jisao.washington.edu/data_sets/elevation/elev.1-deg.nc

• Köppen-Geiger climate classifications [21]: http://koeppen-geiger.vu-wien.ac.at/present.htm

A.3 Dataset Files
Below, we list the contents of each SubseasonalRodeo dataset file. Each file with the designation ‘Series’ contains a Pandas Series object

with a MultiIndex for the target latitude (lat), longitude (lon), and date defining the start of the target two-week period (start_date). Each
file with the designation ‘MultiIndex DataFrame’ contains a Pandas DataFrame object with a MultiIndex for lat, lon, and start_date.
Each file with a filename beginning with ‘nmme’ contains a Pandas DataFrame object with target_start, lat, and lon columns; the

target_start column plays the same role as start_date in other files, indicating the date defining the start of the target two-week period.

Each remaining file with the designation ‘DataFrame’ contains a Pandas DataFrame object with lat and lon columns if the contained

variables are spatial; a start_date column if the contained variables are temporal; and start_date, lat, and lon columns if the contained

variables are spatiotemporal.

The filename prefix ‘gt-wide’ indicates that a file contains temporal variables representing a base variable’s measurement at multiple

locations on a latitude-longitude grid that need not correspond to contest grid point locations. The temporal variable column names are

tuples in the format (‘base variable name’, latitude, longitude). The base variable measurements underlying the files with the filename prefix

‘gt-wide_contest’ were first interpolated to a 1
◦ × 1

◦
grid. The measurements underlying the remaining ‘gt-wide’ files did not undergo

interpolation; the original data source grids were instead employed.

• gt-climate_regions.h5 (DataFrame)

– Spatial variable Köppen-Geiger climate classifications (climate_region)
• gt-contest_pevpr.sfc.gauss-14d-1948-2018.h5 (Series)

– Spatiotemporal variable potential evaporation (pevpr.sfc.gauss)
• gt-contest_precip-14d-1948-2018.h5 (Series)

– Spatiotemporal variable precipitation (precip)
• gt-contest_pres.sfc.gauss-14d-1948-2018.h5 (Series)

– Spatiotemporal variable pressure (pres.sfc.gauss)
• gt-contest_pr_wtr.eatm-14d-1948-2018.h5 (Series)

– Spatiotemporal variable precipitable water for entire atmosphere (pr_wtr.eatm)
• gt-contest_rhum.sig995-14d-1948-2018.h5 (Series)

– Spatiotemporal variable relative humidity (rhum.sig995)
• gt-contest_slp-14d-1948-2018.h5 (Series)

– Spatiotemporal variable sea level pressure (slp)

ftp://ftp.cpc.ncep.noaa.gov/precip/PEOPLE/wd52ws/global_temp/
ftp://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/GAUGE_GLB/RT/
https://www.esrl.noaa.gov/psd/thredds/catalog/Datasets/cpc_us_precip/catalog.html
ftp://ftp.cdc.noaa.gov/Projects/Datasets/noaa.oisst.v2.highres/
https://www.esrl.noaa.gov/psd/enso/mei/
http://www.bom.gov.au/climate/mjo/graphics/rmm.74toRealtime.txt
ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis/surface/
ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis/surface/
ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis/surface_gauss/
ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.dailyavgs/pressure/
https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/
http://research.jisao.washington.edu/data_sets/elevation/elev.1-deg.nc
http://koeppen-geiger.vu-wien.ac.at/present.htm
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• gt-contest_tmax-14d-1979-2018.h5 (Series)
– Spatiotemporal variable maximum temperature at 2m (tmax)

• gt-contest_tmin-14d-1979-2018.h5 (Series)
– Spatiotemporal variable minimum temperature at 2m (tmin)

• gt-contest_tmp2m-14d-1979-2018.h5 (DataFrame)

– Spatiotemporal variables temperature at 2m (tmp2m), average squared temperature at 2m over

two-week period (tmp2m_sqd), and standard deviation of temperature at 2m over two-week

period (tmp2m_std)
• gt-contest_wind_hgt_100-14d-1948-2018.h5 (Series)

– Spatiotemporal variable geopotential height at 100 millibars (contest_wind_hgt_100)
• gt-contest_wind_hgt_10-14d-1948-2018.h5 (Series)

– Spatiotemporal variable geopotential height at 10 millibars (contest_wind_hgt_10)
• gt-contest_wind_hgt_500-14d-1948-2018.h5 (Series)

– Spatiotemporal variable geopotential height at 500 millibars (contest_wind_hgt_500)
• gt-contest_wind_hgt_850-14d-1948-2018.h5 (Series)

– Spatiotemporal variable geopotential height at 850 millibars (contest_wind_hgt_850)
• gt-contest_wind_uwnd_250-14d-1948-2018.h5 (Series)

– Spatiotemporal variable zonal wind at 250 millibars (contest_wind_uwnd_250)
• gt-contest_wind_uwnd_925-14d-1948-2018.h5 (Series)

– Spatiotemporal variable zonal wind at 925 millibars (contest_wind_uwnd_925)
• gt-contest_wind_vwnd_250-14d-1948-2018.h5 (Series)

– Spatiotemporal variable longitudinal wind at 250 millibars (contest_wind_vwnd_250)
• gt-contest_wind_vwnd_925-14d-1948-2018.h5 (Series)

– Spatiotemporal variable longitudinal wind at 925 millibars (contest_wind_vwnd_925)
• gt-elevation.h5 (DataFrame)

– Spatial variable elevation (elevation)
• gt-mei-1950-2018.h5 (DataFrame)

– Temporal variables MEI (mei), MEI rank (rank), and Niño Index Phase (nip) derived from mei
and rank using the definition in [44]

• gt-mjo-1d-1974-2018.h5 (DataFrame)

– Temporal variables MJO phase (phase) and amplitude (amplitude)
• gt-pca_icec_2010-14d-1981-2018.h5 (DataFrame)

– Temporal variables top PCs of gt-wide_contest_icec-14d-1981-2018.h5 based on PC

loadings from 1981-2010

• gt-pca_sst_2010-14d-1981-2018.h5 (DataFrame)

– Temporal variables top PCs of gt-wide_contest_sst-14d-1981-2018.h5 based on PC load-

ings from 1981-2010

• gt-pca_wind_hgt_100_2010-14d-1948-2018.h5 (DataFrame)

– Temporal variables top PCs of gt-wide_wind_hgt_100-14d-1948-2018.h5 based on PC

loadings from 1948-2010

• gt-pca_wind_hgt_10_2010-14d-1948-2018.h5 (DataFrame)

– Temporal variables top PCs of gt-wide_wind_hgt_10-14d-1948-2018.h5 based on PC load-

ings from 1948-2010

• gt-pca_wind_hgt_500_2010-14d-1948-2018.h5 (DataFrame)

– Temporal variables top PCs of gt-wide_wind_hgt_500-14d-1948-2018.h5 based on PC

loadings from 1948-2010

• gt-pca_wind_hgt_850_2010-14d-1948-2018.h5 (DataFrame)

– Temporal variables top PCs of gt-wide_wind_hgt_850-14d-1948-2018.h5 based on PC

loadings from 1948-2010

• gt-pca_wind_uwnd_250_2010-14d-1948-2018.h5 (DataFrame)

– Temporal variables top PCs of gt-wide_wind_uwnd_250-14d-1948-2018.h5 based on PC

loadings from 1948-2010

• gt-pca_wind_uwnd_925_2010-14d-1948-2018.h5 (DataFrame)

– Temporal variables top PCs of gt-wide_wind_uwnd_925-14d-1948-2018.h5 based on PC

loadings from 1948-2010

• gt-pca_wind_vwnd_250_2010-14d-1948-2018.h5 (DataFrame)

– Temporal variables top PCs of gt-wide_wind_vwnd_250-14d-1948-2018.h5 based on PC

loadings from 1948-2010

• gt-pca_wind_vwnd_925_2010-14d-1948-2018.h5 (DataFrame)

– Temporal variables top PCs of gt-wide_wind_vwnd_925-14d-1948-2018.h5 based on PC

loadings from 1948-2010

• gt-wide_contest_icec-14d-1981-2018.h5 (DataFrame)

– Temporal variables sea ice concentration for all grid points in the Pacific basin (20S to 65N,

150E to 90W) ((‘icec’,latitude,longitude))
• gt-wide_contest_sst-14d-1981-2018.h5 (DataFrame)

– Temporal variables sea surface temperature for all grid points in the Pacific basin (20S to 65N,

150E to 90W) ((‘sst’,latitude,longitude))
• gt-wide_wind_hgt_100-14d-1948-2018.h5 (DataFrame)

– Temporal variables geopotential height at 100 millibars for all grid points globally

((‘wind_hgt_100’,latitude,longitude))
• gt-wide_wind_hgt_10-14d-1948-2018.h5 (DataFrame)

– Temporal variables geopotential height at 10 millibars for all grid points globally

((‘wind_hgt_10’,latitude,longitude))
• gt-wide_wind_hgt_500-14d-1948-2018.h5 (DataFrame)

– Temporal variables geopotential height at 500 millibars for all grid points globally

((‘wind_hgt_500’,latitude,longitude))
• gt-wide_wind_hgt_850-14d-1948-2018.h5 (DataFrame)

– Temporal variables geopotential height at 850 millibars for all grid points globally

((‘wind_hgt_850’,latitude,longitude))
• gt-wide_wind_uwnd_250-14d-1948-2018.h5 (DataFrame)

– Temporal variables zonal wind at 250 millibars for all grid points globally

((‘wind_uwnd_250’,latitude,longitude))
• gt-wide_wind_uwnd_925-14d-1948-2018.h5 (DataFrame)

– Temporal variables zonal wind at 925 millibars for all grid points globally

((‘wind_uwnd_925’,latitude,longitude))
• gt-wide_wind_vwnd_250-14d-1948-2018.h5 (DataFrame)

– Temporal variables longitudinal wind at 250 millibars for all grid points globally

((‘wind_vwnd_250’,latitude,longitude))
• gt-wide_wind_vwnd_925-14d-1948-2018.h5 (DataFrame)

– Temporal variables longitudinal wind at 925 millibars for all grid points globally

((‘wind_vwnd_925’,latitude,longitude))
• nmme0-prate-34w-1982-2018.h5 (DataFrame)

– Spatiotemporal variables most recent monthly NMMEmodel forecasts for precip (cancm3_0,
cancm4_0, ccsm3_0, ccsm4_0, cfsv2_0, gfdl-flor-a_0, gfdl-flor-b_0, gfdl_0, ’nasa_0,
’nmme0_mean) and average forecast across those models (nmme0_mean)

• nmme0-prate-56w-1982-2018.h5 (DataFrame)

– Spatiotemporal variables most recent monthly NMMEmodel forecasts for precip (cancm3_0,
cancm4_0, ccsm3_0, ccsm4_0, cfsv2_0, gfdl-flor-a_0, gfdl-flor-b_0, gfdl_0, ’nasa_0,
’nmme0_mean) and average forecast across those models (nmme0_mean)

• nmme0-tmp2m-34w-1982-2018.h5 (DataFrame)

– Spatiotemporal variables most recent monthly NMME model forecasts for tmp2m (cancm3_0,
cancm4_0, ccsm3_0, ccsm4_0, cfsv2_0, gfdl-flor-a_0, gfdl-flor-b_0, gfdl_0, ’nasa_0,
’nmme0_mean) and average forecast across those models (nmme0_mean)

• nmme0-tmp2m-56w-1982-2018.h5 (DataFrame)

– Spatiotemporal variables most recent monthly NMME model forecasts for tmp2m (cancm3_0,
cancm4_0, ccsm3_0, ccsm4_0, cfsv2_0, gfdl-flor-a_0, gfdl-flor-b_0, gfdl_0, ’nasa_0,
’nmme0_mean) and average forecast across those models (nmme0_mean)

• nmme-prate-34w-1982-2018.h5 (DataFrame)

– Spatiotemporal variables weeks 3-4 weighted average of monthly NMME model forecasts for

precip (cancm3, cancm4, ccsm3, ccsm4, cfsv2, gfdl, gfdl-flor-a, gfdl-flor-b, nasa) and
average forecast across those models (nmme_mean)

• nmme-prate-56w-1982-2018.h5 (DataFrame)

– Spatiotemporal variables weeks 5-6 weighted average of monthly NMME model forecasts for

precip (cancm3, cancm4, ccsm3, ccsm4, cfsv2, gfdl, gfdl-flor-a, gfdl-flor-b, nasa) and
average forecast across those models (nmme_mean)

• nmme-tmp2m-34w-1982-2018.h5 (DataFrame)

– Spatiotemporal variables weeks 3-4 weighted average of monthly NMME model forecasts for

tmp2m (cancm3, cancm4, ccsm3, ccsm4, cfsv2, gfdl, gfdl-flor-a, gfdl-flor-b, nasa) and
average forecast across those models (nmme_mean)

• nmme-tmp2m-56w-1982-2018.h5 (DataFrame)

– Spatiotemporal variables weeks 5-6 weighted average of monthly NMME model forecasts for

tmp2m (cancm3, cancm4, ccsm3, ccsm4, cfsv2, gfdl, gfdl-flor-a, gfdl-flor-b, nasa) and
average forecast across those models (nmme_mean)

• official_climatology-contest_precip-1981-2010.h5 (DataFrame)

– Spatiotemporal variable precipitation climatology (precip_clim). Only the dates 1799-12-19–
1800-12-18 are included as representatives of each (non-leap day) month-day combination.

• official_climatology-contest_tmp2m-1981-2010.h5 (DataFrame)

– Spatiotemporal variable temperature at 2 meters climatology (tmp2m_clim). Only the dates

1799-12-19–1800-12-18 are included as representatives of each (non-leap day)month-day com-

bination.

B DEBIASED CFSV2 RECONSTRUCTION DETAILS
For the target dates in the 2011-2018 historical forecast evaluation period of Section 5.3, Climate Forecast System (CFSv2) archived operational

forecasts were retrieved from the National Center for Environmental Information (NCEI) site at https://nomads.ncdc.noaa.gov/modeldata/

cfsv2_forecast_ts_9mon/. The Gaussian gridded data (approximately 0.93
◦
resolution) for precipitation rate and 2-meter temperature were

interpolated to the Rodeo forecast grid at 1
◦
resolution. These data were then extracted as a window from 25 to 50 N and -125 to -93 W. Data

were extracted for all forecast issue dates, for each cardinal hour (00, 06, 12, and 18 UTC). Interpolation from Gaussian grid to regular 1
◦ × 1

◦

latitude longitude grids was accomplished using a bilinear interpolation under the Python Basemap package [13]. Any missing data were

replaced by the average measurement from the available forecasts in the 2-week period.

To obtain a suitable long-term average for debiasing our reconstructed CFSv2 forecasts, precipitation (prate_f) and temperature (tmp2m_f)

CFS Reforecast data from 1999-2010 were downloaded from https://nomads.ncdc.noaa.gov/data/cfsr-hpr-ts45/; interpolated to a 1
◦ × 1

◦

grid via bilinear interpolation using wgrib2 (v0.2.0.6c) with arguments -new_grid_winds earth and -new_grid ncep grid 3; and then

restricted to the contest region. Temperatures were converted from Kelvin to Celsius, and the precipitation measurements were scaled from

mm/s to mm/2-week period. Finally, each 2-week period in the data was averaged (for temperature) or summed (for precipitation). Any

missing data were replaced by the average measurement from the available forecasts in the 2-week period.

https://nomads.ncdc.noaa.gov/modeldata/cfsv2_forecast_ts_9mon/
https://nomads.ncdc.noaa.gov/modeldata/cfsv2_forecast_ts_9mon/
https://nomads.ncdc.noaa.gov/data/cfsr-hpr-ts45/
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Figure 4: Distribution of the month of the most similar neighbor learned by AutoKNN as a function of the month of the target
date to be predicted. Left: Most similar neighbor for temperature, weeks 3-4. Right: Most similar neighbor for precipitation,
weeks 3-4. The plots for weeks 5-6 are very similar. For temperature, the most similar neighbor can come from any time of
year, regardless of the month of the target date. For precipitation, we instead observe a strong seasonal pattern; the season of
the most similar neighbor generally matches the season of the target date.
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Figure 5: Month of the 20 most similar neighbors learned by AutoKNN (vertical axis ranges from k = 1 to 20) as a function of
the target date to be predicted (horizontal axis). The plots for weeks 5-6 are very similar. Both temperature and precipitation
neighbors are homogeneous in month for a given target date, but the months of the precipitation neighbors also exhibit a
regular seasonal pattern from year to year, while the temperature neighbors do not.
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Figure 6: Year of the 20 most similar neighbors learned by AutoKNN (vertical axis ranges from k = 1 to 20) as a function of
the target date to be predicted (horizontal axis). The plots for weeks 5-6 are very similar. The temperature neighbors are
disproportionately drawn from recent years (post-2010), while the precipitation neighbors are not.
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