
Permissions Plugins as Android Apps
Nisarg Raval
Duke University

Ali Razeen
University of British Columbia

Ashwin Machanavajjhala
Duke University

Landon P. Cox
Microsoft Research

Andrew Warfield
University of British Columbia

ABSTRACT

The permissions framework for Android is frustratingly inflexible.
Once granted a permission, Android will always allow an app to
access the resource until the user manually revokes the app’s per-
mission. Prior work has proposed extensible plugin frameworks,
but they have struggled to support flexible authorization and isolate
apps and plugins from each other. In this paper, we propose Dalf,
a framework for extensible permissions plugins that provides both
flexibility and isolation. The insight underlying Dalf is that permis-
sions plugins should be treated as apps themselves. This approach
allows plugins to maintain state and access system resources such
as a device’s location while being restricted by Android’s process-
isolation mechanisms. Experiments with microbenchmarks and
case studies with real third-party apps show promising results: plu-
gins are easy to develop and impose acceptable overhead for most
resources.

CCS CONCEPTS

• Security and privacy→ Mobile platform security.

KEYWORDS

flexible permissions, android, plugins
ACM Reference Format:

Nisarg Raval, Ali Razeen, Ashwin Machanavajjhala, Landon P. Cox, and An-
drew Warfield. 2019. Permissions Plugins as Android Apps. In The 17th
Annual International Conference on Mobile Systems, Applications, and Ser-
vices (MobiSys ’19), June 17–21, 2019, Seoul, Republic of Korea. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3307334.3326095

1 INTRODUCTION

Android’s permissions framework mediates apps’ access to system-
wide resources, such as location, the camera, and SMS messages. In
the earliest versions of Android, users granted apps permissions
only at install-time, though beginning with Android 6.0 users could
give apps permissions at runtime as well [6]. But regardless of when
a user gives an app a permission, Android’s permissions framework
remains frustratingly inflexible. Once an app acquires a permission
for a resource, Android will allow the app to access that resource

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6661-8/19/06. . . $15.00
https://doi.org/10.1145/3307334.3326095

until the permission is manually revoked. As a result, Android offers
noway to use a device’s context to evaluate requests (e.g., allow cam-
era access, but not at work) or to modify a resource’s fidelity (e.g.,
when at home, coarsen location information). As demonstrated by
the popularity of XPrivacy [30], a third-party open-source modifi-
cation to Android permissions which has over a million downloads,
users desire more control over how apps access resources.

Numerous projects have proposed permissions frameworks for
Android that allow third-party plugins to make nuanced autho-
rization decisions based on contextual cues, such as location and
time-of-day [30, 38, 41, 52, 54, 55]. Unfortunately, these frameworks
have been forced to make difficult trade-offs between flexibility
and isolation. Flexibility empowers plugins in two ways. First, it
gives plugins the ability to make authorization decisions based on a
variety of inputs, including accumulated session state and decision-
time sensor readings. Second, flexibility allows plugins to modify
the data they return to apps, such as redacting images or applying
differentially-private noise to locations.

Isolation ensures that interactions between apps and plugins are
restricted to the narrow resource-request interface, and that apps
and plugins cannot otherwise circumvent, corrupt, or spy on each
other. Many permissions frameworks isolate plugins by processing
requests in the OS [38, 52, 54, 55]. However, safely executing plugins
in the OS requires developers to write them in restrictive domain-
specific languages that hinder flexibility. Other frameworks support
writing plugins in a high-level language and directly execute them
in an app’s address space [30]. This approach sacrifices isolation
for flexibility since it cannot prevent a buggy or malicious plugin
from harming an app or the app from circumventing the plugin.

In this paper we present Dalf, a permissions framework for
Android that provides the flexiblity of in-address-space plugins
without sacrificing isolation. With Dalf, users may install plugins
tomediate resource requests made by apps. Each time an app tries to
access a resource, Dalf will pass the request to the pluginmediating
that app-resource combination. The plugin may allow or deny
the request, or modify the data returned to the app. Plugins may
also maintain state and access other system resources such as the
device’s location.

The primary challenge for Dalf is ensuring that apps and per-
missions plugins are properly isolated from each other, and Dalf
solves this problem by treating plugins as stand-alone apps. This
approach allows Dalf to re-use Android’s existing isolation mecha-
nisms, such as running plugins in separate processes under unique
UIDs and restricting app-plugin communication to Binder inter-
process communication (IPC). Thus, apps and plugins can only
interact through the resource-request interface, which limits the
harm that a buggy or malicious plugin can do. Users can further
limit the trust they place in plugins by managing the permissions

https://doi.org/10.1145/3307334.3326095
https://doi.org/10.1145/3307334.3326095

granted to the plugins themselves. For example, to prevent a plu-
gin from directly leaking information, a user can deny the plugin
permission to access the Internet. Nonetheless, because plugins
can interpose on apps’ resource requests, a malicious plugin could
launch denial of service attacks or feed apps false data. In Sec-
tion 4.4, we discuss the kinds of damage that a malicious plugin
could cause and some possible mitigation strategies.

Our prototype implementation of Dalf protects the following
resources: a device’s location; a user’s contacts and calendar en-
tries; image frames from the camera; and files stored on the external
storage partition. Other resources, such as motion data, could also
be supported with our proposed techniques. An evaluation of our
Dalf prototype with microbenchmarks and a case study of un-
modified Android apps demonstrate that Dalf is practical. Dalf
imposes up to 3.5x slowdown when mediating access to location,
contacts, and camera data, and an 80x slowdown when mediating
accesses to external storage. In Section 8, we discuss several ways
of reducing the external storage overhead. The source code of our
prototype is available at https://github.com/dalfdroid/dalf .

This paper makes following contributions:
• We propose treating permissions plugins as Android apps as
a way to provide both flexiblity and isolation. By using An-
droid’s process-based isolation mechanisms and Binder IPC,
Dalf supports a nearly limitless number of authorization
decisions, including context-based data modification.

• Experimentswith our prototype demonstrates that our frame-
work is flexible enough to implement prior work as Dalf
plugins. More specifically, we implemented (i) a plugin to
protect a user’s location privacy using geo-indistinguisha-
bility [33], and (ii) a plugin to protect visual secrets using
PrivateEye [51].

The rest of the paper is organized as follows: we provide nec-
essary background on the Android OS in Section 2; we describe
prior work in Section 3; we discuss their limitations in the context
of our design principles and also provide an overview of Dalf in
Section 4; we detail the implementation of our prototype in Sec-
tion 5 and describe the plugins we developed in Section 6. Finally,
we evaluate Dalf in Section 7, discuss its limitations in Section 8,
and conclude in Section 9.

2 BACKGROUND

In this section, we provide background on the portions of Android
salient to this paper. Android is a Linux-based OS that is bundled
with a set of trusted software components collectively known as
the Android framework. The framework implements all of the
necessary tooling and API required by apps. It is also responsible for
several important tasks such as setting up a runtime environment
for each app; ensuring the usability of the device by terminating
misbehaving apps that use too much memory or are unresponsive
to user inputs; and mediating apps’ accesses to sensitive resources
on the device, e.g., the camera or GPS location.

2.1 Android permissions

The framework assigns unique permissions labels to each system
resource and requires apps to declare the resources they need. For
example, developers must specify the CAMERA label in a manifest

file bundled with the app if it makes use of the camera. Android
makes a distinction between normal and dangerous permissions. The
resources in the former class, such as Internet access, are considered
to pose a low risk to user privacy and are granted automatically [6].
The latter are considered high-risk, sensitive resources. Prior to
Android 6.0, a user must grant all the dangerous permissions an
app needs during install time. Otherwise, the app is not installed.

On Android 6.0 and later, apps do not receive dangerous permis-
sions automatically. Before an app uses sensitive resources, it is
required to check if it has the necessary permissions. If it does not, it
may request them from the user who is then presented with a dialog
that indicates the permission the app needs. If the user grants the
request, the appmay access the resource for the rest of its lifetime or
until the user revokes it later. If permissions are denied, the app may
either provide a degraded service or refuse to provide it at all until
permissions are granted. The permissions granted to an app are
recorded in a database managed by the PackageManagerService,
a trusted service that is a part of the framework.

Android enforces most permissions using IPC. It only allows
certain trusted components in the framework to have unmediated
accesses to the sensitive resources. All other apps have to request
for them via IPC calls to the framework. When the trusted com-
ponents receive a request for a resource, they use the identity of
the requesting app in conjunction with the permissions database
managed by PackageManagerService to determine if the request
should be allowed. If so, the framework sends the resource or a ref-
erence to the resource in a return IPC call to the app. This approach
enables the framework to independently verify if an app has the
necessary permissions to access different resources.

2.2 Binder IPC

IPC in Android is done with Binder, a core system feature, and
with the notion of binder objects. The methods of a binder object
instance may be invoked by remote processes even if they did not
originally create the object. The only requirement is that they must
first receive a valid reference to the object from a process that
possesses such a reference. A binder object’s methods are assigned
unique identifiers and are either marked as one-way or blocking. As
their names suggest, a one-way method returns immediately while
a blocking method blocks the caller until the callee returns from
the method. The callee is always the process that created the binder
object while the caller is the process with the object reference.

When a binder object’s method is called, if the caller and the
callee are different processes, a binder transaction is initiated using
the binder driver in the Linux kernel. The driver copies the data of
the IPC message from the caller’s address space to the callee’s. In
blocking transactions, it copies the return value from the callee to
the caller at the end of the method. If the caller and callee are the
same process, the method calls take place within the process and
the binder driver is not involved.

The method arguments and the return data between the caller
and callee are transferred using instances of the Parcel class, an
Android abstraction over byte arrays. The caller will serialize a
method’s identifier and arguments into a parcel object before in-
voking the binder object method and passing the parcel. The callee
will read the method identifier from the received parcel, deserialize

https://github.com/dalfdroid/dalf

all the arguments for that method from the parcel, and make a
direct call to the method with the deserialized arguments. If the
invoked method has a return value, the callee sends it to the caller
in a separate reply parcel.

2.3 Launching apps

Android uses a unique approach of launching new apps. When the
OS boots, the framework starts a special zygote process. Zygote
loads the application runtime environment in its address space and
then listens for requests to launch new apps. When one is received,
it uses the fork() syscall to create a new process. The parent
process resumes being zygote while the child process initializes the
runtime, relinquishes system capabilities not required by the app,
and starts executing the app code. In other words, Android does not
use the traditional exec() syscall to execute an application binary.
This technique reduces both app startup time and memory usage
because an app process starts with the runtime already loaded and
will share unmodified regions of its address space, such as those
that contain code, with the zygote process.

3 RELATEDWORK

Improving the permissions model on Android is an active area of
work both in the academic and open-source communities. Since
the default permissions model is binary (allow or deny), the aim
has generally been to provide flexible permissions. Some of them
also focus on improving usability so that users may enjoy privacy
protections with minimal manual effort. We describe prior work
in detail in this section. We summarize their limitations relative to
Dalf in Table 1 and elaborate further in Section 4.2.

Flexible permissions: A popular approach of providing flexible
permissions has been to take into account the context in which a
resource request is made and to return custom data in response to
a request, instead of merely allowing or denying it. CoDRA [52],
ipShield [38], CRePe [41], and SemaDroid [55] allow users to specify
policies to control apps’ accesses to resources on the device based on
external context (location, time of day, etc.). ipShield and SemaDroid
focus on protecting sensor data while CoDRA and CRePe allow
control over a wider set of resources, such as access to WiFi.

Pegasus [39] and SweetDroid [40] use code contexts to capture
the code paths of apps’ sensitive resource requests. This may be
used, for example, to prevent an audio recording app from access-
ing the microphone when it is done by an advertisement library
bundled within the app but not when the user explicitly records
audio. INSPIRED [43] uses the UI elements shown on the screen
and the relationships between them as the context of a resource
request. It checks if an app’s UI is in agreement with the intent of
the permission requested e.g., an app that requests the SEND_SMS
permission should look like a messaging app.

Xposed [29] is an open-source framework for Android that en-
ables interposition on general portions of the Android API. It allows
users to execute custom plugins within the address space of each
app and hook well-known API methods. This enables plugins to
have strong controls over an app’s actions. XPrivacyLua [31] builds
on top of Xposed to provide a flexible permissions system with a
set of default actions such as faking location data. It also lets users
write customs policies using Lua.

BinderFilter [54] is a kernel-level firewall for Binder. It allows
users to use context-aware policies to filter and modify IPC mes-
sages. These policies are executed directly in the kernel. ASF [34]
proposes an architecture for security experts to develop security
modules that control the data apps receive when they request sen-
sitive resources.

Flexible permissions on an unmodified OS: In contrast to
earlier work and Dalf, there have been attempts to provide flexible
permissions without modifying Android. Dr. Android [46] provides
Mr. Hide, a trusted service app, and rewrites the bytecode of An-
droid apps to call Mr. Hide to access sensitive resources instead
of invoking Android APIs. Mr. Hide arbitrates resource requests
according to custom policies. Boxify [35] and NJAS [37] go one
step further and do not rely on bytecode rewriting. Instead, they
propose manager apps, which are regular Android apps, that have
the ability to execute third-party apps within specially crafted sand-
box processes. A sandbox will enforce user-specified policies by
intercepting attempts by the target app to initiate syscalls or calls
to Android APIs.

Boxify and NJAS are attractive because of their ability to work
on an unmodified OS. However, they are fundamentally dependent
on the existence of a general mechanism on Android for a third-
party app X to be able to execute another third-party app Y in
X ’s process. While Boxify and NJAS use such mechanisms for
sandboxing, a malicious app may use them to exfiltrate information
from legitimate apps. Consider a malicious app disguised as a home
screen app that lets users click on app icons and launch them. The
malware may run each app in a separate process with hooks to
exfiltrate all sensitive user and app data.

Due to such security concerns, these mechanisms may be re-
moved in future versions of the OS. For instance, Boxify relies on
APIs that are now either hidden or are in the process of being hid-
den1 and Android is restricting apps from using hidden APIs [17].
NJAS uses a combination of ptrace and the Context.create-
PackageContext() API in its sandbox process to load, execute,
and interpose on code belonging to the target app. Although this
technique works at the moment, albeit with a significant amount
of engineering, it may be restricted in the future. In sum, providing
flexible permissions without modifying the OS is not necessarily
sustainable.

Protections against specific attacks: PrivateEye andWaveOff
protect visual secrets from being leaked in images and videos cap-
tured by smartphone devices [51]. The authors modified the camera
subsystem in Android so that only specially marked regions of the
physical environment are made visible to apps using the camera;
all other regions are blocked and appear black in the frame.

Usability improvements: SmarPer [49] andWijsekera et al. [53]
proposed the use of machine learning techniques to automatically
respond to permission requests from apps and involve the user only
when absolutely necessary. ipShield [38] lets users rate how con-
cerned they are about an app’s ability to perform inference attacks,
which is the use of data from multiple sources to infer sensitive
information e.g., using the accelerometer and gyroscope together to

1In particular, ActivityThread.getApplicationThread() and
ApplicationThread.bindApplication(). The most recent implementations
of these methods reflect their hidden status [1, 12, 28].

Limits trust in

permissions plugins

Prevents

circumvention of

plugins

Flexible

plugins

CoDRA [52], Pegasus [39], SweetDroid [40], SemaDroid [55], ipShield [38],
BinderFilter [54], CRePe [41], Dr. Android [46], Boxify [35], NJAS [37]

! ! #

ASF [34] # ! !

Xposed [29], XPrivacyLua [31] # # !

Dalf " " "

Table 1: A summary of how prior work compares to Dalf. We discuss prior work and provide detailed comparison with Dalf
in Section 3 and Section 4.2, respectively.

infer keystrokes [48]. Based on their ratings, ipShield automatically
recommends the policies that should be applied to the app.

Others: TISSA [56] is an early work that studied the feasibility
of filtering data before delivering it to apps. MockDroid [36] is a
version of Android that lets users send mock data to apps when they
request for resources. SAINT [50] allows an app to provide policies
to regulate how other apps may interact with it. Independent of
our work, Android is experimenting with a plugin architecture to
modify the appearance of the system UI [24]. In this paper, we
propose plugins for flexible permissions.

4 OVERVIEW

In this section, we present the design of Dalf, an extensible per-
missions framework for Android, and the principles that guided it.
In the rest of this paper, our discussions take place in the context
of the permissions model used in Android 6.0 and onwards.

4.1 Trust model

The TCB (Trusted Computing Base) in this work is the Android OS,
which includes the Linux kernel, the Android framework, and the
device drivers. As Dalf enables users to install plugins to interpose
on apps’ access to sensitive resources, we expect users to trust the
plugins they install. However, Dalf does not include plugins in
its TCB and employs a variety of safeguards to protect users from
malicious plugins. We detail these safeguards and malicious plugins
in Section 4.3 and Section 4.4, respectively.

4.2 Design principles

Limit trust in permissions plugins: We believe that a prerequi-
site for the practical adoption of an extensible permissions archi-
tecture is the ability to limit the trust in the permissions plugins. In
other words, the damage that a misbehaving (buggy or malicious)
plugin can cause should be limited.

As the majority of prior work [34, 38–41, 52, 54, 55] execute
their permissions plugins directly in the OS, the plugins run with
elevated privileges. In these systems, a misbehaving plugin could
in theory cause a lot of damage. As shown in Table 1 however, with
the exception of ASF [34], many of them do limit the trust extended
to plugins. This is a direct consequence of those systems requiring
plugins to be written in custom domain-specific languages (DSLs)
with restricted capabilities. The limitations of the DSLs are directly

responsible for limiting the damage a misbehaving plugin can per-
form. Unfortunately, this also means that increasing the capabilities
of the DSLs increases the damage potential of misbehaving plugins.

While Dr. Android [46], Boxify [35], and NJAS [37], do not mod-
ify the OS, they each have a trusted component that executes per-
missions policies and mediates resource requests made by a sand-
boxed app. The current implementations of these systems support
relatively simple policies. If they were to support more complex
policies, the potential damage of a misbehaving policy would also
increase since the trusted components are more privileged than the
sandboxed app.

Xposed [29], XPrivacyLua [31], SmarPer [49] run the plugins in
the address space of each app process. In this approach, misbehav-
ing plugins may exfiltrate confidential information from the app.
We demonstrate this by developing a custom Xposed plugin that
perturbs location data when the app receives it from Android frame-
work via IPC. It hooks Location.CREATOR.createFromParcel(),
an internal Android method that deserializes the location data struc-
ture received in a parcel, to obfuscate the location after deserializa-
tion completes. It also hooks the constructor of the android.text-
.TextView class to exfiltrate the content of all text elements in the
UI. At the moment, the plugin prints them to logcat, the system
logger in Android. However, it can be easily modified to send them
to a remote server over the Internet. We tested this plugin with
Telegram [25], a secure messaging app, by manually sharing the
current location with a Telegram contact. As expected, the shared
location was perturbed. However, the plugin was able to access the
chat messages since they are rendered on the UI.

Prevent circumvention of permissions plugins: It should
not be possible for apps to circumvent the plugins applied on them.
This requires the plugins to run their arbitration logic before apps
receive the requested resource. Consider instead Xposed-based
frameworks. Since an Xposed plugin’s hooks run in the same ad-
dress space as the app, they execute only after the data is received
in the app process. Hence, it is possible for apps that are aware
of these plugins to change their process environment and access
resources before the plugins modify them. To demonstrate this, we
added about 100 lines of code to the free and open-source version
of Telegram [26].

We first added a newmethod to manually deserialize the location
from a parcel. Next, we used YAHFA [32] to modify the pointer of
the Location.CREATOR.createFromParcel() method to point to
the new method during runtime. We used this modified version of

Telegram with XPrivacyLua, reran the test described earlier, and
found that the shared location was obfuscated. However, recall from
Section 2.2 that in binder IPC, methods run after the deserialization
of objects from the parcel. The new method we added is invoked
during the deserialization step. When it returns, the location object
it creates is eventually perturbed by XPrivacyLua. However, it is too
late by this time: the app has already observed the true coordinates
during deserialization in our method. Thus, XPrivacyLua was only
providing an illusion of safety to the user in this test. We also used
our custom malicious Xposed plugin and found it to be ineffective
as well. Note its doubly harmful effects in this test: it did not provide
any protections and it was exfiltrating chat messages.

Flexible permissions plugins: We believe developers should
be able to create plugins without unnecessary restrictions to aid the
traction of an extensible permissions framework . SemaDroid [55],
ipShield [38], and Pegasus [39], among others, use domain-specific
languages (DSLs) to write permissions plugins and are limited. For
example, they may not be able to maintain program state, run arbi-
trary computations, or access other resources such as the Internet.
These limit the types of plugins that can be developed. Consider
a trusted privacy watchdog organization (e.g., the EFF [14]). They
may wish to create a plugin that tracks if certain apps make net-
work requests to suspicious IP ranges. The plugin itself may need
to periodically connect to the Internet to update the IP ranges. Such
plugins are not possible in prior work that rely on restrictive DSLs.
Dr. Android, Boxify, and NJAS, do not allow third-party developers
to create custom permissions policies. By default, they support cer-
tain predefined but configurable policies (e.g., “prevent the sending
of text messages to particular phone numbers”).

Allow support of all resource types: A permissions architec-
ture’s design should not be limited to certain resource types. In
contrast, consider prior work: SemaDroid and ipShield focus on
sensor data such as the accelerometer; BinderFilter [54] does not
support interposing accesses to files and does not appear to support
perturbing the frames in a camera stream; ASF does not support the
camera stream either and although it supports interposing accesses
to files, it does so by rewriting the app, which may be defeated if
apps use direct syscalls (e.g., open()) in native code.

4.3 DALF

Dalf is an extensible permissions architecture for Android that
complements its existing permissions model. In Figure 1, we il-
lustrate a high-level overview of Dalf. It enables users to apply
plugins on a per app per resource basis. If an app accesses a permit-
ted resource and there is a plugin applied for that resource, Dalf
invokes the plugin using binder IPC, waits for a reply from the
plugin, and then responds to the app’s request based on the reply.
It provides the plugin the identity of the app and an unmodified
version of the data. The plugin may allow the request by returning
the input data, deny the request by completely redacting the data,
or return some modified version of the data. In Dalf, plugins are
essentially apps that implement the Dalf plugin API described in
Section 5. That aside, they have the same capabilities as regular
apps. For example, they may have a UI or request permissions from
the user to access additional sensitive resources to determine the

Figure 1: A high-level overview of Dalf’s design. The green

boxes within the Android Framework represent the compo-

nents we added or modified; the numbers next to each line

indicate the order of data flow between apps and plugins;

the DI next to each plugin are the data interposers, which

pluginsmust implement to arbitrate resources; and both the

regular apps and plugins run as separate processes and are

not inherently trusted by Dalf.

current context of the device (e.g., time of day, current location,
etc.).

In practice, we envision the presence of a plugin store similar
to app stores. We expect privacy experts to develop and publish
different kinds of plugins on the plugin store, and expect users
to install the plugins that suit them. We believe that the plugins’
reputation and trustworthiness would depend on the user ratings
of each plugin, the reputation of the entities making them, and
whether or not the source code for those plugins are available.

Restrictions: We intentionally placed two restrictions on our
design. First, a plugin’s accesses to resources are not themselves
mediated by other plugins. Second, users may only apply a single
plugin for each resource type accessed by an app. Plugins may not
be composed for an app-resource pair. From an implementation per-
spective, it is straightforward to remove both of these restrictions.
However, doing so makes it difficult to reason about the protections
ultimately applied to apps. We leave a feasibility study of loosening
these restrictions to future work.

Satisfying the design goals: Our approach of having plugins
as apps meets the first three goals stated above. First, they are
subject to the same isolation mechanisms Android places on regular
apps. They do not run with elevated privileges in the OS nor do
they have access to apps’ address spaces. Second, because plugins
run as separate processes and are invoked before resources are
delivered, apps only receive arbitrated data and cannot circumvent
plugins. Third, aside from having to implement the Dalf plugin API,
developers may use the same tools they use to develop Android apps
to create plugins and have access to the same capabilities. Finally,

Dalf’s general design supports all resource types. We demonstrate
this with our prototype in Section 5.

4.4 Malicious plugins

In this section, we discuss what might happen if users inadvertently
install malicious plugins while using Dalf and potential mitigation
measures. As plugins are apps, they are subject to Android’s appli-
cation sandbox which isolates apps from each other and from the
OS. Thus, a malicious plugin cannot directly interfere with other
apps or the OS. However, for each app-resource combination, a ma-
licious plugin (a) has access to the raw sensitive data, (b) may track
apps’ access patterns to the resource, and (c) send apps garbage
data when they access the resource. A malicious plugin can also
access other resources on the device if granted by the user.

Instead of providing plugins the raw data, Dalf can provide
opaque references [45] to require plugins to perform their manipu-
lation tasks without directly accessing the data. For instance, the
GeoInd plugin described in Section 6.1 uses differential privacy
to perturb the user’s location. It can function correctly with an
opaque reference to the location since its perturbation method is in-
dependent of the user’s true location values. It is difficult to prevent
a plugin from tracking access patterns because the plugin must
be invoked for each resource request by an app. However, we can
prevent plugins from sharing such data with the outside world,
e.g., by denying the INTERNET permission. To prevent plugins from
sending garbage data, Dalf can perform integrity checks on the
output of plugins before sending the perturbed data to apps. That
said, it may be difficult to distinguish valid perturbed data from
garbage data.

Since plugins are apps, we may borrow the measures that are
employed to reduce the chances users install malicious apps to also
reduce the probability that malicious plugins are installed in the
first place. We can establish a vetting mechanism for plugins or
plugin developers, similar to the vetting mechanisms of regular
apps, e.g., Google Play Protect [18]. Observe that the scope of a
plugin is much more narrow compared to a regular app: a plugin’s
focus is on resource mediation while apps are far more richer in
functionality. Hence, we argue that in most cases vetting a plugin
would be easier than vetting a regular app. For instance, while a
normal app may use a lot of external libraries (e.g., for ads), which
are a prime source of malicious/buggy behavior [44], we can ensure
plugins only use trusted libraries (e.g., OpenCV for computer vision
tasks). Alternatively, the vetting process may be stricter for plugin
developers and require them to submit the source code of their
plugins for malware analysis.

Finally, similar to open-source privacy plugins forweb browsers [2,
16, 20, 22, 27], we believe useful Dalf plugins will gain popular-
ity and trustworthiness by being open-source. We also envision a
repository where developers are encouraged to publish open-source
plugins (such as F-Droid [15]). Although this does not prevent a
malicious open-source plugin from existing, it decreases the oppor-
tunity for plugin developers to hide malware in their code.

Note that our plugins as apps design allows users to uninstall
a plugin as soon as they identify it as malicious. This is akin to
uninstalling a malicious app. While it does not undo the damage
done (e.g., the leaking of resource data), it prevents further damage.

5 IMPLEMENTATION

We implemented a prototype of Dalf for Android 8.1 (AOSP branch
android-8.1.0_r1 [10]). We modified the Android framework
to implement a plugin API, allow users to install plugins, and to
provide a companion settings app that lets users select the plugins
to apply for each app-resource combination.

5.1 Plugins

Each plugin must meet the following requirements. First, it must be
able to run in the background using Android’s Service class. Next,
it has to declare the resources it arbitrates in a plugin manifest file
and for each of them, define a corresponding interposer (explained
below). Finally, it must implement Dalf’s PluginService class
and override the appropriate get() methods in the class to return
the interposers. Aside from these, plugins have access to the same
capabilities as regular apps e.g., use native code, provide a UI, etc.

When the user installs a plugin, the PackageManagerService
reads its manifest and populates a new plugin database. This data-
base is used by the settings app to list the available plugins to the
user and to record the plugins applied for each app-resource com-
bination. During runtime, the Android framework starts a plugin’s
background service on demand, when there is a need to arbitrate
on a resource for an app. It retrieves the interposer corresponding
to that resource from the plugin, invokes its methods using binder
IPC, and then responds to the app based on the plugin’s reply. Our
prototype only starts a single instance of each plugin and shares it
across all the apps that require it.

5.2 Interposers

Interposer Data type Arbitrates

Location Plain object Device location.
Contacts Content provider The user’s contacts database.
Calendar Content provider The user’s calendar database.
Camera Streaming Frames from a camera stream.
External storage Kernel-provided External storage file access.

Table 2: The resource interposers currently supported by the

Dalf prototype.

In Dalf, an interposer is a binder object represented as a Java
class with several abstract callback methods. These methods must
be implemented by the plugin and are invoked by the framework
to interpose on a resource. In general, the framework passes the
app’s name and the resource data to the interposer and in return,
the interposer must respond with how the app’s resource access
should be handled. As the details of an interposer differ based on
its data type, we discuss them separately below.

5.2.1 Plain objects. It is straightforward to interpose on resources
that are simple class objects. For example, location data in Android
are represented as instances of the Location Java class. It uses field
variables to represent attributes such as latitude and longitude. Our
modifications to the Android framework to handle plain objects
are summarized as follows:

During serialization, Dalf tracks whether a parcel contains plain
objects that represent resources to be interposed on and if so, their

positions within the parcel. Before the parcel is sent in a transaction
to an app, the framework loops through each object and invokes
the callback of the appropriate plugin interposer using binder IPC.
In doing so, the framework provides the plugin the app’s name and
a copy of the object. In response, the interposer must return an
object instance of the same type but it has the freedom of changing
the values of the object’s fields. Once all interposers are invoked,
the framework creates a copy of the original parcel but replaces
the objects that were interposed on with the objects received from
the plugins. Finally, the framework resumes the initial binder trans-
action to the app but sends the new parcel instead of the original
parcel.

5.2.2 Content providers. A class of resources in Android, such as
contacts, calendar, and call logs, are accessed using the content
provider design pattern [4]. Apps need to query the framework2
and provide (i) a URI that identifies the data type, (ii) the specific
data columns the app needs, e.g., display name and phone numbers
of contacts, and (iii) other arguments that may affect the results
of the query, such as conditional operators. A query’s results are
tabular in nature, much like the results of a regular database query.

The framework maintains a different content provider for each
resource URI. When a content provider receives a query it is respon-
sible for, it executes the query and instantiates a CursorWindow
object, thereby allocating a chunk of memory. It writes the query
results into the allocated memory and sends a Cursor object back
to the app so that it may read the results. Internally, the cursor uses
a read-only CursorWindow handle to the memory allocated by the
content provider.

Similar to plain objects, we support such resources by keeping
track of whether a parcel contains CursorWindow handles that
were created because the app queried for data interposed on by a
plugin. If so, the framework invokes the corresponding interposer
and provides the app’s name and the CursorWindow handle. In
response, the interposer must return a CursorWindow handle to
return to the app. If a plugin needs to customize the data returned,
the interposer must create a new instance of the CursorWindow
object, fill the necessary fields, and return the handle.

5.2.3 Streaming data. A typical Android device has several stream-
ing data sources such as the accelerometer, gyroscope, camera,
etc. The framework delivers data from these sources to apps using
different implementations of the producer-consumer pattern. We
support them in Dalf by allowing plugins to relay the data flow
between the producer at the source and the consumer at the app.
We discuss how our prototype supports the camera stream below.

An app has to send a capture request to libcameraservice, a
framework component, to access the camera. At a high-level, a
request contains camera configuration parameters and the surface
that will receive the camera output (i.e., the rendering target). In-
ternally, a surface is a BufferQueue object with references to a
producer-consumer binder object pair [9] and a capture request
contains the surface’s producer object.

When libcameraservice receives a request, it verifies that the
app has permissions to access the camera, creates a new camera
stream, configures it according to the parameters of the request,

2See: ContentProvider.query()

and registers the surface’s producer object with the stream. Subse-
quently, when the stream renders new frames, it uses the producer
object to deliver the frame handles to the app. It leaves it to the app
to use the corresponding consumer object to read the frames.

In our prototype, when libcameraservice configures a camera
stream for an app, it checks if the app’s camera access is arbitrated
by a plugin. If so, it invokes the shouldInterpose()method on the
camera interposer and passes the app’s name and surface producer
object. This enables the plugin to decide whether or not to interpose
on that particular stream. If it does not, then the stream is configured
normally and frames are rendered directly to the app’s surface.

Otherwise, the plugin creates a new surface of its own and sends
that surface’s producer object back to libcameraservice which
will, in turn, register the producer received from the plugin in
the camera stream. Now, whenever the camera stream renders a
new frame, the plugin’s camera interposer’s onFrameAvailable()
callback will be invoked with a pointer to the raw frame data to
let the interposer modify the frame. Once the method returns, the
frame is copied and a handle to the copy is sent to the app (using
the app surface’s producer object received in the earlier invocation
to shouldInterpose()).

Our prototype introduces a new InterposableSurface object
to perform the heavy lifting necessary for the above tasks and to
simplify the development of a camera plugin. Note that frames must
be copied to prevent data leakage. We observed that the camera
stream reuses the memory allocated for past frames to render a
new frame. If instead of performing a copy, we pass the original
handle received from the camera stream to the app, it may be able
to read new frames directly and circumvent the plugin.

Our prototype does not yet support other sources of streaming
data, such as the microphone and sensors. Our initial investigations
suggest that an approach similar to the above will work as they
use different implementations of a producer-consumer model (e.g.,
BitTube [11] in the case of sensors).

5.2.4 Kernel-provided resources. Certain resources, such as files
and the network, are provided by the OS kernel. The Android
framework is only involved in granting an app the capabilities to
request those resources. Once granted, apps may access them using
the appropriate Linux syscalls. In the following, we detail how
our prototype uses ptrace, a syscall tracer in Linux, to interpose
on accesses to files on the external storage partition. In Android
devices, this partition typically has a large capacity and is used for
mass storage. Our approach is similar to that of MBOX [47].

In general, ptrace allows a tracer process to trace the syscalls
made by another tracee process. When the tracee calls a syscall, the
kernel traps to the tracer twice: once before the kernel executes
the syscall (syscall-enter-stop), and once afterwards (syscall-
exit-stop). The former allows the tracer to inspect and modify
the input arguments to the syscall and the latter allows the same
for the syscall’s return values.

As explained in Section 2.3, Android uses the zygote process to
launch new apps. We tweaked it so as to be able to use ptrace.
As usual, zygote performs a fork() to start a child process to run
the app. We denote this child CA. If the user applied a plugin on
the app to arbitrate accesses to external storage, zygote performs a
second fork() and the second child,CT , is designated asCA’s tracer.

We synchronize CA and CT using shared semaphores so that the
tracer may set various ptrace options before CA starts executing
app code. For example, since Android apps are inherently multi-
threaded, it sets the PTRACE_O_TRACECLONE option to monitor the
syscalls made by all threads in CA.

When CT traps because of syscall-enter-stop, it identifies
the syscall being called. If it is one that is used to open files, it
reads the filename argument to check whether it resides in external
storage. If so, it invokes the storage interposer of the plugin and
sends the app’s name and the filename. The interposer must now
return a path to the file that should be opened. It may allow the
access, deny it (by returning an empty string), or redirect it to a
different file by returning a new path. In the last two cases, the
tracer copies the returned string into an unused portion of the app
thread’s stack (a popular thread-safe trick of placing new data in
the app [21]), changes the filename pointer argument to point to
the new string, and then resumes the syscall.

Many of the ptrace operations, such as identifying the syscall
being called, are architecture-dependent. Our prototype currently
supports aarch64 (ARMv8-A, 64-bit mode), the architecture used
in modern Android devices, and only checks for calls to openat(),
the syscall used to open files in aarch64. We leave the support
of other architectures to future work. Even though we focus on
interposing on the external storage in this paper, this ptrace-based
approach can also be used to interpose on other resources accessed
through syscalls, such as network requests.

6 PERMISSIONS PLUGINS

We demonstrate the ability of Dalf to address the diverse privacy
requirements of users. In this section, we describe four different
motivating scenarios and discuss Dalf plugins to address them.

6.1 Location plugin

Use case: Alice has an app on her smartphone to discover nearby
points of interests (POI) such as restaurants, bars or coffee shops. It
sends her location to the cloud to retrieve the POI near her location. As
Alice is afraid the app might track her movements, she often avoids
using the app even though she likes it.

To address such scenarios, we developed GeoInd, a plugin that
perturbs a user’s location data with geo-indistinguishability [33],
a differentially-private location obfuscation technique. It adds a
carefully chosen amount of noise to the user’s location so that with
high probability, an adversary cannot infer a user’s true location
even after observing the noisy location. The amount of noise added
depends on r , a user-specified parameter that represents the radius
within which the user wants her privacy protected. Increasing r
adds more noise to the location and improves privacy but reduces
the accuracy of the POI results. Alice may install this plugin and
choose r as desired to receive reasonably accurate results while
protecting her true location.

6.2 Contacts plugin

Use case: Bob uses a social networking app and it allows him to find
his friends on the network by giving it access to his address book on
the phone. Although he likes this feature, he does not want to share
all of his personal contacts.

We developed ContactsGuard, a plugin that uses the contacts
interposer to run user-specified policies each time an app queries
the contacts database. The plugin inspects the results and removes
or perturbs entries based on the policies. Bob may install this plugin
and set a policy to filter out contacts he does not want to share with
the social networking app. Our prototype implementation of Con-
tactsGuard supports two policies: (i) filtering out contacts based
on their phone numbers’ area code, and (ii) hide email addresses.

6.3 Camera plugin

Use case: Charlie installed a translation app on his phone when he
traveled overseas because it simplified translating foreign language
text into his native language. He only had to point his phone camera
at the text and the app would translate it. He wants to use it back
home, too, to translate foreign language documents. However, he is
worried that he might inadvertently share images of sensitive infor-
mation lying around in his house, such as bank statements and family
pictures.

As discussed in Section 3, PrivateEye [51] addresses the above
problem with a default-deny approach. Users have to specifically
identify the portions of the physical environment considered pub-
lic using special markers. PrivateEye then uses computer vision
techniques to identify and disclose only the portions of the image
frame that lie within the markers. As PrivateEye is implemented
by modifying the camera subsystem, it affects all camera apps and
does not consider user context.

Using Dalf, we implemented GeoPrivateEye, a location-aware
PrivateEye plugin. It allows users to specify the locations where
they are concerned about inadvertently sharing sensitive informa-
tion and only enables PrivateEye in those locations. Charlie may
install this plugin, add his home as a sensitive location, and apply
it to the translation app. Consequently, when he launches the app
at home, the plugin blocks everything by default. He will have to
place markers around the documents he wants to translate. How-
ever, once he leaves the house, the plugin will not perturb the image
the app receives. GeoPrivateEye demonstrates how a plugin in
Dalf may access data from one resource (location) to arbitrate
another resource (camera).

6.4 Storage plugin

Use case: Eve stores photos and sensitive documents on the external
storage partition of her phone. She wants to use an image-sharing app
to share her photos with friends and family. If she uses one, she has to
grant it the permission to read files on the external storage since her
photos are stored there. However, in doing so, she will also grant it the
permission to access her sensitive documents. Hence, she is afraid of
using such an app.

We developed a FileGuard plugin that implements a storage
interposer to handle these scenarios. Similar to ContactsGuard,
it allows user-specified policies to dictate whether accesses to files
on the external storage should be allowed. It currently supports the
following policy types: (i) allow access to whitelisted files, (ii) deny
access to blacklisted files, and (iii) deny access to photos based on
where they were taken. To support the last policy, it relies on the
location data stored in the photo’s exif metadata. Eve may apply
the FileGuard plugin to an image-sharing app and whitelist just

Resource Configuration Description

Stock Unmodified Android 8.1 (AOSP branch
android-8.1.0_r1 [10])

Dalf Android 8.1 instrumented with our per-
missions plugin framework.

Location
LocNoOp Dalf + location plugin that does not per-

form any operation.
ConstLoc Dalf + location plugin that replaces the

original locationwith a constant location.
GeoInd Dalf + GeoInd plugin.

Contacts
ContactsNoOp Dalf + contacts plugin that does not per-

form any operation.
FilterPhone Dalf + ContactsGuard plugin that fil-

ters out private contacts.
PerturbEmail Dalf + ContactsGuard plugin that per-

turbs emails.

Camera
CameraNoOp Dalf + camera plugin that does not per-

form any operation.
Blur Dalf + camera plugin that blurs camera

frames.
GeoPrivateEye Dalf + GeoPrivateEye plugin.

Storage
StorageNoOp Dalf + storage plugin that does not per-

form any operation.
Whitelist Dalf + FileGuard plugin with a

whitelisting policy.
ImageGuard Dalf + FileGuard plugin with location-

based access control to images.
Table 3: Configurations used in evaluating Dalf.

the photos directory on her external storage, thereby preventing
the app from accessing anything else.

7 EVALUATION

To evaluate Dalf, we ask two questions: (i) Is its design practical? (ii)
How do plugins behave with real world Android apps? To answer
the first question, we measured the different aspects of overhead of
our prototype.We answer the second question bymanually running
real-world apps with our plugins and performing a qualitative
investigation. In this section, we report our findings.

7.1 Experimental methodology

In order to perform the overhead experiments, we used two different
variants of Android: Stock, an unmodified version of Android 8.1,
and Dalf, which is Android 8.1 with our permissions framework
implemented. We used Stock as the baseline and ran different
workloads on Dalf using four microbenchmark apps, one for each
resource type. We used each app with a plugin that interposes on
the corresponding resource type. The apps and their workloads are
detailed below:

• LocFinder retrieves the user’s location repeatedly a 100,000
times using the LocationManager.getLastKnownLocation()
API.

• ContactsLoader retrieves the display name, phone num-
bers, and emails, of the contacts saved on the phone using
the ContentProvider.query() API. We pre-populated the
phone with 100 contact entries.

ST
O
C
K

D
A
LF

N
O
O
P

C
on

st
Loc

G
eo

In
d

0.2

0.3

0.4

0.5

T
im

e
(m

s)

(a) Location retrieval time

ST
O
C
K

D
A
LF

N
O
O
P

Filt
er

Pho
ne

Per
tu

rb
Em

ai
l

6

8

10

12

T
im

e
(m

s)

(b) Contacts load time

ST
O
C
K

D
A
LF

N
O
O
P

B
lu

r

G
eo

Priv
at

eE
ye

0

10

20

30

F
P

S

(c) Camera preview FPS

ST
O
C
K

D
A
LF

N
O
O
P

W
hi

te
lis

t

Im
ag

eG
ua

rd
0

2

4

6

T
im

e
(m

s)

(d) File read time

Figure 2: The performance slowdown in Dalf when access-

ing various resources. The NoOp in (a), (b), (c), and (d) rep-

resent LocNoOp, ContactsNoOp, CameraNoOp, and Stor-
ageNoOp, respectively.

• CameraPreview displays the frames from a camera stream
(i.e., a camera preview) for 30 seconds using the camera2
API [3].

• FileReader reads all the files in a specified directory lo-
cated on the phone’s external storage. In our workload, the
directory has 1000 files, each of size 1 KB.

In Table 3, we list the complete set of experimental configurations
we used. Note that we ran all our experiments on a Pixel 2 XL
smartphone, which has an octa-core CPU and 4 GB of RAM. We
used Python scripts that control the phone with ADB (Android
Debug Bridge) to run the experiments systematically.

7.2 Performance slowdown

We instrumented our microbenchmark apps to compute the time
elapsed between requesting for a resource and receiving it. We
use this to measure the slowdown plugins impose from an app’s
perspective. For location, contacts and storage, this is given in
milliseconds. For the camera, we measured the frames per seconds
(FPS) of the preview. Our results are illustrated in Figure 2.

As the graphs illustrate, Dalf’s impact on apps when plugins
are not applied is negligible. When plugins are applied, there is a
visible slowdown on the time taken for apps to receive resources.
In location and contacts, the slowdown is 3.5x and 1.2x, respec-
tively. We attribute this to the additional IPCs in Dalf from the
Android framework to the plugins. However, in absolute terms, the
slowdowns are less 1 ms.

In the case of camera, Blur and GeoPrivateEye deliver the
preview frames at a median rate of 10 FPS and 15 FPS, respectively.
GeoPrivateEye is faster than Blur even though it employs com-
plex detection algorithms because unlike Blur, it resizes the input
frames (from 4032×3024 to 400×240) before performing its detec-
tion. Note that GeoPrivateEye does not achieve the frame rate
reported in the original paper (20 FPS) because we did not employ

locationcontacts camera storage
100

120

140

160

M
em

or
y

(M
B

)

S D DN DP

(a) System memory usage

locationcontacts camera storage
0

25

50

75

100

M
em

or
y

(M
B

)

S D DN DP

(b) App memory usage

location contacts camera storage
0

20

40

60

M
em

or
y

(M
B

)

DN DP

(c) Plugin memory usage

location contacts camera storage
0

2

4

6

8

10

12
P

ow
er

(m
A

h
)

S D DN DP

(d) Battery usage

Figure 3: The memory overhead and battery usage in Dalf
under different workloads. The configuration labels are

as follows: S=Stock, D=Dalf, DN=Dalf_NoOpPlugin and

DP=Dalf_Plugin. In the DP configurations, we used GeoInd,
FilterPhone, GeoPrivateEye and ImageGuard while access-

ing location, contacts, camera and external storage, respec-

tively.

all of its optimization techniques [51]. Nevertheless, our proof-
of-concept implementation shows the feasibility of incorporating
PrivateEye-like privacy solutions as plugins in Dalf.

Finally, reading a file in Dalf with a storage plugin is signifi-
cantly slower (≈ 80x) compared to Stock. We believe this is due
to the inefficient implementation of the ptrace-based tracer in
our prototype that intercepts every syscall made by the app as op-
posed to only those related to the file access. Android apps invoke
a large number of syscalls over their lifetimes. For example, our
microbenchmark app made over 15 K syscalls to perform a variety
of tasks in addition to reading the files in our workload, such as
invoking the binder driver to send and receive IPC calls. We discuss
inefficiencies of the tracer and several ways of addressing them in
Section 8.

Since Dalf invokes the plugin on demand, we also measure the
latency due to launching a plugin. In our experiments, we found
that the overhead of launching a plugin is very small (< 2 ms) across
all the resources. However, it also depends on the implementation
of the plugin. For plugins with large startup times, Dalf may be
modified to start them together with their target apps.

7.3 Memory overhead

We used Android’s dumpsys tool [5] to measure the memory usage
of apps, plugins, and the system services. We use the PSS (Propor-
tional Set Size) metric to report our results, which proportionally
includes the memory shared by an app with other processes. For
example, if a process A uses 100 MB of memory in total and 50 MB
of it is shared with another process, A’s PSS is 75 MB. The results
of our memory experiments are illustrated in Figures 3a, 3b, and 3c.

Figure 3a shows that Dalf’s memory overhead on the system
process is up to 12 MB across all configurations. This suggests that

the Dalf modifications to the system services have minimal impact
on memory. This is desirable because the permissions framework
code runs all the time, irrespective of the apps and plugins currently
applied. Similarly, Figure 3b shows that the memory usage of the
microbenchmark are also consistent across different configurations.

Finally, Figure 3c shows the memory used by plugins. It depends
on the resource it arbitrates and the arbitration mechanism. In the
cases of location, contacts and storage, the plugins only use a small
amount of memory over the NoOp plugin as they perform relatively
simple operations (e.g., adding noise to location data in case of
GeoInd). However, in the case of the camera, GeoPrivateEye uses
about 45 MB of memory on average because it performs intensive
image processing. Note that the authors of PrivateEye also reported
a similar memory overhead (40 MB) [51].

7.4 Battery usage

We used batterystats [7] to measure the usage of the phone’s
battery in Dalf. To keep the experiments consistent, we fixed
the screen brightness, disabled bluetooth and the phone network,
and controlled the phone wirelessly with WiFi-ADB. In our pro-
totype, our modifications to the Android OS affect both apps and
the system processes (Android framework). Therefore, we rely on
the discharge metric of batterystats, which shows the amount
of battery discharged since the device was last charge, to obtain
end-to-end measurements. We reset batterystats before each ex-
periment run so that discharge represents the amount of battery
discharged during the experiment.

Figure 3d illustrates our results. Unlike the time and memory
results, we could not observe a clear impact on power due to Dalf
and found a lot of variations in the results. We attribute this to the
discharge metric which is affected by many processes running
in the phone (e.g., thermal-engine) that are difficult to account for.
Moreover, the microbenchmark we used for evaluation, perform rel-
atively small (but realistic) tasks requiring very little energy. Other
components such as the display use far more energy resulting in
high variations in our energy measurements. These results suggest
Dalf’s overall impact on the battery may be low.

7.5 Scalability

Thus far, we evaluated Dalf with a single app using a single plugin.
In this section, we evaluate the performance when multiple apps
access a resource mediated by a single plugin. To answer this ques-
tion, We simultaneously ran multiple instances of the LocFinder
and FileReader microbenchmark apps. We focused on these two
resources since according to our previous results, they are on the
opposite ends of the performance-slowdown spectrum. As Android
limits the number of foreground apps that can run simultaneously,
we modified our microbenchmarks so that they run their workloads
in a background service and ran multiple instances of the services.
Our results are illustrated in Figure 4.

In the case of location, Dalf’s impact on resource consumption
remains low as the number of apps increases. However, observe
that the absolute time taken to access the location has increased.
In the case of Stock with a single app, it takes about 0.4 ms to
access the location compared to 0.05 ms in Figure 2a. As we ran the
previous experiments with an app running in the foreground, we

STOCK DALF NOOP GeoInd
0.0

0.5

1.0

1.5

T
im

e
(m

s)

1 2 3 4 5

(a) Location retrieval time

NOOP GeoInd
7

9

11

M
em

or
y

(M
B

)

1 2 3 4 5

(b) Memory usage of plugins

STOCK DALF NOOP GeoInd
0

2

4

6

P
ow

er
(m

A
h

)

1 2 3 4 5

(c) Power consumption

STOCK DALF NOOP ImageGuard
0

1

2

3

T
im

e
(m

s)

1 2 3 4 5

(d) File read time

NOOP ImageGuard
5

7

9

M
em

or
y

(M
B

)

1 2 3 4 5

(e) Memory usage of plugins

STOCK DALF NOOP ImageGuard
0

1

2

3

4

P
ow

er
(m

A
h

)

1 2 3 4 5

(f) Power consumption

Figure 4: Performance of Dalf as we apply plugins to multiple instances of LocFinder (top row) and FileReader (bottom row).

The numbers in the legend indicate the number of apps (instances) running simultaneously.

attribute the increase in time to Android’s prioritization scheme
that prioritizes foreground apps over background services [8].

The results for the storage experiments exhibit a similar trend
with one key exception: the absolute time taken to read files are
lower than the results shown earlier in Figure 2d. We reran the stor-
age workload experiments both in the foreground and background,
and closely examined the timestamps observed by the tracer when
the apps tried to read files. The results confirmed that the app run-
ning as a background service was indeed reading files faster than
in the foreground. We speculate that the tracer, which runs as a
separate process, interacts with Android’s prioritization scheme in
a way that favors the background service over the foreground.

7.6 Real world apps

We tested our plugins with real world apps downloaded from the
Google Play Store and F-Droid [15]. Our goal was to understand how
well the plugins worked and the issues either the plugin developers
or users would face.

We demonstrate this with Grubhub [19], an app to order food
from restaurants. First, we searched for nearby restaurants without
any plugins. Next, we repeated the search with the GeoInd3 plugin
applied to perturb our location. In both cases, we sorted the results
by the restaurants’ distance to the current location. Figure 5a and
Figure 5b show the screenshots of the app’s results page from both
experiments, respectively. First, observe that the list in the two
experiments are different. This is expected as the location given
to the app is perturbed when the plugin is applied. Second, the
overlap of the top results in the two lists is a result of running the
experiment in an area with a relatively small number of restaurants.

3 We set ϵ , the differential privacy budget, to 0.1.

(a) Stock (b) GeoInd

Figure 5: Results of finding nearby restaurants in Grubhub
app using (a) user’s true location, and (b) the location per-

turbed via GeoInd plugin. The marked restaurants are the

ones that differ in both the results.

Interestingly, this suggests that there are cases where the utility of
an app may only be minimally affected by the use of plugins that
perturb resources.

We also discovered that a major benefit in Dalf, compared to
approaches like Xposed [29], is that a plugin developer only has
to focus on whether an app uses a particular resource such as
location. She does not have to reason about the myriad Android
APIs that provide location data and hook them all. Consequently,
this significantly reduces developer effort (our GeoInd plugin is
written in less than 200 lines of Java).

In the cases where we did observe issues between apps and
plugins, theywere due to bugs in our prototypewhichwe eventually
fixed. Given the promising results, we believe an important next
step would be to work on the limitations that will prevent Dalf
from being practically adopted.

8 LIMITATIONS

We now discuss the design and prototype limitations of our work.

8.1 Design

Reasoning about app semantics: In Dalf, it is difficult for a plu-
gin to reason about why an app is requesting a particular resource.
Consider the use of GeoInd with Google Maps: since it indiscrimi-
nately adds noise to the user’s location each time the app requests
it, the blue dot in the app that indicates the user’s current location
keeps moving. Consequently, features of the app such as finding
directions from the current location become unusable.

One approach to address this limitation is to allow users to apply
the plugins on a per-app-feature basis. For example, a user may
want to allow Google Maps to access her location when she is
using it for navigation, but not when she is merely browsing the
maps. Alternatively, Dalf may provide plugins additional context
surrounding the app’s resource request, such as whether the app is
running in the foreground, whether an app’s resource request was
initiated by a user input event, etc. In this latter approach, we need
to take into account malicious plugins so that they are not provided
excessive information about users or their apps. We consider this
the most important limitation to address. Doing so will increase the
granularity of the permissions model in Dalf and enable a wide
class of plugins.

Collusion between apps: Apps on Android can collude in or-
der to evade the existing permissions model. For example, an app
permitted to access the location may send it to other apps that do
not have the location permission. This is known as the confused
deputy attack [42] and Dalf currently does not have any provisions
against it. Techniques proposed in prior work such as Quire [42] and
BinderFilter [54] may be applied in Dalf to address this limitation.

8.2 Prototype

Unimplemented features: Aside from the aforementioned limi-
tations, the design of Dalf is general and there is a sheer number
of possible actions that a plugin may wish to perform: interpose
accesses to sensor data (e.g., accelerometer); interpose accesses to
other content provider data (e.g., SMS); tweak the parameters of
a camera capture request; control the network accesses of an app
with a IP whitelist or blacklist; allow a resource request only for
the next N minutes; etc. These actions are currently not supported
by our prototype because the required machinery have not been

implemented. We expect to be able to add these features using the
binder and ptrace techniques described earlier.

Inefficient syscall tracer: The ptrace-based tracer used to
control an app’s access to the external storage is inefficient. First,
ptrace traces all syscalls and not just openat(). Hence, the tracer
traps twice for every single syscall called by the threads in an
app. Second, for each openat() syscall, the tracer has to perform
additional syscalls to identify the syscall called by the tracee and to
read the filename argument. If the plugin returns a new file path,
the tracer has to use more syscalls to copy the new path into the
app thread’s stack and modify the syscall argument. Third, a single
instance of the tracer runs for all threads in an app. If multiple
threads in the app call syscalls in parallel, the tracer will handle
each of them in a serial manner, thereby unnecessarily impeding
parallelism.

There are several ways of improving the tracer’s performance.
First, we can trace only the required syscalls using BPF (Berkeley
Packet Filter) with seccomp [23, 47]. Second, we can adopt an exper-
imental seccomp patch to defer syscall decisions to user-space [13].
This will reduce the number of syscalls required when plugins opt
to load a different file than what the app requested. Finally, we
can modify the Linux kernel to ensure ptrace works in a parallel
manner.

In-band frame processing: Our Dalf prototype invokes the
onFrameAvailable() callback on a plugin’s camera interposer
whenever a new frame is received from the camera stream. Since the
plugin is required to finish perturbing the frame before the callback
method returns, our prototype only supports in-band frame process-
ing at the moment. It thus prevents camera plugins from performing
certain kinds of optimizations, such as using multiple threads to
process frames in a pipeline. Enabling out-of-band processing is
a matter of modifying the prototype so that plugins are required
to call a sendFrameToApp() method when they have finished per-
turbing a particular frame. In this approach, onFrameAvailable()
will become a non-blocking call that immediately returns after
delivering the newly available frame to the plugin.

9 CONCLUSION

In this paper, we presented Dalf, an extensible permissions frame-
work for Android. It gives users flexible control over the resources
accessed by apps using permissions plugins. The key in Dalf is that
the plugins are apps themselves. This grants them a wide set of ca-
pabilities while also (i) limiting the amount of trust extended to the
plugins, and (ii) preventing apps from circumventing the plugins
applied on them. Our evaluation with a prototype implementation
suggests that Dalf’s design is practical. It generally exhibits low
overheads and in those cases where they are high, they appear to be
a result of an unoptimized prototype rather than limitations of the
proposed framework. The source code of our prototype is available
at https://github.com/dalfdroid/dalf .

10 ACKNOWLEDGEMENTS

Wewould like to thank the anonymous reviewers and our shepherd
Chulhong Min for their invaluable feedback. This work was sup-
ported in part by the National Science Foundation grant 1253327
and by DARPA and SPAWAR under contract N66001-15-C-4067.

https://github.com/dalfdroid/dalf

REFERENCES

[1] ActivityThread.getApplicationThread(). https://github.com/aosp-mirror/
platform_frameworks_base/blob/master/core/java/android/app/
ActivityThread.java#L2185.

[2] Adblock Plus. https://adblockplus.org.
[3] Android Developers: android.hardware.camera2. https://developer.android.com/

reference/android/hardware/camera2/package-summary.
[4] Android Developers: Content providers. https://developer.android.com/guide/

topics/providers/content-providers.
[5] Android Developers: dumpsys. https://developer.android.com/studio/

command-line/dumpsys.
[6] Android Developers: Permissions overview. https://developer.android.com/guide/

topics/permissions/overview.
[7] AndroidDevelopers: Profile battery usagewith Batterystats and BatteryHistorian.

https://developer.android.com/studio/profile/battery-historian.
[8] Android Developers: Who lives and who dies? Process pri-

orities on Android. https://medium.com/androiddevelopers/
who-lives-and-who-dies-process-priorities-on-android-cb151f39044f.

[9] Android Source: BufferQueue and gralloc. https://source.android.com/devices/
graphics/arch-bq-gralloc.

[10] Android Source: Source Code Tags and Builds. https://source.android.com/setup/
start/build-numbers#source-code-tags-and-builds.

[11] Android’s BitTube source. https://android.googlesource.com/platform/
frameworks/native/+/android-8.1.0_r1/libs/gui/BitTube.cpp.

[12] ApplicationThread.bindApplication(). https://github.com/aosp-mirror/platform_
frameworks_base/blob/master/core/java/android/app/IApplicationThread.aidl#
L53.

[13] Deferring seccomp decisions to user space. https://lwn.net/Articles/756233/.
[14] Electronic Frontier Foundation. https://www.eff.org.
[15] F-Droid: an installable catalogue of FOSS (Free and Open Source Software) apps.

https://f-droid.org/en/.
[16] Ghostery Goes Open Source. https://www.ghostery.com/press/

ghostery-goes-open-source/.
[17] Google May Remove Access To Undocumented/Hidden APIs in Android P. https:

//www.xda-developers.com/google-undocumented-hidden-apis-android-p/.
[18] Google Play Protect. https://www.android.com/play-protect.
[19] Grubhub. https://play.google.com/store/apps/details?id=com.grubhub.android.
[20] HTTPS Everywhere. https://www.eff.org/https-everywhere.
[21] Modifying System Call Arguments With ptrace. https://www.alfonsobeato.net/

c/modifying-system-call-arguments-with-ptrace/.
[22] Privacy Badger. https://github.com/EFForg/privacybadger.
[23] SECCOMP: Linux Programmer’s Manual. http://man7.org/linux/man-pages/

man2/seccomp.2.html.
[24] SystemUI Plugins. https://android.googlesource.com/platform/frameworks/base/

+/master/packages/SystemUI/docs/plugins.md.
[25] Telegram. https://telegram.org.
[26] Telegram FOSS. https://github.com/Telegram-FOSS-Team/Telegram-FOSS.
[27] uBlock Origin. https://github.com/gorhill/uBlock.
[28] UnsupportedAppUsage annotation. https://android.googlesource.com/

platform/frameworks/base/+/master/core/java/android/annotation/
UnsupportedAppUsage.java#28.

[29] Xposed. http://repo.xposed.info.
[30] XPrivacy. https://play.google.com/store/apps/details?id=biz.bokhorst.xprivacy.

installer&hl=en.
[31] XPrivacyLua. https://lua.xprivacy.eu.
[32] Yet Another Hook Framework for ART. https://github.com/rk700/YAHFA.
[33] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi. Geo-

indistinguishability: Differential privacy for location-based systems. Proceedings
of CCS ’13, November 2013.

[34] M. Backes, S. Bugiel, S. Gerling, and P. von Styp-Rekowsky. Android Security
Framework: Extensible Multi-Layered Access Control on Android. In Proceedings
of ACSAC ’14, December 2014.

[35] M. Backes, S. Bugiel, C. Hammer, O. Schranz, and P. von Styp-Rekowsky. Boxify:
Full-fledged App Sandboxing for Stock Android. In Proceedings of USENIX Security
’15, August 2015.

[36] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan. MockDroid: trading privacy
for application functionality on smartphones. In Proceedings of HotMobile ’11,
March 2011.

[37] A. Bianchi, Y. Fratantonio, C. Kruegel, and G. Vigna. NJAS: Sandboxing Unmodi-
fied Applications in Non-rooted Devices Running Stock Android. In Proceedings
of SPSM ’15, October 2015.

[38] S. Chakraborty, C. Shen, K. R. Raghavan, Y. Shoukry, M. Millar, and M. Srivastava.
ipShield: A Framework for Enforcing Context-aware Privacy. In Proceedings of
NSDI ’14, April 2014.

[39] K. Z. Chen, N. Johnson, V. D’Silva, S. Dai, K. MacNamara, T. Magrino, E. Wu,
M. Rinard, , and D. Song. Contextual Policy Enforcement in Android Applications
with Permission Event Graphs. In Proceedings of NDSS ’13, February 2013.

[40] X. Chen, H. Huang, S. Zhu, Q. Li, and Q. Guan. SweetDroid: Toward a Context-
Sensitive Privacy Policy Enforcement Framework for Android OS. In Proceedings
of WPES ’17, October 2017.

[41] M. Conti, V. T. N. Nguyen, and B. Crispo. CRePE: Context-Related Policy En-
forcement for Android. In Proceedings of ISC ’10, October 2010.

[42] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach. Quire: Lightweight
Provenance for Smart Phone Operating Systems. In Proceedings of USENIX
Security ‘11, August 2011.

[43] H. Fu, Z. Zheng, S. Zhu, and P. Mohapatra. INSPIRED: Intention-based Privacy-
preserving Permission Model. (arXiv:1709.06654 [cs.CR]), September 2017.

[44] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. Unsafe exposure analysis of
mobile in-app advertisements. In Proceedings of WiSec ’12, April 2012.

[45] S. Jana, A. Narayanan, and V. Shmatikov. A scanner darkly: Protecting user
privacy from perceptual applications. In Proceedings of IEEE S&P ’13, May 2013.

[46] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S. Foster, and T. Mill-
stein. Dr. Android and Mr. Hide: Fine-grained Permissions in Android Applica-
tions. In Proceedings of SPSM ’12, October 2012.

[47] T. Kim and N. Zeldovich. Practical and Effective Sandboxing for Non-root Users.
In Proceedings of ATC ’13, June 2013.

[48] E. Miluzzo, A. Varshavsky, S. Balakrishnan, and R. R. Choudhury. TapPrints:
Your Finger Taps Have Fingerprints. In Proceedings of MobiSys ’12, June 2012.

[49] K. Olejnik, I. Dacosta, J. S. Machado, K. Huguenin, M. E. Khan, and J. P. Hubaux.
SmarPer: Context-Aware andAutomatic Runtime-Permissions forMobile Devices.
In Proceedings of S&P ’17, May 2017.

[50] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel. Semantically rich
application-centric security in Android. In Proceedings of ACSAC ’09, December
2009.

[51] N. Raval, A. Srivastava, A. Razeen, K. Lebeck, A. Machanavajjhala, and L. P. Cox.
What You Mark is What Apps See. In Proceedings of MobiSys ’16, June 2016.

[52] N. K. Thanigaivelan, E. Nigussie, A. Hakkala, S. Virtanen, and J. Isoaho. CoDRA:
Context-based dynamically reconfigurable access control system for android.
Journal of Network and Computer Applications, 101:1 – 17, 2018.

[53] P. Wijsekera, A. Baokar, L. Tsai, J. Reardon, S. Egelman, D. Wagner, and
K. Beznosov. The Feasibility of Dynamically Granted Permissions: Aligning
Mobile Privacy with User Preferences. In Proceedings of S&P ’17, May 2017.

[54] D. Wu and S. Bratus. A Context-Aware Kernel IPC Firewall for Android. In
Proceedings of ShmooCon ’17, January 2017.

[55] Z. Xu and S. Zhu. SemaDroid: A Privacy-Aware Sensor Management Framework
for Smartphones. In Proceedings of CODASPY ’15, March 2015.

[56] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh. Taming Information-Stealing
Smartphone Applications (on Android). In Proceedings of TRUST ’11, June 2011.

https://github.com/aosp-mirror/platform_frameworks_base/blob/master/core/java/android/app/ActivityThread.java#L2185
https://github.com/aosp-mirror/platform_frameworks_base/blob/master/core/java/android/app/ActivityThread.java#L2185
https://github.com/aosp-mirror/platform_frameworks_base/blob/master/core/java/android/app/ActivityThread.java#L2185
https://adblockplus.org
https://developer.android.com/reference/android/hardware/camera2/package-summary
https://developer.android.com/reference/android/hardware/camera2/package-summary
https://developer.android.com/guide/topics/providers/content-providers
https://developer.android.com/guide/topics/providers/content-providers
https://developer.android.com/studio/command-line/dumpsys
https://developer.android.com/studio/command-line/dumpsys
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/studio/profile/battery-historian
https://medium.com/androiddevelopers/who-lives-and-who-dies-process-priorities-on-android-cb151f39044f
https://medium.com/androiddevelopers/who-lives-and-who-dies-process-priorities-on-android-cb151f39044f
https://source.android.com/devices/graphics/arch-bq-gralloc
https://source.android.com/devices/graphics/arch-bq-gralloc
https://source.android.com/setup/start/build-numbers#source-code-tags-and-builds
https://source.android.com/setup/start/build-numbers#source-code-tags-and-builds
https://android.googlesource.com/platform/frameworks/native/+/android-8.1.0_r1/libs/gui/BitTube.cpp
https://android.googlesource.com/platform/frameworks/native/+/android-8.1.0_r1/libs/gui/BitTube.cpp
https://github.com/aosp-mirror/platform_frameworks_base/blob/master/core/java/android/app/IApplicationThread.aidl#L53
https://github.com/aosp-mirror/platform_frameworks_base/blob/master/core/java/android/app/IApplicationThread.aidl#L53
https://github.com/aosp-mirror/platform_frameworks_base/blob/master/core/java/android/app/IApplicationThread.aidl#L53
https://lwn.net/Articles/756233/
https://www.eff.org
https://f-droid.org/en/
https://www.ghostery.com/press/ghostery-goes-open-source/
https://www.ghostery.com/press/ghostery-goes-open-source/
https://www.xda-developers.com/google-undocumented-hidden-apis-android-p/
https://www.xda-developers.com/google-undocumented-hidden-apis-android-p/
https://www.android.com/play-protect
https://play.google.com/store/apps/details?id=com.grubhub.android
https://www.eff.org/https-everywhere
https://www.alfonsobeato.net/c/modifying-system-call-arguments-with-ptrace/
https://www.alfonsobeato.net/c/modifying-system-call-arguments-with-ptrace/
https://github.com/EFForg/privacybadger
http://man7.org/linux/man-pages/man2/seccomp.2.html
http://man7.org/linux/man-pages/man2/seccomp.2.html
https://android.googlesource.com/platform/frameworks/base/+/master/packages/SystemUI/docs/plugins.md
https://android.googlesource.com/platform/frameworks/base/+/master/packages/SystemUI/docs/plugins.md
https://telegram.org
https://github.com/Telegram-FOSS-Team/Telegram-FOSS
https://github.com/gorhill/uBlock
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/annotation/UnsupportedAppUsage.java#28
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/annotation/UnsupportedAppUsage.java#28
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/annotation/UnsupportedAppUsage.java#28
http://repo.xposed.info
https://play.google.com/store/apps/details?id=biz.bokhorst.xprivacy.installer&hl=en
https://play.google.com/store/apps/details?id=biz.bokhorst.xprivacy.installer&hl=en
https://lua.xprivacy.eu
https://github.com/rk700/YAHFA

	Abstract
	1 Introduction
	2 Background
	2.1 Android permissions
	2.2 Binder IPC
	2.3 Launching apps

	3 Related Work
	4 Overview
	4.1 Trust model
	4.2 Design principles
	4.3 DALF
	4.4 Malicious plugins

	5 Implementation
	5.1 Plugins
	5.2 Interposers

	6 Permissions Plugins
	6.1 Location plugin
	6.2 Contacts plugin
	6.3 Camera plugin
	6.4 Storage plugin

	7 Evaluation
	7.1 Experimental methodology
	7.2 Performance slowdown
	7.3 Memory overhead
	7.4 Battery usage
	7.5 Scalability
	7.6 Real world apps

	8 Limitations
	8.1 Design
	8.2 Prototype

	9 Conclusion
	10 Acknowledgements
	References

