
libmpk: Software Abstraction for Intel Memory Protection Keys (Intel MPK)

Soyeon Park Sangho Lee† Wen Xu Hyungon Moon∗ Taesoo Kim

Georgia Institute of Technology
†Microsoft Research

∗Ulsan National Institute of Science and Technology

Abstract
Intel Memory Protection Keys (MPK) is a new hardware prim-
itive to support thread-local permission control on groups of
pages without requiring modification of page tables. Unfortu-
nately, its current hardware implementation and software sup-
port suffer from security, scalability, and semantic problems:
(1) vulnerable to protection-key-use-after-free; (2) providing
the limited number of protection keys; and (3) incompatible
with mprotect()’s process-based permission model.

In this paper, we propose libmpk, a software abstraction for
MPK. It virtualizes the hardware protection keys to eliminate
the protection-key-use-after-free problem while providing
accesses to an unlimited number of virtualized keys. To sup-
port legacy applications, it also provides a lazy inter-thread
key synchronization. To enhance the security of MPK itself,
libmpk restricts unauthorized writes to its metadata. We apply
libmpk to three real-world applications: OpenSSL, JavaScript
JIT compiler, and Memcached for memory protection and
isolation. Our evaluation shows that it introduces negligi-
ble performance overhead (<1%) compared with the origi-
nal, unprotected versions and improves performance by 8.1×
compared with the secure equivalents using mprotect(). The
source code of libmpk is publicly available and maintained
as an open source project.

1 Introduction
Maintaining and enforcing memory access permission is an
important duty of OSes and CPUs. Traditionally, they have
used page tables to specify whether processes have rights to
read from, write to, or execute specific memory pages. OSes
can change access permission by updating page-table en-
tries (PTEs) and flushing corresponding translation lookaside
buffer (TLB) entries to reload them. In addition to page ta-
bles, some CPUs, e.g., ARM [5] and IBM Power [18], allow
OSes to maintain the permission of a page group together by
assigning the same key to the correlated pages and controlling
the key’s permission. To modify the permission of the page
groups, OSes should, on behalf of the process, change the
permission of the corresponding registers.

Recently, Intel deployed a similar key-based permis-
sion control, called Intel Memory Protection Keys (Intel

MPK) [20], that allows a userspace process to change the
permission of the page groups. MPK has three key bene-
fits over page-table-based mechanisms: (1) performance, (2)
group-wise control, and (3) per-thread view. First, MPK uti-
lizes a protection key rights register (PKRU) to maintain the
access rights of individual keys associated with specific pages:
read/write, read-only, or no access. Processes only need to
execute a non-privileged instruction (WRPKRU) to update PKRU,
which takes less than 20 cycles (§2.3) and requires no TLB
flush and context switching. Note that PKRU and page-table
permissions cannot override each other, so the effective per-
mission is the intersection of both.

Second, MPK can change the access rights of up to 16
different page groups at once, where each group consists of
pages associated with the same key1. This group-wise control
allows applications to change access rights to page groups
according to the types and contexts of data stored in them
(e.g., per-session data of a web server).

Third, MPK allows each thread (i.e., each hyperthread)
to have a unique PKRU, realizing per-thread memory view.
Accordingly, even if two threads share the same address space,
their access rights to the same page can be different.

Although MPK is a promising primitive in concept, its
current hardware implementation as well as standard library
and kernel support suffer from three problems: (1) security,
(2) scalability, and (3) subtle semantic differences, hindering
its broader adoption. First, we found that MPK suffers from
the protection-key-use-after-free problem. The Linux kernel
provides two system calls, pkey_alloc() and pkey_free(),
to allocate and de-allocate protection keys, respectively. Dur-
ing key de-allocation (pkey_free()), however, it does not
invalidate pages associated with a de-allocated key, resulting
in ambiguity when the de-allocated key is re-allocated and
assigned to different pages later.

Second, MPK fails in scaling because PKRU can manage
only up to 16 protection keys because of its hardware lim-
itation. When an application tries to allocate more than 16
protection keys, pkey_alloc() simply fails, implying that the
application itself should implement its own mechanism to

1The default group (0) has a special purpose, so only 15 groups are
available for general uses.

multiplex these protection keys.
Third, the semantic of MPK is different from the

conventional mprotect(), i.e., thread-view versus process-
view, which results in potential security and performance
problems. For example, the Linux kernel implements an
execute-only memory with MPK by disabling read access
through PKRU and allowing execution through a page table:
mprotect(addr, len, PROT_EXEC). Although this feature is
invoked via mprotect(), it only changes the PKRU’s permis-
sion of the calling thread, meaning that other threads sharing
the same address space can still read the execute-only memory.
In other words, it is non-trivial to apply MPK securely and
efficiently to legacy applications that rely on a process-level
memory permission model.

In this paper, we propose libmpk, a secure, scalable, and
semantic-compatible software abstraction to fully utilize
MPK in a practical manner. In particular, libmpk implements
(1) protection key virtualization to eliminate the protection-
key-use-after-free problem and to support the unrestricted
number of memory page groups, (2) lazy inter-thread key syn-
chronization to selectively ensure per-process semantics with
MPK, allowing us to substitute mprotect() in an efficient
and compatible manner, and (3) metadata integrity to ensure
the integrity of the mapping information while minimizing
the number of system call invocations. libmpk consists of a
userspace library mainly for efficient permission change and
a kernel module mainly for synchronization and metadata
integrity.

To show the effectiveness and practicality, we apply libmpk
to three real-world applications: OpenSSL library, JavaScript
just-in-time (JIT) compiler, and Memcached. First, we mod-
ify the OpenSSL library to create secure memory pages for
storing cryptographic keys to mitigate information leakage.
Second, we modify three JavaScript JIT compilers (i.e., Spi-
derMonkey, ChakraCore, and v8) to protect the code cache
from memory corruption by enforcing the W⊕X security pol-
icy. Third, we modify Memcached to secure almost all its data,
including the slab and hash table, whose size can be several
gigabytes. The evaluation results show that libmpk and its
applications have negligible overhead (<1%). Furthermore,
libmpk is 1.73–3.78× faster than mprotect() when changing
the permission of 1–1,000 pages at the view of a process, and,
especially, the throughput of Memcached with libmpk is 8.1×
higher than that of Memcached with mprotect().

We summarize the contributions of this paper as follows:
• Comprehensive study. We study the design, functional-

ity, and characteristics of Intel MPK in detail. We iden-
tify the critical challenges of utilizing MPK in terms of
security, scalability, and semantics.

• Software abstraction. We design and implement
libmpk, a software abstraction to fully utilize MPK. The
protection key virtualization, metadata protection, and
inter-thread key synchronization of libmpk allow appli-

 page# pkey perm.
 120 8 r/w
 232 1 r/o
 456 8 r/o

DTLB

 page# perm.
 232 x

ITLB

120 r/w

page# effective
perm.

effective
perm.

...
0 1 8 15

PKRU (corea)

r/w n/a r/w n/a...

page#

...
0 1 8 15

r/w r/w r/o n/a...

WRPKRU
RDPKRU

...

...
(per-process,

PKRU (coreb)

(per-core, asynchronous)

232
456

x
r

120 r
232
456

r/x
r

OS-managed Userspace process

perm:
pkey:

(corea) (coreb)

red
 synchronized) blue

: pkey = 1
: pkey = 8

Figure 1: An example showing how MPK checks the permission of
a logical core (hyperthread) on a specific memory page according
to PKRU and page permissions. The intersection of the permissions
determines whether a data access will be allowed. An instruction
fetch is independent of the PKRU.

cations to effectively overcome the three challenges.
• Case studies. We apply libmpk to OpenSSL library,

JavaScript JIT compiler, and Memcached to show its
effectiveness and practicality. libmpk secures them with
a few modifications and negligible overhead.

2 Intel MPK Explained
In this section, we describe the hardware design of Intel MPK
and current kernel and library support. Also, we check the
performance characteristics of MPK to show its efficiency.

2.1 Hardware Primitives
Intel MPK updates the permission of a group of pages by
associating a protection key to the group and changing the ac-
cess rights of the protection key instead of individual memory
pages (Figure 1).
Protection key field in page table entry. MPK assigns a
unique protection key to a memory page group to update its
permission at the same time. MPK exploits the previously
unused four bits of each page table entry (from 32nd to 35th
bits) to store a memory page’s corresponding key value. Thus,
MPK supports up to 16 different page groups. Since only
supervised code can access and change PTEs, the Linux ker-
nel (from version 4.6) starts to provide a new system call,
pkey_mprotect(), to allow applications to assign or change
the keys of their memory pages (§2.2).
Protection key rights register (PKRU). MPK uses the value
of PKRU to determine its access right to each page group.
Two bits representing the right are access disable (AD) and
write disable (WD) bits. The value of (AD,WD) represents a
thread’s permission to a page group: read/write (0,0), read-
only (0,1), or no access (1,x). PKRU exists for each hyper-
thread to provide a per-thread view.
Instruction set. MPK introduces two new instructions to
manage the PKRU: (1) WRPKRU to update the protection infor-
mation of the PKRU and (2) RDPKRU to retrieve the current
protection information from the PKRU. WRPKRU uses three reg-
isters as input: the EAX register containing new protection

Name Cycles Description

pkey_alloc() 186.3 Allocate a new pkey
pkey_free() 137.2 Deallocate a pkey
pkey_mprotect() 1,104.9 Associate a pkey key with memory pages

pkey_get()/RDPKRU 0.5 Get the access right of a pkey
pkey_set()/WRPKRU 23.3 Update the access right of a pkey

Ref. mprotect(): 1,094.0 / MOVQ (rbx to rdx): 0.0 / MOVQ (rdx to xmm): 2.09

Table 1: Overhead of MPK instruction, system calls, and standard
library APIs. ref shows the overhead of mprotect() and normal
register move instructions for comparison. We averaged 10 runs of
microbenchmarks, where each one executes individual instruction,
system call, or API 10 million times while measuring the latency
with the RDTSCP instruction.

information to overwrite the PKRU, and the other two registers,
ECX and EDX, filled with zeroes. RDPKRU also uses the three
registers for its operation: it returns the current PKRU value
via the EAX register while overwriting the EDX register with 0.
The ECX register also should be filled with zeroes to execute
RDPKRU correctly. Note that the actual usage of ECX and EDX
registers is undocumented.

2.2 Kernel Integration and Standard APIs
The Linux kernel has supported MPK since version 4.6,
and glibc has supported MPK since version 2.27. They
focus on how to manage protection keys and how to as-
sign them to particular PTEs. The Linux kernel provides
three new system calls: pkey_mprotect(), pkey_alloc(),
and pkey_free(). The kernel also changes the behavior of
mprotect() to provide execute-only memory. glibc provides
two userspace functions, pkey_get and pkey_set, to retrieve
and update the access rights of a given protection key. Table 1
summarizes the APIs.
pkey_mprotect(). The pkey_mprotect() system call ex-
tends the mprotect() system call to associate a protection
key with the PTEs of a specified memory region while chang-
ing its page protection flag. Interestingly, pkey_mprotect()
does not allow a user thread to reset a protection key to zero,
the default protection key value assigned to newly created
memory pages such that it should be public to avoid acciden-
tal application crashes. We anticipate that resetting a key to
zero is prohibited to avoid such potential crashes made by
mistakes (i.e., denying access to the key zero).
pkey_alloc() and pkey_free(). The Linux kernel provides
two other new system calls to allocate and de-allocate mem-
ory protection keys: pkey_alloc() and pkey_free(). When
a user thread invokes pkey_alloc() with access right, the ker-
nel allocates and returns a protection key with corresponding
permission according to a 16-bit bitmap that tracks which
protection keys are allocated. When a user thread invokes
pkey_free(), the kernel simply marks the freed key as avail-
able in the bitmap. The pkey_mprotect() function examines
the bitmap afterward to prohibit the use of non-allocated keys.
Execute-only memory. The Linux kernel supports execute-

−5

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

L
at

en
cy

(c
yc

le
s)

Number of instructions

Succeeding WRPKRU (W2)
Preceding WRPKRU (W1)

Figure 2: Effect of WRPKRU serialization on simple (i.e., ADD) in-
structions either preceding or succeeding WRPKRU (average of 10
million repetitions).

only memory with MPK. If a user thread invokes mprotect()
only with PROT_EXEC, the kernel (1) allocates a new protection
key, (2) disables the read and write permission of the key, and
(3) assigns the key to the given memory region.

2.3 Quantifying Characteristics of Intel MPK
To evaluate the overhead and benefits of MPK, we measure
(1) the overhead of the MPK instructions, (2) the overhead
of the MPK system calls, and (3) the overhead of mprotect()
for contiguous memory and sparse memory.
Environment. Our system consists of two Intel Xeon Gold
5115 CPUs (each CPU has 20 logical cores at 2.4 GHz) and
192GB of memory. Linux kernel version 4.14 configured for
MPK is installed to this system.
Instruction latency. We measure the latency of RDPKRU and
WRPKRU to identify their micro-architectural characteristics. Ta-
ble 1 summarizes the results. The latency of RDPKRU is similar
to that of reading a general register, but the latency of WRPKRU
is high. We anticipate that WRPKRU performs serialization (e.g.,
pipeline flushing) to avoid potential memory access violation
resulting from out-of-order execution. To confirm this, we
insert various numbers of ADD instructions before (W1) and
after (W2) WRPKRU and measure the overall latency (Figure 2).
The results show that W2 is always slower than W1, implying
that the instructions executed right after WRPKRU fail to benefit
from out-of-order execution because of the serialization.
System calls. We measure the latency of the four Linux
system calls for MPK (Table 1). The latency of mprotect()
and pkey_mprotect() on a 4 KB page is almost the same
because they all rely on do_mprotect_pkey() internally.
pkey_alloc() and pkey_free() are fast since they involve
only simple operations in the kernel, and the domain switch-
ing between kernel and userspace dominates their time costs.
Contiguous versus sparse memory pages. Using MPK to
change page permission involves only an update on the PKRU
and thus is independent of the number of targeted pages and
their sparseness. To show the performance benefit of MPK
over mprotect(), we check how the number and sparseness
of the targeted pages affect the performance of mprotect().

0
2
4
6
8

10
12
14
16
18

0
5000

10000
15000

20000
25000

30000
35000

40000

m
s

Number of Pages

mprotect(sparse)
mprotect(contiguous)

Figure 3: Overhead of mprotect() on contiguous and sparse mem-
ory (average cost of 10 million repetitions). Protecting contiguous
pages takes less time than protecting sparse pages.

To construct contiguous memory pages, we call mmap() one
time with certain memory size. For sparse memory pages, we
call mmap() several times with one page size. Figure 3 shows
that the overhead of mprotect() increases in proportion to the
number of pages. The number of pages affects how many vir-
tual memory areas (VMAs) [10] mprotect() needs to look up
for permission update. Moreover, the overhead of mprotect()
on sparse memory pages is high because multiple mprotect()
calls introduce frequent context switchings between kernel
and userspace.

Summary. Intel MPK allows a thread to rapidly change the
per-thread access rights to a group of pages associated with
the same protection key by updating a thread-local register
PKRU which only takes around 20 cycles. Its performance
is independent of the number of pages composing a group
and their sparseness, unlike mprotect().

3 Challenges of Utilizing Intel MPK
In this section, we explain the challenges of using MPK in
terms of security, scalability, and synchronization.

3.1 Potential Security Problem
The existing OS support of MPK [3] suffers from
the protection-key-use-after-free problem. In particular,
pkey_free() just removes a protection key from a key bitmap
and does not update the corresponding PTEs. Regardless of
whether a key could already be associated with some pages,
the kernel will allocate the key if it is freed by pkey_free().
If a program obtains a key that is still associated with some
memory pages through pkey_alloc(), the new page group
will include unintended pages that it is supposed to have. A
developer can face this vulnerable situation unconsciously, as
current kernel implementation neither handles this automat-
ically nor checks if a free key is still associated with some
pages. The developer community also recognized the problem
and recommends not to free the protection keys [2, 13]. Han-
dling this problem superficially (i.e., wiping protection keys
in PTE) without a fundamental design change of memory
management in the kernel will introduce huge performance
overhead because it requires traversing the page table and

VMAs to detect entries associated with a freed key to update
them and flushing all corresponding TLB entries.

3.2 Limited Hardware Resources
Currently, MPK relies on a 32-bit PKRU such that it supports
up to 16 keys. Developers are responsible for ensuring that
an application never creates more than 16 page groups at the
same time. This implies that developers have to examine at
runtime the number of active page groups, which are used
by both the application itself and the third-party libraries it
depends on. Otherwise, the program may fail to properly ben-
efit from MPK. This issue undermines the usability of MPK
and discourages developers from utilizing it actively. Using
a large register (e.g., 1024 bits) does not scale because MPK
needs additional storage to associate keys with pages. For
example, to support 512 protection keys, nine bits are neces-
sary for each PTE, requiring enlarged page tables, shrunken
address bits, or separate storage.

3.3 Semantic Differences
To change the permission of any page group, MPK modifies
the value of the PKRU. However, the value is effective only in
a single thread because PKRU is thread-local intrinsically as a
register. As a result, different threads in a process can have dif-
ferent permissions for the same page group. This thread-local
inherence helps to improve security for the applications that
require isolation on memory access among different threads,
but hinders MPK from optimizing and improving mprotect().
mprotect() semantically guarantees that page permissions
are synchronized among all threads in a process on which
particular applications rely. This not only makes it difficult to
accelerate mprotect() with MPK, but also breaks the guaran-
tee of execute-only memory implemented on mprotect in the
latest kernel. mprotect() supporting executable-only memory
relying on MPK does not consider synchronization among
threads, which developers basically expect of mprotect().
Even when the kernel successfully allocates a key for the
execute-only page, another thread might have a read access to
it due to a lack of synchronization. To make MPK a drop-in
replacement of mprotect() for both security and usability,
developers need to synchronize the PKRU values among all the
threads.

4 Software Abstraction of libmpk
libmpk provides a secure and usable abstraction for MPK by
overcoming the challenges (§3). A developer can use MPK
easily by either adding calls to libmpk APIs or replacing ex-
isting mprotect() calls with those of libmpk. By decoupling
the protection keys from APIs, libmpk is immunized against
protection-key-use-after-free. Also, libmpk allows an applica-
tion to create more than 16 page groups by virtualizing the
protection keys and provides a lightweight inter-thread PKRU
synchronization mechanism. Figure 4 illustrates an overview
of libmpk. The current version of libmpk consists of 1.5k

100

200

300

7

10

null

virtual

key

hardware

key

page

group

...

Kernel

Userspace

...mpk_begin()

mpk_end() PKRU

Threada
PKRU

Threadb

mpk_mprotect()

mpk_init()

Constant

retrieve keys

pkey:1

page perm: rw-...

pkey:1

page perm: rw-...

pkey:1

page perm: rw-...

prot. key:7

page perm.: rw-...

...
pkey:1

page perm: rw-...

pkey:1

page perm: rw-...

pkey:1

page perm: rw-...

prot. key:7

page perm.: rw-...

...

pkey:1

page perm: rw-...

pkey:1

page perm: rw-...

pkey:1

page perm: rw-...

prot. key:0

page perm.: ---...

PTEs

...

mpk_mmap()

mpk_munmap()

Figure 4: libmpk overview. mpk_init() pre-allocates hardware
keys and initializes the metadata table. mpk_mmap() creates a page
group with metadata, and mpk_munmap() destroys the page group and
the corresponding metadata. mpk_begin() and mpk_end() provide
domain-based thread-local isolation. mpk_mprotect() synchronizes
permission changes globally.

Name Argument Description

mpk_init() evict_rate Initialize libmpk with an eviction rate
mpk_mmap() vkey, addr, len, prot Allocate a page group for a virtual key

flags, fd, offset
mpk_munmap() vkey Unmap all pages related to a given virtual key

mpk_begin() vkey, prot Obtain thread-local permission for a page group
mpk_end() vkey Release the permission for a page group

mpk_mprotect() vkey, prot Change the permission for a page group globally

mpk_malloc() vkey, size Allocate a memory chunk from a page group
mpk_free() size Free a memory chunk allocated by mpk_malloc()

Table 2: libmpk APIs.

lines of C/C++ code in total.
Goals. To utilize MPK for domain-based isolation and as a
substitute for mprotect(), we have to overcome the three chal-
lenges: (1) insecure key management, (2) hardware resource
limitations, and (3) different semantics from mprotect().
libmpk adopts two approaches: (1) key virtualization, and
(2) inter-thread key synchronization, which effectively solve
the challenges. libmpk also protects its internal metadata from
corruption.

4.1 Threat Model and Assumptions
libmpk has the following threat model and assumptions, in
accordance with prior studies [21, 33, 35].
libmpk aims to prevent an adversary from reading from or

writing in sensitive pages through memory corruption vulner-
abilities. libmpk achieves this goal by protecting the sensitive
pages with new MPK APIs and preventing the adversary from
arbitrarily executing the WRPKRU instruction. We assume that
a program should solely use the libmpk APIs to utilize MPK
in a controlled manner. That is, the program should not use
conventional MPK APIs together with the libmpk APIs. Also,
any uncontrolled execution of the WRPKRU instruction should

1 #define GROUP_1 100
2 #define GROUP_2 101
3

4 int domain_based_isolation () {
5 mpk_init(-1); // default eviction rate: 100%
6 char* addr = (char *)mpk_mmap(GROUP_1, NULL, 0x1000,
7 PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
8 // page permission: rw- & pkey permission: --
9

10 mpk_begin(GROUP_1, PROT_READ | PROT_WRITE);
11 // page permission: rw- & pkey permission: rw
12

13 // write data in GROUP_1
14

15 mpk_end(GROUP_1);
16 // page permission: rw- & pkey permission: --
17

18 printf("%s\n", addr); // SEGMENTATION FAULT
19 }
20

21 int quick_permission_change () {
22 mpk_init(0.5); // set cache eviction rate: 50%
23 void* addr = mpk_mmap(GROUP_2, NULL, 0x1000,
24 PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
25 // page permission: rw- & pkey permission: --
26

27 mpk_mprotect(GROUP_2, PROT_READ | PROT_WRITE | PROT_EXEC);
28 // page permission: rwx & pkey permission: rw
29 }

Figure 5: Example code for libmpk APIs.

be prohibited by using existing countermeasures, such as data
execution prevention [1], control-flow integrity [4, 22, 23, 38],
and call gate [35].

4.2 libmpk API
libmpk provides eight APIs, shown in Table 2. To utilize
libmpk, an application first calls mpk_init() to obtain all the
hardware protection keys from the kernel and initialize its
metadata. mpk_mmap() allocates a page group for a virtual key,
which should be a constant integer that the developer passes.
mpk_munmap() destructs a page group by freeing a virtual key
for the group and unmaps all the pages. libmpk maintains the
mappings between virtual keys and pages to avoid scanning
all pages at this destruction step. On top of these, libmpk also
provides simple heap over each page group (mpk_malloc()
and mpk_free()), so that a developer can also use one or more
page groups to create a heap memory region for sensitive data.
libmpk provides two usage models for developers. The first

model, a thread-local domain-based isolation model, allows
an application to temporarily grant permission to a page group
only for the calling thread. mpk_begin() and mpk_end() are
the APIs for this model, which make a page group accessi-
ble and inaccessible, respectively. The second model allows
an application to quickly change the access rights to a page
group by replacing mprotect() with mpk_mprotect(). Fig-
ure 5 shows an example of utilizing libmpk APIs.

4.3 Protection Key Virtualization
libmpk enables an application to create more than 16 page
groups by virtualizing the hardware protection keys. When an
application creates a new page group by calling mpk_mmap(),
a virtual key passed as argument is associated with newly

allocated metadata for the new group. The application uses
the virtual key to obtain or release the permission, or free the
group, while being prohibited from manipulating hardware
keys. The exact physical key that a page is associated with is
hidden from the program and developer.
libmpk maintains the mappings between virtual and hard-

ware keys through a cache-like structure (Figure 6). If a virtual
key is already associated with a hardware key, the virtual key
exists inside the cache and further access to it produces a
few latencies. Otherwise, libmpk evicts another virtual key
or does nothing but just invokes mprotect() for performance
to change page permission. The frequency of eviction or
calling mprotect() is determined by the eviction rate. The
cache guarantees that a frequently updated virtual key will be
mapped with a hardware key since it has a high possibility to
be placed into the cache.
libmpk provides two policies to determine the mappings

between virtual and hardware keys. When an application
grants permission to a page group thread-locally by calling
mpk_begin(), libmpk always maps the group’s virtual key
with a hardware key and uses it to grant access to the calling
thread. libmpk maintains the mapping until the thread calls
mpk_end() to release the access. For this reason, libmpk does
not ensure that a calling thread always obtains the access
due to hardware limitations. That is, if all hardware keys are
actively used, libmpk is no longer able to provide any key. In
this case, mpk_begin() raises an exception and lets the calling
thread handle it (e.g., sleeps until a key is available). If a page
group is not used by a thread, libmpk evicts the group by
changing its protection key to 0 (default) and revoking its
page permission to disallow subsequent accesses.

The second policy, mpk_mprotect(), also needs to map the
virtual key to a hardware key, but not exclusively. Even when
the page group is accessible, libmpk can unmap a hardware
key and rely solely on the page attributes because all threads
have the access. Hence, libmpk maps only the page groups
whose access rights change frequently. If libmpk fails to find
an available hardware key when it handles mpk_mprotect(),
it unmaps and uses the least recently used (LRU) key for
handling mpk_mprotect(). The hardware key of the evicted
page group turns to 0. To avoid excessive overhead result-
ing from frequent unmapping, a developer can configure an
eviction rate to control whether a hardware key has to be
evicted according to how frequently its permission updates.
In our approach, enforcing executable-only permission is
not straightforward because a conventional approach (i.e.,
mprotect()) does not support executable-only permission.
Therefore, mpk_mprotect() reserves one key for execute-only
pages when an application creates them first, and does not
evict this key until all executed-only pages disappear. Every
incoming executable-only permission request is guaranteed
to get a hardware protection key to achieve executable-only
permission. If mpk_mprotect() has already been invoked for
executable-only page groups, further requests will merge the

vkey pkey

 24 ?

vkey pkey #threads

 24 10 2
 1 1 0

...

 75 0 0

vkey pkey

 24 10

❶ retrieve ❷ return

(a) Hit case: 1 A thread calls mpk_begin() or mpk_mprotect()with
a vkey; 2 libmpk returns the corresponding pkey immediately.

vkey pkey

 75 ?

vkey pkey #threads

 24 10 2
 1 1→0 0

...

 75 0→1 0

vkey pkey

 75 1

PTEs (vkey=1)

...

pkey: 1→0
...

perm: rw- → ---

PTEs (vkey=75)

...

pkey: 0→1

...

perm: --- → rw-

❶ retrieve

❷ evict and load

❸�return

(only for

mpk_begin)

(b) Miss case: 1 A thread retrieves a vkey, but no corresponding
pkey exists (pkey=0); 2 libmpk evicts the LRU pkey. In addition,
mpk_begin() updates the page permission of the evicted and loaded
page groups using mprotect(); 3 libmpk returns the new pkey.
Figure 6: Key virtualization in libmpk. vkey and pkey represent a
virtual key and its corresponding hardware protection key associated
with a page group. #threads indicates the number of threads running
parallel inside a particular domain.

Userspacempk_mprotect()

do_pkey_sync()

Kernel

PKRU

Threada

state: running

add hooks

return

update

(scheduled)

PKRU

Threadb

state: running

PKRU

Threadc

 state: sleep

task_work

WRPKRU

task_work

WRPKRU

kick

call

...

Figure 7: PKRU synchronization: 1 mpk_mprotect() calls
do_pkey_sync() to update the PKRU values of remote threads;
2 do_pkey_sync() adds hooks to the threads’ task_work; 3
do_pkey_sync() kicks all the running threads for synchronization;
4 do_pkey_sync() returns to its caller; 5 The threads update their
PKRUs when they are scheduled to run.

incoming page groups with the existing executable-only ones
to utilize the reserved key.

The integrity of libmpk metadata (e.g., the mappings be-
tween virtual and hardware keys, and the page group infor-
mation) is important to prevent attackers from manipulating
libmpk’s protection. For the metadata integrity, libmpk maps
each metadata physical page into two virtual pages: a read-
only page for its userspace code and a writable page for its
kernel-space code. Updating the metadata can be done only
by the libmpk kernel module and slightly modified system
calls (e.g., mmap(), munmap(), and mprotect()). Most of sim-
ple metadata retrieval can be done by the userspace code to
avoid unnecessary user-kernel mode switches.

Application Protection Protected data #pkeys #vkeys Changed LoC

OpenSSL Isolation Private key 1 1 83
JIT (key/page) W⊕X Code cache 15 > 15 CC 10 | SM 18
JIT (key/process) W⊕X Code cache 1 1 CC 18 | SM 24 | v8 134
Memcached Isolation Slab, hashtable 2 2 117

Table 3: Three real-world applications of libmpk. To enable W⊕X in
JavaScript engines, we use two approaches, including using a virtual
key for every page in the code cache (One key per page) and using a
single protection key for all the pages in the code cache (One key per
process). CC, SM, and v8 indicate Microsoft ChakraCore, Mozilla
SpiderMonkey, and Google v8, respectively. pkeys and vkeys stand
for protection keys and virtual keys, respectively.

4.4 Inter-thread Key Synchronization
libmpk implements an inter-thread PKRU synchronization tech-
nique, do_pkey_sync(), in mpk_mprotect() for two purposes:
(1) to ensure no thread has the read access to an execute-only
page and (2) to replace existing page-table-based mprotect()
for performance. do_pkey_sync() guarantees that a PKRU up-
date is globally visible and effective as soon as it returns.
Intuitively, this requires a synchronous inter-thread commu-
nication; the calling thread needs to send messages to the
other threads and wait until they update the PKRU value and
acknowledge it, which suffers from a high cost.

We minimize the inter-thread PKRU synchronization latency
in a lazy manner, leveraging the fact that the PKRU values are
utilized in the userspace. If a remote thread is not currently
being scheduled, it does not need the up-to-date PKRU value
immediately. Even if the thread is currently being scheduled,
we only need to update its PKRU value when it returns to the
userspace. If the calling thread can create a hook that the
other threads will invoke right before jumping back to the
userspace and ensure that they are not in the userspace, we
can guarantee that all the other threads have the new PKRU
value when do_pkey_sync() returns. Figure 7 illustrates the
overall procedure of mpk_mprotect(). do_pkey_sync() uti-
lizes an existing hooking point in the Linux kernel to enforce
the remote threads to update the PKRU values right before re-
turning to the userspace and ensures that all threads use the
new PKRU value by sending rescheduling interrupts. In Linux,
a thread can register a list of callback functions (task_work)
that are invoked at designated points (e.g., when returning
to the userspace) by calling task_work_add(). In this way,
do_pkey_sync() guarantees that all the remote threads even-
tually acquire the new PKRU value. Although do_pkey_sync()
still needs to send inter-processor interrupts to ensure that no
other thread uses the old PKRU value after a certain point, our
evaluation shows that the overall latency of mpk_mprotect()
is less than that of mprotect() (§6.2).

5 Applications
We demonstrate the security benefit, efficiency, and usability
of libmpk by augmenting three types of popular applications:

an SSL library, three JavaScript Just-in-time (JIT) compilation
engines, and an in-memory key-value store. Table 3 summa-
rizes the mechanisms (e.g., page isolation or W⊕X) that we
aim to provide as well as the protected data (e.g., key or code).
Evaluation results are described in §6.

5.1 OpenSSL
OpenSSL is a popular open-source library implementing the
secure sockets layer (SSL) and transport layer security (TLS)
protocols. Since it manages sensitive information (e.g., pri-
vate keys and encrypted data), its information leakage bugs
are security-critical. For example, OpenSSL’s Heartbleed
bug [26] allowed attackers the chance to leak sensitive data
from millions of web servers.

We apply libmpk to OpenSSL to protect its private keys
from potential information leakage by storing the keys in iso-
lated memory pages. More specifically, the isolated memory
pages are protected by single pkey or multiple pkeys assigned
per private key to show the trade-off between performance and
security. First, we identify all the data types that store private
keys (e.g., EVP_PKEY) and replace their heap memory alloca-
tion function from OpenSSL_malloc() to mpk_malloc() for
single pkey or mpk_mmap() for multiple pkeys to store them in
an isolated memory region. Next, we locate all the functions
that access private keys (e.g., pkey_rsa_decrypt()) and mod-
ify them to access the isolated memory region by inserting
mpk_begin() and mpk_end() before and after their call sites.
Note that assigning pkey per private key offers finer-grained
security, which minimizes the attack window for the isolated
memory region. For example, even if a function whose call
site is located between mpk_begin() and mpk_end() has a
memory leakage bug, it cannot access any other isolated pages
except the single page isolated with the pkey provided to
mpk_begin() as argument.

5.2 Just-in-time (JIT) Compilation
JIT compilation dynamically translates interpreted script lan-
guages, e.g., JavaScript and ActionScript, into native machine
code or bytecode to avoid the overhead of full compilation and
repeated interpretation. Technically, it relies on writable code,
resulting in potential arbitrary code execution. To support
JIT compilation, the code cache that stores code generated
at runtime needs to be writable for a JIT compilation thread
and be executable for an execution thread. Thus, if attackers
compromise the JIT compilation thread, they can make the
execution thread execute the code they provide.

ChakraCore [27] and SpiderMonkey [28] mitigate the
above-mentioned problem by enforcing the W⊕X security
policy on the code cache with mprotect(). They make the
code cache writable while disallowing execution when they
are updating code, and, after it has updated, they make the
code cache executable while disallowing write. However,
they can suffer from race condition attacks [33] because they
use mprotect() to change page permissions; that is, when a

thread makes the code cache writable with mprotect(), other
threads compromised by attackers can also manipulate the
code cache with the same permission.

We apply libmpk to the three popular JavaScript engines
(SpiderMonkey, ChakraCore, and v8) to enforce the W⊕X
security policy without the race condition problem while
ensuring better performance. We propose two approaches
to implement the W⊕X policy with libmpk.
One key per page. A context-free solution is to replace
mprotect() with libmpk APIs to perform fast permission
switches on targeted pages in the code cache. All the protec-
tion keys are initialized with read-only permission when a
new thread is created. We dedicate one protection key to one
page when it is the first time to be re-protected via mprotect()
and change its page permission to rwx. Later, we only need
to call mpk_begin() and mpk_end() before and after when
the JIT compiler updates the corresponding page. Based on
the observation that generally only one page is updated at
a time, we still invoke mprotect() if multiple pages change
permission.
One key per process. Another approach is to use a single
protection key for the entire code cache. When pages are first
committed from the preserved memory region into the code
cache, they are assigned with the protection key and their page
permission is set to rwx. Whenever any page in the code cache
is to be updated, the script engine needs to call mpk_begin()
and mpk_end(). Although more pages become temporarily
writable, the security of the code cache is ensured thanks to
the per-thread view of the protection key.

5.3 In-Memory Key-Value Store
In-memory key-value stores, such as Memcached, are widely
used to manage a large amount of data in memory to ensure
low latency and high throughput. With a high requirement
for performance, such key-value stores normally avoid us-
ing security techniques whose performance depends on input
size (e.g., mprotect() and encryption) to protect stored data.
This implies that, if an in-memory key-value store has arbi-
trary read or write vulnerabilities, attackers are able to leak or
corrupt sensitive information stored inside.
libmpk manages to efficiently mitigate such attacks. To

demonstrate this, we apply libmpk to Memcached. libmpk
protects Memcached’s slabs that contain values and hash
tables that maintain key-value mappings by replacing Mem-
cached’s malloc() function with mpk_malloc(), and wraps
the call sites of all the legitimate functions (e.g., ITEM_key()
and assoc_find()), which operate on protected data with
mpk_begin() and mpk_end(). Note that we assign two differ-
ent keys to slabs and hash tables, to narrow the attack surface.
It is possible to use more keys to secure slabs in a fine-grained
manner, e.g., differentiating them according to their sizes.
More importantly, libmpk’s performance is independent of
the size of memory to protect, and thereby efficiently works
with Memcached even when protecting data of several giga-

bytes.

6 Evaluation
In this section, we evaluate libmpk in terms of its security
implication and performance by answering the following ques-
tions:

• What security guarantees does libmpk provide? (§6.1)
• Does libmpk solve the security, scalability, and semantic-

gap problems of existing MPK APIs without introducing
much performance overhead? (§6.2)

• Does libmpk have negligible performance impact and
outperform mprotect() in real-world applications?
(§6.3)

The same system environment explained in §2.3 is used for
performance evaluations.

6.1 Security Evaluation
We first evaluate the security benefits from libmpk regarding
memory protection and isolation. For OpenSSL and Mem-
cached, libmpk provides domain-based isolation to protect
memory space that stores sensitive data. The permission for
the particular memory space set by libmpk is locally effective,
which also prevents malicious accesses from other compro-
mised threads. In particular, exploiting a memory corruption
bug to leak or ruin sensitive data stored in the isolated pages is
killed by segmentation faults resulting from the lack of permis-
sion. To verify this, we mimic the Heartbleed vulnerability by
deliberately introducing a heap-out-of-bounds read bug and
inserting a decoy private key placed next to the victim heap
region. When the vulnerability is triggered, OpenSSL hard-
ened by libmpk crashes with invalid memory access. How-
ever, libmpk cannot fully mitigate memory leakage that origi-
nates inside the protected domain. Thus, developers should
carefully design the domain to minimize the potential attack
surface when using libmpk in their applications.

JavaScript JIT compilers can use libmpk to guarantee
W⊕X for JIT code pages. Unlike mprotect(), libmpk is im-
mune to race condition attacks launched by compromised
threads running in parallel resulting from the thread-local
effectiveness of protection keys. When the JIT compiler uses
libmpk to switch the permission of a code page for updates,
other threads controlled by attackers cannot write malicious
shellcode into the page simultaneously. To verify this, we
introduce two custom JavaScript APIs for arbitrary memory
read and write to SpiderMonkey and ChakraCore, and test a
simple PoC that leverages these two APIs to locate a JIT code
page and write shellcode into it. Both engines crash with a
segmentation fault at the end.

6.2 Microbenchmarks
We run several microbenchmarks to understand the perfor-
mance behavior of APIs in libmpk.
Cache performance. libmpk introduces a cache to enable
protection on more than 16 page groups, whose performance

0
0.5

1
1.5

2
2.5

3

0 25 50 7510
0

0
0.5

1
1.5

2
2.5

3

0 25 50 7510
0

0
0.5

1
1.5

2
2.5

3

0 25 50 7510
0

0
2
4
6
8

10
12
14

0 25 50 7510
0

0
2
4
6
8

10
12
14

0 25 50 7510
0

0
2
4
6
8

10
12
14

0 25 50 7510
0

Ti
m

e
(µ

s)

<4, 100%>

<1, 100%>
hit

miss
mprotect

<4, 50%>

<#threads, eviction rate>
<1, 50%>

<4, 25%>

<1, 25%>

Hit rates (%)

Figure 8: Latency of libmpk’s key cache with various hit rates, evic-
tion rates, and different number of threads. mpk_mprotect() and
mprotect() are invoked on a 4 KB page. Red line marks the over-
head of mprotect(). When the hit rate is 100%, mpk_mprotect() is
12.2× faster than mprotect() for one thread and 3.11× faster for
four threads.

is affected by its eviction rate and hit rate and the number of
virtual keys in use. We run the following two microbench-
marks to check the cache performance.

Hit rate and eviction rate. The first benchmark measures
cache performance with different hit rates, eviction rates, and
number of threads. We run the benchmark with both one
thread and four threads, where each thread warms up by filling
the key cache to evade cold miss and invokes mpk_mprotect()
on one page for a hundred times after 15 entries are filled.
Figure 8 presents the evaluation results, where (1) the green
box indicates the overhead incurred by the cache hit, which
is dominated by the time cost on WRPKRU and maintaining
internal data structures; (2) the blue box indicates the over-
head incurred by the cache miss, which is dominated by the
time cost on key eviction. More specifically, mpk_mprotect()
needs to unset the protection key that is to be evicted and
bind a new virtual key to it. We test the microbenchmark with
three eviction rates that indicate the ratio of cache misses
that eventually leads to key eviction. If a cache miss occurs
without key eviction, mprotect() is invoked to change the
permission of the pages.

Experimental results show that mpk_mprotect() outper-
forms mprotect() except when the cache hit rate is below
25% with an eviction rate above 50%. This is because, unlike
mprotect(), mpk_mprotect() does not merge and split the
VMAs of targeted pages. It becomes slow when being tested
with four threads, but is still comparable with mprotect(),
whose latency also increases in a multi-threading program.

Number of virtual keys. To evaluate how the number of
used virtual keys affects the cache performance of libmpk,
we re-implement W⊕X in ChakraCore in a one-key-per-page
approach (see §5.2) and set the eviction rate as 100%. To
introduce an increasing number of pages to be protected (i.e.,

0
100
200
300
400
500
600
700
800
900

1000

0 5 10 15 20 25 30 35

Ti
m

e
(µ

s)

Number of hot functions

mprotect()
libmpk

Figure 9: Average time cost to update permission when original
and modified ChakraCore JIT-compile an increasing number of hot
functions demanding distinct virtual keys.

an increasing number of virtual keys to be used) during the
execution of ChakraCore, we design a simple microbench-
mark. The microbenchmark consists of a set of JavaScript
files, and the ith file contains i hot functions being invoked
for 100,000 times. For each hot function, ChakraCore allo-
cates one new executable page to store the native code and
performs nine permission switches on the page through one
virtual key at runtime. Without any hot function, ChakraCore
allocates one page in the code cache. We run the original
ChakraCore (version 1.9.0.0-beta) and the modified one with
our microbenchmarks, and record the time cost of changing
permission of the pages in the code cache (i.e., the execu-
tion time of VirtualProtect() and that of mpk_begin() and
mpk_end()) in total. Each JavaScript file is executed 200 times,
and the average time is presented in Figure 9.

The result shows that with the libmpk-based implementa-
tion of W⊕X, the time cost on permission switches linearly
increases when more hot functions are emitted and thus more
virtual keys are allocated to protect the code pages of the hot
functions. In particular, after 15 virtual keys are allocated
(marked in red), the time cost increases slightly faster than
before (marked in blue) as a result of cache eviction. Never-
theless, the ChakraCore hardened by libmpk still outperforms
by 3.2× the original ChakraCore using mprotect() to enforce
W⊕X.

Memory overhead. libmpk dedicates memory space to
store its internal data structures for maintaining the meta-
data of these page groups under protection (see §4.3). Each
mpk_mmap() allocates 32 bytes of memory to store the infor-
mation of a new page group (e.g., base address and size).
libmpk maintains a hashmap to store the mapping between
virtual keys and hardware keys for fast query and access. In
the current implementation, we pre-allocate 32 KB of mem-
ory for the hashmap, and its size will automatically expand
when a program invokes mpk_mmap() more than about 4,000
times.

Synchronization latency. Figure 10 shows the la-
tency of inter-thread permission synchronization using
mpk_mprotect() and mprotect() on memory of varying sizes.

0
5

10
15
20
25
30
35
40
45

0 5 10 15 20 25 30 35 40

L
at

en
cy

(µ
s)

Number of threads

mprotect() (4,000 KB)
mprotect() (400 KB)
mprotect() (40 KB)
mprotect() (4 KB)
mpk_mprotect()

Figure 10: Latency of inter-thread permission synchronization using
mpk_mprotect() and mprotect() calls on memory of varying sizes.
mpk_mprotect() outperforms mprotect() 1.73× for a single page
and 3.77× for 1,000 pages.

mpk_mprotect() is 1.73× faster than mprotect() when up-
dating the permission of a single page. The latency of
mprotect() increases with the number of pages it changes due
to the expensive operations of managing VMAs. Compared to
mpk_mprotect(), mprotect() costs at least 3.78× to change
the permission of 1,000 pages. The performance overhead of
mpk_mprotect() is independent of the number of pages whose
permission has been updated. Figure 10 also shows that when
there are many threads, the latency of both mprotect() and
mpk_mprotect() increases; mprotect() flushes more TLBs,
whereas mpk_mprotect() creates many hooks in the kernel.

6.3 Application Benchmarks
We measure the performance overhead of libmpk in practice
by evaluating three applications proposed in §5.
OpenSSL. The Apache HTTP server [12] (httpd) uses
OpenSSL to implement SSL/TLS protocols. To evaluate the
overhead caused by libmpk, which is introduced to protect
private keys, we use ApacheBench to test httpd with both the
original OpenSSL library and the modified one with libmpk.
ApacheBench is launched 10 times and each time sends 1,000
requests of different sizes from four concurrent clients to the
server. We choose the DHE-RSA-AES256-GCM-SHA256 al-
gorithm with 1024-bit keys as a cipher suite in the evaluation.

Figure 11 presents the evaluation result. On average,
libmpk introduces 0.58% and 4.82% performance overhead,
respectively, in terms of the throughput. In the single pkey
case, the negligible overhead mainly comes from internal
data structure maintenance in libmpk. In the multiple pkeys
case, httpd utilizes more than 1,000 pkeys, as it allocates
a new pkey while creating a new session. These pkeys are
maintained by cache invoke eviction, so the multiple pkeys
generates higher overhead than the single pkey case.
Just-in-time compilation. We applied two proposed W⊕X
solutions based on libmpk, namely, one key per page and
one key per process (§5.2) to both SpiderMonkey (version
59.0) and ChakraCore (version 1.9.0.0-beta) and evaluated
their performance with the Octane benchmark [15], which
involves heavy JIT-compilation workloads at runtime. Each

0
200
400
600
800

1000
1200
1400
1600

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

0
0.2
0.4
0.6
0.8

1
1.2
1.4

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

re
qu

es
t/s

ec

size of each request (KB)

original
libmpk (1 pkey)

libmpk (1000+ pkeys)

no
rm

al
iz

ed
th

ro
ug

hp
ut

Figure 11: Throughput of original httpd and httpd hardened by
libmpk. Protecting private keys with single pkey and 1000+ pkeys,
libmpk slows down httpd by at most 2.52% and 18.84% respectively.
The averages of overhead are 0.58% and 4.82% respectively.

0.9
0.95

1
1.05

1.1

0.9
1

1.1
1.2
1.3

Rich
ard

s

Delt
aB

lue

Cryp
to

Ray
Trac

e

Earl
ey

Boy
er

Reg
Exp

Spla
y

Spla
yL

ate
nc

y

Nav
ier

Stok
es
PdfJ

S

M
an

dre
el

M
an

dre
elL

at.

Gam
eb

oy

Cod
eL

oa
d

Box
2D zli

b

Typ
esc

rip
t
Tota

l

N
or

m
.s

co
re

(a) SpiderMonkey
mprotect() key/page key/process

(b) ChakraCore

Figure 12: Octane benchmark scores of SpiderMonkey and Chakra-
Core with original and libmpk-based W⊕X solutions. libmpk out-
performs the original, mprotect()-based defense by at most 4.75%
(SpiderMonkey) and 31.11% (ChakraCore).

0.7
0.8
0.9

1

Rich
ard

s

Delt
aB

lue

Cryp
to

Ray
Trac

e

Earl
ey

Boy
er

Reg
Exp

Spla
y

Spla
yL

ate
nc

y

Nav
ier

Stok
es
PdfJ

S

M
an

dre
el

M
an

dre
elL

at.

Gam
eb

oy

Cod
eL

oa
d

Box
2D zli

b

Typ
esc

rip
t
Tota

lN
or

m
.s

co
re

No prot. libmpk SDCG

Figure 13: Octane benchmark scores of original v8 and two mod-
ified versions of v8 ensuring W⊕X by SDCG and libmpk. libmpk
only introduces 0.81% overall performance overhead for W⊕X in
v8, compared with 6.68% caused by SDCG.

JavaScript program in the benchmark was directly executed
by the original and modified script engines for 20 times, and
we calculated the average score (Figure 12).

For SpiderMonkey, both libmpk-based approaches out-
perform the mprotect()-based approach on the total score,
namely, 0.38% and 1.26%, which is consistent with the claim
from Firefox developers that enabling W⊕X with mprotect()
in SpiderMonkey introduces less than 1% overhead for the
Octane benchmark. The reason is that SpiderMonkey is de-
signed to get rid of unnecessary mprotect() calls when its
JIT compiler works. The performance scores of nearly all

0

100

200

300

400

500

250 500 750 1000
0

200

400

600

800

1000

250 500 750 1000

K
by

te
/s

ec

#connections

original
mpk_begin

mpk_mprotect
mprotect

#u
nh

an
dl

ed
co

nn
ec

tio
ns

Figure 14: Throughput and unhandled concurrent connections of
original Memcached and three versions of Memcached whose key-
value pairs are protected by mpk_begin(), mpk_mprotect(), and
mprotect(). mpk_begin()’s overhead is negligible compared to the
original. mpk_mprotect() outperforms mprotect() 8.1× while en-
suring the same semantics.

the programs increase through one key per page (at most
3.60% on Box2D) and one key per process (at most 4.75% on
Box2D), except for SplayLatency protected by one key per
page (dropped by 1.36%). SplayLatency becomes worse be-
cause it barely updates the code cache such that the initial
overhead to associated keys with pages cannot be hidden.

Our two libmpk-based approaches improve ChakraCore by
1.01% and 4.39% on the total score of the Octane benchmark,
respectively. ChakraCore is suitable for libmpk-based W⊕X
solutions since it only makes one page writable per time
regardless of emitted code size. One key per page increases
the performance score of ChakraCore at most 7.96% when
testing SplayLatency, while one key per process improves
the performance by at most 31.11% on Box2D. Similar to
the results of SpiderMonkey, we observe a few performance
degradations when benchmarks rarely update code cache.

For v8, we compare our approach with a mprotect()-based
scheme, SDCG [33]. SDCG protects the JIT code pages of v8
with W⊕X by emitting the code in a dedicated process. No
other processes can change the code pages. To demonstrate
the performance advantage of our in-process libmpk-based
approaches, which are free of race condition attacks, we ap-
plied one of our approaches, one key per process, to Google
v8 (version 3.20.17.1 used in [33]) and evaluated the per-
formance through the Octane benchmark as well. Figure 13
presents the performance comparison among the original v8,
v8 with SDCG, and v8 with libmpk. Note that originally, v8
has not deployed W⊕X to protect its code cache so far. Our
approach only introduces 0.81% overall performance loss,
compared with 6.68% caused by SDCG.

To summarize, our libmpk-based approaches, which are
free of the race condition attacks, outperform the mprotect()-
based approach currently applied in practice to enforce W⊕X
protection on code cache pages with negligible overhead.
In-memory key-value store. To study the performance over-
head of libmpk when protecting large memory, we evaluate
the modified Memcached whose key-value pairs are isolated
by libmpk. More specifically, the modified Memcached pre-

allocates 1 GB memory, which is used instead of slab pages
allocated by glibc malloc() to store key-value pairs. Besides
the original Memcached, we also evaluate the Memcached
whose key-value pairs are protected by mprotect(). To study
the performance of mpk_mprotect() in real-world applica-
tions, we also create the Memcached guarded by libmpk
with permission synchronized as another evaluation target
for comparison. Each aforementioned version of Memcached
launches with four concurrent threads, and we connect to it
remotely through twemperf [34]. We create from 250 to 1,000
connections per second, and 10 requests are sent during each
connection.

Figure 14 presents the evaluation results. The modified
Memcached hardened by libmpk only has 0.01% overhead
in terms of data throughput and almost no overhead regard-
ing concurrent connections processed per second, which in-
dicates that libmpk performs well even when protecting a
huge number of pages. By contrast, mprotect() introduces
nearly 89.56% overhead in terms of data throughput when
protecting 1 GB memory in Memcached and a large num-
ber of unhandled concurrent connections accumulate in this
case. This is because mprotect() involves page table travers-
ing, which is considered expensive when dealing with a large
number of pages. To evaluate the synchronization service
of libmpk in practice, we also run Memcached protected by
mpk_mprotect(). This design ensures the same semantics but
outperforms mprotect() 8.1× regarding throughput.
libmpk provides the same functionality of mprotect()with

much better performance when protecting huge memory.
Moreover, in multi-threading applications, using mprotect()
to ensure in-thread memory isolation requires lock, which
is not required when using libmpk because of its inherent
property.

7 Discussion
In this section, we discuss a potential attack on both Intel
MPK and libmpk.
Rogue data cache load (Meltdown). We found that Intel
MPK can suffer from the rogue data cache load, also known as
the Meltdown attack [19,24]. The Meltdown attack is possible
because current Intel CPUs check the access permission to a
specific memory page after they have loaded it into the cache.
MPK is not an exception because Intel CPUs check the access
rights of PKRU when checking the page permission at the same
pipeline phase. This allows attackers to infer the content of
a present (accessible) page even when its protection key has
no access right. Since Intel is considering hardware-level
mitigation techniques [19], we believe this problem will be
solved in the near future.

8 Related Work
MPK applications. While conducting our study, we no-
ticed that there were a few ongoing studies using MPK to
achieve different goals. Burow et al. [8] leverage both MPK

and memory protection extension (MPX) to efficiently iso-
late the shadow stack. ERIM [35] utilizes MPK to isolate
sensitive code and data. MemSentry [21] provides a unified
memory isolation framework to use various hardware features,
including MPK and Memory Protection Extensions (MPX),
with the same interface. XOM-Switch [39] relies on MPK
to enable execute-only memory for unmodified binaries, and
IskiOS [16] leverages MPK and kernel page table isolation
(KPTI) to enforce execute-only memory in kernel. Our effort
to provide a software abstraction for MPK is orthogonal to
these studies, which are all potential applications of libmpk.
These schemes can leverage libmpk to achieve secure and
scalable key management to create as many sensitive memory
regions as required securely.
Memory protection with other hardware features. Other
hardware features exist for efficient memory protection such
as ARM Domain [5] and IBM Storage Protection [18], which
have a similar concept to MPK. For instance, ARMlock [40],
FlexDroid [31], and Shreds [9] rely on Domain to isolate
untrusted program modules, third-party libraries, and sensi-
tive code modules, respectively. libmpk helps to port these
applications from ARM to the Intel platform.
Software-based fault isolation (SFI). SFI [36] prohibits
unintended memory accesses by inserting address masking
instructions just before load and store instructions. This idea
motivates many applications to utilize and further optimize it.
Sandboxing mechanisms, such as Native Client (NaCl) [14,
30], relies on SFI to isolate untrusted code. Code-Pointer
Integrity [23] also uses SFI to protect the code pointers from
unsanitized memory accesses. SFI enables an application
to partition its memory into multiple regions, but the cost
of address masking limits the shape of partitions, which are
commonly contiguous pieces of memory. By contrast, MPK
enables an application to partition the memory into the regions
with arbitrary shape. Further, the overhead of SFI on address
masking increases by the number of isolated memory regions,
unlike MPK.
Multiple virtual address spaces. Using multiple virtual ad-
dress spaces for a single program can protect the memory of
sensitive or untrusted components from the others. Some sys-
tems [7, 17, 29, 37] rely on multiple page tables to isolate the
memory of threads in a single process from each other. Other
systems [6, 11, 25] also provide different memory views to in-
dividual threads or small execution units using separated page
tables. Kenali [32] uses a page-table-based isolation mecha-
nism to protect sensitive data in which a separate page table
is created for each thread. Unlike libmpk, these mechanisms
suffer from non-negligible performance overhead resulting
from slow and frequent page table switches.

9 Conclusion
Intel MPK supports efficient per-thread permission control
on groups of pages. However, its hardware implementation
and software support suffer from security, scalability, and

semantic-gap problems. libmpk proposes a secure, scalable,
and semantic-gap-mitigated software abstraction of MPK for
developers to perform fast memory protection and domain-
based isolation in their applications. Evaluation results show
that libmpk incurs negligible performance overhead (<1%) for
domain-based isolation and better performance for a substi-
tute of mprotect() when adopted to real-world applications:
OpenSSL, JavaScript JIT compiler, and Memcached.

10 Acknowledgment
We thank the anonymous reviewers, and our shepherd,
John Criswell, for their helpful feedback. This research
was supported, in part, by the NSF award CNS-1563848,
CNS-1704701, CRI-1629851 and CNS-1749711 ONR under
grant N00014-18-1-2662, N00014-15-1-2162, N00014-17-1-
2895, DARPA TC (No. DARPA FA8650-15-C-7556), and
ETRI IITP/KEIT[B0101-17-0644], and gifts from Facebook,
Mozilla and Intel.

References
[1] "Exec Shield", new Linux security feature, 2003. https:
//lwn.net/Articles/31032/.

[2] Linux kernel, v4.20, 2018. https://elixir.
bootlin.com/linux/v4.20-rc1/source/mm/
mprotect.c#L630.

[3] Pkeys(7) linux programmer’s manual, 2018.
http://man7.org/linux/man-pages/man7/
pkeys.7.html.

[4] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay
Ligatti. Control-flow integrity. In Proceedings of the
12th ACM Conference on Computer and Communica-
tions Security (CCS), Alexandria, VA, November 2005.

[5] ARM. ARM® Architecture Reference Manual ARMv7-
A and ARMv7-R edition, 2018.

[6] A. Bittau, P. Marchenko, M. Handley, and B. Karp.
Wedge: Splitting Applications into Reduced-Privilege
Compartments. In Proceedings of the 5th USENIX Sym-
posium on Networked Systems Design and Implementa-
tion (NSDI), San Francisco, CA, April 2008.

[7] David Brumley and Dawn Song. Privtrans: Automati-
cally partitioning programs for privilege separation. In
Proceedings of the 13th USENIX Security Symposium
(Security), San Diego, CA, August 2003.

[8] Nathan Burow, Xinping Zhang, and Mathias Payer. SoK:
Shining light on shadow stacks. In Proceedings of the
40th IEEE Symposium on Security and Privacy (Oak-
land), San Francisco, CA, May 2019.

[9] Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang
Sun, and Long Lu. Shreds: Fine-grained Execution

https://lwn.net/Articles/31032/
https://lwn.net/Articles/31032/
https://elixir.bootlin.com/linux/v4.20-rc1/source/mm/mprotect.c#L630
https://elixir.bootlin.com/linux/v4.20-rc1/source/mm/mprotect.c#L630
https://elixir.bootlin.com/linux/v4.20-rc1/source/mm/mprotect.c#L630
http://man7.org/linux/man-pages/man7/pkeys.7.html
http://man7.org/linux/man-pages/man7/pkeys.7.html

Units with Private Memory. In Proceedings of the 37th
IEEE Symposium on Security and Privacy (Oakland),
San Jose, CA, May 2016.

[10] Gustavo Duarte. How the Kernel Manages Your Mem-
ory, 2009. https://manybutfinite.com/post/
how-the-kernel-manages-your-memory/.

[11] Izzat El Hajj, Alexander Merritt, Gerd Zellweger, Dejan
Milojicic, Reto Achermann, Paolo Faraboschi, Wen-mei
Hwu, Timothy Roscoe, and Karsten Schwan. SpaceJMP:
Programming with Multiple Virtual Address Spaces. In
Proceedings of the 21st ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), Atlanta, GA, April
2016.

[12] Apache Software Foundation. Apache HTTP Server
Project, 2018. https://httpd.apache.org/.

[13] Free Software Foundation. The gnu c library, 2018.
https://www.gnu.org/software/libc/manual/
html_mono/libc.html#Memory-Protection.

[14] Google. NaCl SFI model on x86-64 sys-
tems. https://developer.chrome.com/
native-client/reference/sandbox_
internals/x86-64-sandbox.

[15] Google. The JavaScript Benchmark Suite for the mod-
ern web, 2017. https://developers.google.com/
octane.

[16] Spyridoula Gravani, Mohammad Hedayati, John
Criswell, and Michael L. Scott. IskiOS: Lightweight
defense against kernel-level code-reuse attacks. arXiv
preprint arXiv:1903.04654, 2019.

[17] Terry Ching-Hsiang Hsu, Kevin Hoffman, Patrick Eu-
gster, and Mathias Payer. Enforcing Least Privilege
Memory Views for Multithreaded Applications. In Pro-
ceedings of the 23rd ACM Conference on Computer
and Communications Security (CCS), Vienna, Austria,
October 2016.

[18] IBM. Power ISATM Version 3.0 B, 2017.

[19] Intel. Intel Analysis of Speculative Execution Side Chan-
nels, 2018.

[20] Intel. Intel® 64 and IA-32 Architectures Software De-
veloper’s Manual, 2018.

[21] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida,
and Elias Athanasopoulos. No Need to Hide: Protecting
Safe Regions on Commodity Hardware. In Proceedings
of the 12th European Conference on Computer Systems
(EuroSys), Belgrade, Serbia, April 2017.

[22] Hyungjoon Koo, Yaohui Chen, Long Lu, Vasileios P Ke-
merlis, and Michalis Polychronakis. Compiler-assisted
Code Randomization. In Proceedings of the 39th IEEE
Symposium on Security and Privacy (Oakland), San
Francisco, CA, May 2018.

[23] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea,
R. Sekar, and D. Song. Code-Pointer Integrity. In Pro-
ceedings of the 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Broom-
field, Colorado, October 2014.

[24] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading Kernel Mem-
ory from User Space. In Proceedings of the 27th
USENIX Security Symposium (Security), Baltimore, MD,
August 2018.

[25] James Litton, Anjo Vahldiek-Oberwagner, Eslam El-
nikety, Deepak Garg, Bobby Bhattacharjee, and Peter
Druschel. Light-Weight Contexts: An OS Abstraction
for Safety and Performance. In Proceedings of the
12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), Savannah, GA, November
2016.

[26] N. Mehta and Codenomicon. The Heartbleed Bug, 2014.
http://heartbleed.com/.

[27] Microsoft. ChakraCore is the core part of the Chakra
Javascript engine that powers Microsoft Edge, 2018.
https://github.com/Microsoft/ChakraCore.

[28] Mozilla. Spidermonkey, 2018. https:
//developer.mozilla.org/en-US/docs/
Mozilla/Projects/SpiderMonkey.

[29] Niels Provos, Markus Friedl, and Peter Honeyman. Pre-
venting Privilege Escalation. In Proceedings of the 12th
USENIX Security Symposium (Security), Washington,
DC, August 2003.

[30] David Sehr, Robert Muth, Cliff Biffle, Victor Khimenko,
Egor Pasko, Karl Schimpf, Bennet Yee, and Brad Chen.
Adapting Software Fault Isolation to Contemporary
CPU Architectures. In Proceedings of the 19th USENIX
Security Symposium (Security), Washington, DC, Au-
gust 2010.

[31] Jaebaek Seo, Daehyeok Kim, Donghyun Cho, Taesoo
Kim, and Insik Shin. FlexDroid: Enforcing In-App
Privilege Separation in Android. In Proceedings of the
2016 Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, February 2016.

https://manybutfinite.com/post/how-the-kernel-manages-your-memory/
https://manybutfinite.com/post/how-the-kernel-manages-your-memory/
https://www.gnu.org/software/libc/manual/html_mono/libc.html#Memory-Protection
https://www.gnu.org/software/libc/manual/html_mono/libc.html#Memory-Protection
https://developer.chrome.com/native-client/reference/sandbox_internals/x86-64-sandbox
https://developer.chrome.com/native-client/reference/sandbox_internals/x86-64-sandbox
https://developer.chrome.com/native-client/reference/sandbox_internals/x86-64-sandbox
https://developers.google.com/octane
https://developers.google.com/octane
http://heartbleed.com/
https://github.com/Microsoft/ChakraCore
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey

[32] Chengyu Song, Byoungyoung Lee, Kangjie Lu,
William R. Harris, Taesoo Kim, and Wenke Lee. Enforc-
ing Kernel Security Invariants with Data Flow Integrity.
In Proceedings of the 2016 Annual Network and Dis-
tributed System Security Symposium (NDSS), San Diego,
CA, February 2016.

[33] Chengyu Song, Chao Zhang, Tielei Wang, Wenke Lee,
and David Melski. Exploiting and Protecting Dynamic
Code Generation. In Proceedings of the 2015 Annual
Network and Distributed System Security Symposium
(NDSS), San Diego, CA, February 2015.

[34] Twitter. twemperf, 2018. https://github.com/
twitter-archive/twemperf.

[35] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O.
Duarte, Michael Sammler, Peter Druschel, and Deepak
Garg. ERIM: Secure, Efficient In-process Isolation with
Protection Keys (MPK). In Proceedings of the 28th
USENIX Security Symposium (Security), Santa Clara,
CA, August 2019.

[36] Robert Wahbe, Steven Lucco, Thomas E Anderson, and
Susan L Graham. Efficient Software-based Fault Isola-
tion. In Proceedings of the 14th ACM Symposium on

Operating Systems Principles (SOSP), Asheville, NC,
December 1993.

[37] Jun Wang, Xi Xiong, and Peng Liu. Between Mutual
Trust and Mutual Distrust: Practical Fine-grained Privi-
lege Separation in Multithreaded Applications. In Pro-
ceedings of the 2015 USENIX Annual Technical Confer-
ence (ATC), Santa Clara, CA, July 2015.

[38] Chao Zhang, Chengyu Song, Kevin Zhijie Chen,
Zhaofeng Chen, and Dawn Song. VTint: Protecting
Virtual Function Tables Integrity. In Proceedings of the
2015 Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, February 2015.

[39] Mingwei Zhang, Ravi Sahita, and Daiping Liu.
eXecutable-Only-Memory-Switch (XOM-Switch): Hid-
ing Your Code From Advanced Code Reuse Attacks in
One Shot. In Black Hat Asia Briefings (Black Hat Asia),
Singapore, March 2018.

[40] Yajin Zhou, Xiaoguang Wang, Yue Chen, and Zhi Wang.
ARMlock: Hardware-based Fault Isolation for ARM.
In Proceedings of the 21st ACM Conference on Com-
puter and Communications Security (CCS), Scottsdale,
Arizona, November 2014.

https://github.com/twitter-archive/twemperf
https://github.com/twitter-archive/twemperf

	Introduction
	Intel MPK Explained
	Hardware Primitives
	Kernel Integration and Standard APIs
	Quantifying Characteristics of Intel MPK

	Challenges of Utilizing Intel MPK
	Potential Security Problem
	Limited Hardware Resources
	Semantic Differences

	Software Abstraction of libmpk
	Threat Model and Assumptions
	libmpk API
	Protection Key Virtualization
	Inter-thread Key Synchronization

	Applications
	OpenSSL
	Just-in-time (JIT) Compilation
	In-Memory Key-Value Store

	Evaluation
	Security Evaluation
	Microbenchmarks
	Application Benchmarks

	Discussion
	Related Work
	Conclusion
	Acknowledgment

