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Abstract

Training machine learning models involves iteratively fetch-
ing and pre-processing batches of data. Conventionally, popu-
lar ML frameworks implement data loading within a job and
focus on improving the performance of a single job. However,
such an approach is inefficient in shared clusters where multi-
ple training jobs are likely to be accessing the same data and
duplicating operations. To illustrate this, we present a case
study which reveals that for hyper-parameter tuning experi-
ments, we can reduce up to 89% 1/O and 97% pre-processing
redundancy.

Based on this observation, we make the case for unifying
data loading in machine learning clusters by bringing the
isolated data loading systems together into a single system.
Such a system architecture can remove the aforementioned
redundancies that arise due to the isolation of data loading
in each job. We introduce OneAccess, a unified data access
layer and present a prototype implementation that shows a
47.3% improvement in I/O cost when sharing data across jobs.
Finally we discuss open research challenges in designing and
developing a unified data loading layer that can run across
frameworks on shared multi-tenant clusters, including how
to handle distributed data access, support diverse sampling
schemes, and exploit new storage media.

1 Introduction

With the widespread success of large scale machine learn-
ing for applications ranging from machine translation, image
recognition to robotics, software frameworks like Tensorflow
and Pytorch are being rapidly adopted by enterprises. Effi-
ciently executing training jobs on shared enterprise clusters is
thus an important requirement for developer productivity and
resource utilization. Correspondingly, a number of previous
efforts have focused on lowering the time spent in computa-
tion and communication [1,4].

In this paper, we study the role of data loading in machine
learning frameworks and characterize how the data access

patterns and data pre-processing steps contribute to overall
performance. In existing machine learning clusters, we find
that distributed storage systems typically store raw input files,
and data loading and pre-processing is performed indepen-
dently by each job that runs on the cluster. While this approach
is suitable for standalone clusters running individual training
workloads, there are a number of opportunities for improv-
ing data access in shared, multi-tenant clusters based on the
specific properties of machine learning workloads:

e Temporally co-located jobs: We find that a number of
machine learning jobs are generated by parameter tuning
experiments [11, 17]. These jobs often share the same
input files and are spawned to run in parallel. Our anal-
ysis of a workload trace from Microsoft (§2.1) shows
that up to 20 concurrent jobs are spawned by 40% of the
experiments. On average we find that we can reduce up
to 89% of 1/0O and 97% of pre-processing by unifying
data loading.

e Data pre-processing overheads: Further, a number of
machine learning models perform pre-processing on the
input data to generate representations that are suitable for
model training. Examples of this include cropping im-
ages or tokenizing text data [16]. Reusing pre-processed
data could especially be effective for temporally co-
located jobs.

¢ Random data access patterns: Finally, machine learn-
ing algorithms are typically iterative and at each iteration
sample a random subset of the input data. Frameworks
usually support a number of sampling methods including
sampling at every iteration or shuffling the data at end
of every epoch. This provides an opportunity to convert
random access into sequential access by considering the
sampling method.

Based on these opportunities, we propose developing a
unified data loading layer for machine learning clusters. As
shown in Figure 1, we propose, OneAccess, a new data load-
ing layer that can support multiple machine learning jobs and
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Figure 1: OneAccess: A unified data loading layer for machine
learning. In (a), we show the design of current systems with stan-
dalone data loading; we’re proposing a dedicated data loading
layer in (b).

amortize the random sampling and data pre-processing across
jobs. We present the design of OneAccess and using a proto-
type implementation, we find that OneAccess can improve
data access I/O time by 47.3% while running two jobs in
parallel.

There are a number of open challenges in building such a
unified data loading layer and we present some initial ideas on
extending our system to span across multiple machines, sup-
porting additional random sampling methods, and managing
lifetime of samples generated.

2 Background

In this section, we first motivate our study by analyzing con-
current jobs that read same input data (§2.1). Following that,
we describe the two main functions of data loading in machine
learning frameworks (§2.2) and discuss how these functions
are implemented in widely used ML frameworks (§2.3).

2.1 Concurrent Jobs in the Cloud

To help us understand the importance of unifying data loading,
we attempt to quantify how many concurrent jobs access the
same dataset in a shared cluster. One class of concurrent
jobs comes from hyperparameter’ tuning workloads, which
involve exploring the model configuration space to find the
best fit for a given problem. Hyperparameter tuning is an
important step in building machine learning models, and data
scientists typically use frameworks like HyperDrive [17] or
Hyperband [11] to submit parameter tuning experiments.
We conduct a study of the experiments performed on Hyper-
Drive over a period of 30 days. Each hyperparameter tuning
experiment consists of multiple jobs, each of which performs
training on a different configuration of the model indepen-
dently. We calculate the total number of jobs launched by
each experiment and also compute how many of these jobs
are run concurrently on a shared cluster. We observe that on
an average, each experiment has about 35 jobs (Fig. 2a). Al-
though each experiment has multiple jobs, not all of them are

A hyperparameter defines the configuration of the model, and does not
change during training. For example, the learning rate, momentum, number of
hidden layers, etc. are hyperparameters found in many deep learning models.

launched simultaneously. We find that on an average, about 9
jobs are run concurrently (Fig. 2b).

All the jobs launched for an experiment run on the same
dataset and perform the same steps of fetching and pre-
processing data, thus performing repetitive computation and
redundant I/O calls. This study reveals the potential for saving
(1 —1/9) = 89% of I/O calls if concurrent jobs share data dur-
ing an epoch, and (1 —1/35) = 97% of the pre-processing com-
putation performed if pre-processed data is persisted across
jobs. Given the significant benefits that can be realized from
unifying data loading, we next discuss the two main steps in
loading data in machine learning frameworks.

2.2 Data Loading for ML: Two Pieces

Machine learning models are typically trained in an iterative
manner [10] on batches of data over multiple epochs (Fig. 3).
The data loading module in a framework is responsible for
generating batches, which are used for computing gradients
and updating the model. On taking a closer look, there are
two steps that need to be performed for generating batches.

The first step is fetching data from the underlying storage,
which imposes a fundamental tradeoff between true random-
ness and the timely availability of data. As shown by previous
work [13, 19], the ordering of data points has a significant im-
pact on the training process, with random sampling across the
entire dataset having superior convergence guarantees. How-
ever, this requirement inherently contradicts with the behavior
of persistent storage devices, where sequential accesses are
much more desirable [2, 18]. Randomly accessing persistent
storage is significantly slower than computation, and can po-
tentially become a bottleneck. In distributed cloud settings,
fetching data incurs an additional (non-uniform) latency of
network transfer time, as the data can be spread across mul-
tiple machines. Thus, performing random access across the
entire dataset becomes extremely challenging in the cloud.

Once the data has been fetched, the next step is pre-
processing the data. In order to obtain a standard input for-
mat and also robustly train machine learning models, data
scientists often apply operations such as cropping images,
removing stop words from text, etc., on the data. This com-
putation is fairly deterministic and repetitive across epochs,
unless pre-processed data is persisted in some way.

In summary, optimizing data subsystems in machine learn-
ing frameworks requires studying data access patterns to
persistent storage, and the computation required in pre-
processing.

2.3 Existing ML Frameworks

We study two popular ML frameworks, with particular focus
on how data loading and preprocessing is performed. Based
on this we determine the features that need to be supported
by a unified data loading layer.
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(a) Distribution of number of jobs launched per experi-
ment. We find that most experiments have 20, 50, and 100
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(b) Distribution of number of jobs launched concurrently.

We observe that HyperDrive frequently launches 5, 10, or

20 jobs simultaneously. On an average, about 9 jobs are
run concurrently for an experiment.

Figure 2: Experiments running on HyperDrive over 30 days. We measure the number of jobs launched by each experiment, and how

many of them run concurrently.
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Figure 3: Iterative training of a model. The data loading mod-
ule is responsible for fetching and preprocessing data, to gener-
ate batches used in training.
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Number of
Workers Compute(s) 1/O(s) Total(s)
1 416s 443s 521s
2 309s 250s, 248s 310s
124.7s, 125.2s,
4 309 12536, 12525 | 20978

Table 1: Breakdown of time spent by I/O threads vs. compute
when varying number of workers in PyTorch running Resnet-
18 on MS-COCO dataset. I/0 bottleneck for a single job is typi-
cally alleviated by using multiple worker threads.

2.3.1 PyTorch

PyTorch [15] provides a base data loading module which
needs to be extended for different datasets, as each of them
can potentially have different storage formats. Data points are
accessed one at a time using the __getitem__ interface, which
is overwritten for each dataset. Preprocessing is performed
individually for every data point before it is returned, and
there is no built-in support for buffering pre-processed data.

The framework provides multiple sampling schemes (such
as sequential, globally random, random within a subset), that
determine the order in which points are accessed. However,
the efficiency with which data is fetched is not optimized by
the framework, and depends on the implementation of the
data loading module for a given dataset.

A noteworthy technique incorporated into the base data
loading module of PyTorch, is the utilization of multipro-
cessing to keep the operation of the data loading module

independent from training. Multiple worker processes can
be launched to fetch data in parallel, and repeatedly populate
shared memory queues with batches that are used for training.
An example of how this helps is shown in Table 1.

2.3.2 Tensorflow

Similar to PyTorch (§2.3.1), the data sub-system of Tensor-
flow [1] runs independently from the training process. How-
ever, Tensorflow provides a richer API for fetching and iter-
ating over datasets. Multiple storage formats and sources of
data are supported (e.g., images, text) by the framework, the
most noteworthy being the TFRecord format which stores
data linearly in a 100-200MB file for efficient access.

By default, data points in a dataset are accessed one at a
time in a sequential order. However, applying a shuffle opera-
tion to the dataset provides some randomness by maintaining
a fixed size buffer where data points are enqued sequentially
and dequed in a random order. This approach leads to random
sampling within a window, and is not random over all the
points in the dataset. The API also provides the option to
prefetch data points into a fixed size buffer for faster access.

Preprocessing is performed individually on each data point
through the map operation. There are no built-in techniques
for caching preprocessed data, and the map function on each
point is repeated over epochs. However, preprocessed data
can be optionally serialized and persisted as TFRecord files,
in order to avoid repetitive computation.

In summary, both frameworks support a number of sam-
pling schemes but they do not amortize data pre-processing,
and do not optimize for concurrent jobs accessing the same
data. While our prior discussion on concurrent jobs focused on
jobs using the same framework, we also observe that we can
amortize data loading for jobs across different frameworks.

3 Unified Data Access with OneAccess

OneAccess is an attempt towards building a unified data sys-
tem for machine learning frameworks. Along with optimizing



the process of fetching and preprocessing data, the framework
also adds support for multiple ML training jobs running simul-
taneously sharing the same data. Fig. 4 shows the architecture
of OneAccess on a single machine.

OneAccess optimizes the process of fetching data through
reservoir sampling [20]. Reservoir sampling is a technique to
generate uniformly random samples of data, while accessing
the data sequentially. Thus, to realize the benefits of reservoir
sampling, as well as to avoid repetitive computation, pre-
processed data is serialized and stored in files on disk. There
are two major sub-tasks performed independently by two
types of processes.

First, sample creators running at each storage device, per-
form reservoir sampling on the data/samples from the layer
below, and generate more compact samples to be stored in
the layer above (sample creator 1 & 2 in Fig. 1). Second,
the batch creator process generates batches of data from the
reservoir samples in memory; batches are then consumed
by multiple ML training processes. All of these processes
run independently and replenish batches/samples once they
are depleted. Given this design, the noteworthy features that
OneAccess realizes are:

e Support for multiple jobs: OneAccess adds support for
multiple ML training jobs running on the same data, so
that steps related to fetching and preprocessing data are
not duplicated. This is especially relevant in the cloud
settings, where multiple concurrent programs could be
replicating the same operations (§2.1).

e Sequential storage of pre-processed data: Sequential
accesses have significantly better performance when it
comes to persistent storage devices. In OneAccess, we
pre-process the data and store it sequentially in files on
disk, which we refer to as the serialized intermediate
data. Persisting pre-processed data eliminates repetitive
computation.

e Uniform randomness while performing sequential
accesses: OneAccess recursively performs reservoir
sampling” across the memory hierarchy to fetch compact
and uniformly random samples into memory. Through
this approach, only sequential accesses are performed on
persistent storage devices while creating samples, and
all random accesses during batch creation are restricted
to main memory.

4 Preliminary Results

All the experiments in this section have been run on a single
machine with a two-level storage hierarchy comprised of
Samsung 960 EVO NVMe 500GB SSD, and a main memory

2 All points have equal probability of being present in the resulting reser-
voir sample. Additionally, it can also be proved that all subsets of data (of
reservoir sample size) have equal probability of being the final sample.
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Figure 4: The architecture of OneAccess. The Sample Cre-
atorl process generates reservoir samples from data on disk,
and stores them on SSD. These samples are consumed by Sam-
ple Creator 2, which creates smaller reservoir samples held in
memory. The Batch Creator process consumes the samples in
DRAM to generate batches used by multiple jobs.

Framework Total Time (min)
Pytorch (with 1 worker) 23
PyTorch (with 2 workers) 12
PyTorch (with 4 workers) 6.8
OneAccess (sample size 400) 6.4

Table 2: Benchmarking batch creation time for MS-COCO. We
measure the time taken to generate batches of size 32 for one
epoch. OneAccess is 3.6x and 1.9x faster compared to PyTorch
with 1 and 2 workers respectively.

of size 32GB. We benchmark and compare the time taken for
generating batches by both the frameworks (§4.1), and also
measure the total I/O time saved when multiple concurrent
processes use the same data system (§4.2).

4.1 Benchmarking Batch Creation

We compare OneAccess against the built-in dataloader of Py-
Torch for the MS-COCO Detection dataset [12]. This dataset
has 118K images of variable sizes, which need to be cropped
to size 224 x224. We measure the total time taken by both
the frameworks to generate batches of 32 images during one
epoch over the dataset.

Prior to creating batches, OneAccess generates a serial-
ized intermediate data representation (§3) which results in a
one-time initial overhead of 24 minutes. The serialized rep-
resentation for MS-COCO consists of nine files each around
2GB in size, consisting of about 13K cropped images.

Table 2 shows the total time taken for creating batches
over one epoch by both PyTorch and OneAccess. PyTorch
was run with 1, 2, and 4 workers, whereas OneAccess has a
single sample creator process alongside the batch creator (as
we have a two-level storage hierarchy). The sample creator
process repeatedly fills in an in-memory reservoir of size



Training Jobs/ I/0 time (s)
Configuration Job 1 | Job2
Separate Data Access | 14.3 15.1
Shared Data Access | 154/2 | 154/2

Table 3: Measuring the reduction in I/O time when using a
shared instance of OneAccess (Fig. 1b) for two independent
training jobs running on the CIFAR-10 dataset. When using
a shared instance, the total I/O time is amortized between the
jobs. We obtain an overall reduction of 47.3% against using sep-
arate instances of OneAccess.

12.8K images (400 batches), which are then consumed by the
batch creator. Random sampling over entire dataset is used
by both the frameworks in this experiment.

We find that OneAccess is 3.6X and 1.9X faster compared
to PyTorch with 1 and 2 workers respectively (Table 2). This
speed-up is the result of performing sequential accesses and
persisting pre-processed data in a serialized manner. Although
OneAccess has an initial overhead for generating the serial-
ized intermediate representation, it is evident that this will be
adequately amortized over a few epochs.

To test a distributed setup, We repeated the same exper-
iment with two VMs on Amazon EC2 (m5d.2xlarge and
p2.xlarge) running a NFS server and client. We found that
OneAccess is around 1.7x faster than Pytorch with 1 worker
and 1.1X slower than Pytorch with 2 workers. We found that
the ratio of sequential to random SSD throughput resulted in
lower benefits when running on AWS. We also plan to extend
OneAccess to use multiple worker threads in the future.

4.2 Supporting Multiple Jobs

To evaluate the benefits of using a common data system, we
run two independent training jobs in PyTorch, first with the
conventional approach of using separate instances of OneAc-
cess (similar to Fig. 1a), and compare the total I/O time to
that of a shared setup using a common instance of OneAc-
cess (similar to Fig. 1b). Both the jobs independently train a
convolutional neural network on the CIFAR-10 dataset [9].
OneAccess was configured to run with a single in-memory
reservoir size of 3.2K images (100 batches), with a serialized
intermediate representation of CIFAR-10 created beforehand.
In this case we observe that the total training time remains
the same but we observe a significant reduction in the total
I/0 time (Table 3). The training time is unaffected as training
is performed by a separate CPU thread. The smaller image
sizes of CIFAR-10 (32x32) and use of CPU for training mean
that the storage access time is smaller than time taken for
compute. However, we do see that I/O is performed by the
common instance of OneAccess and the overhead is amortized
between the two processes. As expected, we find that the total
I/O time reduces by 47.3% (the theoretical best would be
50%), showing the potential of our system for eliminating
redundancy in storage access. We discuss more about data
loading vs compute bottlenecks in the topics for discussion.

5 Future Work

There are a number of research challenges in building a ma-
chine learning data system. We next outline some of these
challenges and propose some initial ideas to address them.
Sampling schemes, convergence: Our prototype implemen-
tation of OneAccess has been focused on supporting ran-
dom sampling with replacement over the entire dataset. How-
ever, recent theoretical research shows that other sampling
schemes could result in faster convergence for algorithms like
SGD [13] and coordinate descent [7]. Thus it is important for
the data loading layer to be flexible and support custom sam-
pling schemes. We plan to investigate creating a developer
API that can be used to install new sampling schemes that can
be used across framweorks.

Distributed Data Access Systems: Our results presented in
§4.2 assume that OneAccess has a centralized view of the data
being accessed by different jobs. In order to build a unified
data loading system for a large cluster, we plan to split our
design into a control plane that monitors which samples are
created and accessed by jobs, and a data plane that performs
the sampling operation and serves batches to workers. For
performance efficiency we would also need to investigate
how to integrate our system with underlying distributed file
systems, blob stores, databases etc.

New Storage Media: The performance and sample sizes cho-
sen by the sample creator module in OneAccess is deter-
mined by the type of media that is used to store data. With
the widespread availability of NVMe based SSDs and in-
troduction of Intel Optane drives [8], we plan to investigate
how sample creation can automatically be tuned based on the
device characteristics.

Sample lifecycle: While the creation of samples in the back-
ground and caching pre-processed data can improve perfor-
mance, they also lead to increase in storage requirements.
We plan to develop techniques to automatically manage the
lifecyle of samples created by coordinating with the cluster
scheduler and plan to build upon prior work in data prove-
nance [5], and derived dataset management [6].

6 Conclusion

In conclusion, we make the case for unifiying data loading
across machine learning frameworks deployed in shared clus-
ters. We observe the ubiquity of machine learning experi-
ments with a high number of concurrent jobs, and our analysis
shows the potential for 89% of I/O operations and 97% of pre-
processing computation that can be saved by unifying data
loading across jobs. We propose a novel unified data loading
system called OneAccess that serves as a first step towards
achieving such savings. Our results using OneAccess running
on CIFAR-10 that show an overall reduction of 47.3% in total
I/0 time of two concurrent jobs, thus showing the potential
of a unified system.



Discussion Topics

This paper is likely to generate a discussion regarding the
advantages and disadvantages of using a unified data loading
system for machine learning jobs in the cloud. The main
issues that we believe will generate discussion are

Data loading vs. compute bottlenecks Pipelining data
loading with computing of gradients means that the slower
of the two steps will determine the overall latency of running
an iteration. Trends in how storage media is getting faster
vs. availability of more compute resources will make this
an interesting discussion point. Further it will be interesting
to discuss other benefits of avoiding I/O requests in terms
of power savings or sharing resources with other datacenter
applications.

Unifying data pre-processing across frameworks.
While saving I/O costs and pre-processings costs for jobs
using the same framework is relatively straightforward, our
proposal of sharing pre-processing across frameworks will
likely generate discussion on how we can handle different
languages, and if a format like Apache Arrow can be used to
achieve this.

Synchronizing data access across jobs. A potential chal-
lenge for training ML systems in the wild might be synchro-
nizing data access across jobs. If the hyperparameter variation
leads to a variation in training duration, and if we are syn-
chronously loading data then jobs could be blocked on the
slowest job. Some preliminary approaches to avoid this would
be to relax sampling guarantees or have an in-memory cache
that can handle requests from slower jobs.

Importance of locality. OneAccess is most applicable to
a cluster computing scenario as that is where we can find the
most redundancy in job execution. However, there might be
challenges in implementing random sampling methods due
to additional latency when fetching data across a number of
machines. While prior work [3, 14] has shown that locality
concerns can be overcome for big data analytics and filesys-
tems, it remains to be seen how locality will affect random
sampling.
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