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Abstract

In trained deep neural networks, unstructured pruning can re-
duce redundant weights to lower storage cost. However, it re-
quires the customization of hardwares to speed up practical
inference. Another trend accelerates sparse model inference
on general-purpose hardwares by adopting coarse-grained
sparsity to prune or regularize consecutive weights for effi-
cient computation. But this method often sacrifices model ac-
curacy. In this paper, we propose a novel fine-grained sparsity
approach, Balanced Sparsity, to achieve high model accuracy
with commercial hardwares efficiently. Our approach adapts
to high parallelism property of GPU, showing incredible po-
tential for sparsity in the widely deployment of deep learn-
ing services. Experiment results show that Balanced Sparsity
achieves up to 3.1x practical speedup for model inference on
GPU, while retains the same high model accuracy as fine-
grained sparsity.

Introduction
In the past few years, deep neural network (DNN) has
achieved remarkable state-of-the-art results with large-scale
network models for many challenging tasks, including com-
puter vision (CV), natural language processing (NLP), and
speech recognition. However, recent researches show that
the significant redundancy exists in trained model weights,
reaching up to 98% for popular computer vision models
(Han et al. 2015; Han, Mao, and Dally 2015). Driven by
the great potentials to reduce the model sizes for acceler-
ating DNNs, a series of work (Han et al. 2015; Guo, Yao,
and Chen 2016; Molchanov et al. 2016; LeCun, Denker,
and Solla 1990; Engelbrecht 2001) identify and zero out the
unimportant weights at a high compression ratio. Redundant
weight pruning methods keep model accuracy and often ben-
efit DNN models in cost-effective service deployment with
much fewer resources.

Despite a significant reduction in operative weights, the
fine-grained sparsity can only save storage costs, but hardly
speed up inference due to the fragmented unstructured
weights in pruned models. The irregularity and random dis-
tribution in weight matrices poorly fit current general pur-
pose accelerators (i.e. GPU), which often advocate highly
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Figure 1: Perplexity and Inference Time trade-off of differ-
ent sparsity patterns on the PTB dataset (Marcus et al. 1999).
All the methods prune the same pre-trained LSTM model
with single 1500-hidden-units cell to reach 90% sparsity.

parallel computing characteristic. The speedup could be
negative when the sparsity ratio is quite low and only a
sparsity ratio higher than 95% can lead to speedup.(Wen
et al. 2016; Wang et al. 2018) Therefore, customized hard-
wares (Han et al. 2016; 2017; Parashar et al. 2017) are re-
quired for the widely deployment of model pruning.

Another research work chooses to maintain a dense struc-
ture during pruning. More specifically, pruning granularity
often incorporates with neural network semantics in con-
volution neural network (CNN) structures, e.g., filter and
channel (Li et al. 2016) and recurrent neural network (RNN)
states, e.g., cell and gate (Wen et al. 2018). With coarse-
grained DNN component pruned, the remaining parameters
are still in a compact structure which is a quite hardware-
friendly feature and make practical acceleration more pos-
sible. However, despite the notable speedup observed, the
pruned models usually compromise accuracy.

Figure 1 shows the model accuracy and inference time
trade-off for pruning a trained LSTM model with different
sparsity patterns. The random sparsity (Han et al. 2015) ap-
proach is poor in inference speed while almost achieving
the same accuracy as the original dense model. On the con-
trary, coarse-grained sparsity patterns, i.e both vector spar-
sity (Mao et al. 2017) and block sparsity (Narang, Under-
sander, and Diamos 2017) fit GPU architecture for matrix
operation acceleration, however, losing in model accuracy.

To leverage sparsity for inference acceleration on GPUs
while retaining model accuracy, we thereby propose a novel



sparsity pattern, Balanced Sparsity. Balanced Sparsity aims
at pruning model weights in a balanced structure. Instead
of pruning a weight matrix in a monolithic way, we parti-
tion the weight matrix and perform independent pruning in
sub-matrices. We conduct a set of experiments on typical
neural networks to show the performance of our method, fo-
cusing on model accuracy and inference time. For accuracy,
our experiments on three typical CV, NLP, and Speech tasks
show that, we achieve less than 0.2% accuracy difference
comparing with fine-grained random sparsity. For inference
time, our benchmark result shows that, we achieve almost
ideal performance speedup on GPU for matrix multiplica-
tion under the sparsity ratio ranging from 50% to 97%. On
PTB dataset, our Balanced Sparsity obtains coarse-grained
level speedup and keeps fine-grained level accuracy (Fig-
ure 1). Besides, a series of detailed measurements on typical
networks, including VGG-16 net, LSTM model, and CTC
model, show that Balanced Sparsity achieves 1.4x to 3.1x
practical speedup in GPU inference.

Overall, we make three contributions in this paper:

• We propose a new sparsity pattern Balanced Sparsity and
the corresponding pruning method that can both maintain
model accuracy and achieve significant practical acceler-
ation.

• We provide a matrix operation implementation based on
the special architecture design inside GPU.

• Our Balanced Sparsity achieves the state-of-the-art prac-
tical speedup while keeps the same high model accuracy
as both dense model and random sparsity approach.

Related Work
Fine-grained Sparsity
The redundancy of neural network is well recognized by Le-
Cun et al. (LeCun, Denker, and Solla 1990) since 1990s.
Recent years, fine-grained weight pruning approach re-
moves over 90% of weight parameters in popular CV mod-
els, significantly reducing the model size for model de-
ployment and inference services. Iterative pruning (Han
et al. 2015) is firstly introduced, which prunes individ-
ual weights below a monotonically increasing threshold
value and then retrains the remaining weights iteratively.
Meanwhile, its capability to retain model accuracy is jus-
tified on a wide range of popular neural network models
of CNN (Guo, Yao, and Chen 2016; Aghasi et al. 2017;
Liu et al. 2018) and RNN (Giles and Omlin 1994; Lin et
al. 2017). However, redundancy-orient pruning introduces
irregularity in model. Custom hardwares (Han et al. 2016;
2017; Parashar et al. 2017) are essential to speedup the com-
puting for fragmented random data accesses, which limit the
deployment of sparse DNNs.

Coarse-grained Sparsity
Recent research observes the irregularity challenge in model
sparsity and falls back to consider the support for general
purposed processors. Not only weight importance but also
neural network semantics are jointly considered in model

pruning. The goal is to generate a sparse output while keep-
ing dense sub-structures, therefore pruning is usually ap-
plied on coarse-grained model component. Filter and chan-
nel level sparsity for CNN (Li et al. 2016; Neklyudov et
al. 2017; Wen et al. 2016), gate and cell state sparsity for
RNN (Wen et al. 2018), low rank approximation (Jader-
berg, Vedaldi, and Zisserman 2014; Liu et al. 2015), and
block sparsity (Narang, Undersander, and Diamos 2017)
are several sparsity patterns in which model structure is
fully considered. As pointing out by (Mao et al. 2017;
Zhu and Gupta 2017), the coarse-grained sparsity bene-
fits computation-intensive accelerators (e.g. GPU), how-
ever, causes prominent accuracy penalty comparing with
fine-grained approaches. These methods (Mao et al. 2017;
Narang, Undersander, and Diamos 2017) modify the itera-
tive pruning method to apply in consecutive weight blocks.
They pick the maximum magnitude or the average magni-
tude of the weights within one block as a representative for
the entire block. A monotonically increasing threshold is
adopted also.

Methodology
Neural network pruning methods bring a restricted free-
dom to define the sparsity structure (e.g. hardware friendly
sparsity) in weight matrices. More regular sparsity structure
can increase hardware efficiency, but is also easier to de-
stroy the original distribution of weight matrices which may
hurt model accuracy significantly. Ideally, a good sparsity
structure should balance model accuracy and hardware effi-
ciency.

Our proposed sparsity pattern, Balanced Sparsity,
achieves both high model accuracy and high hardware effi-
ciency. In this section, we first introduce the Balanced Spar-
sity sparsity pattern and the balance-aware iterative pruning
algorithm to induce Balanced Sparsity. Then, we use a math-
ematical way to prove that the influence on model accuracy
is limited. Finally, we present an efficient GPU implementa-
tion for our Balanced Sparsity.

Balanced Sparsity

To maintain high model accuracy and achieve efficient
GPU acceleration, we propose a novel fine-grained sparsity,
called Balanced Sparsity. For weight matrices represented
in Balanced Sparsity, each matrix row is split into multi-
ple equal-sized blocks and each block has the same number
of non-zero weights. Figure 2 shows an example of a block-
balanced sparse matrix row pruned from a dense matrix row.
In this example, the matrix row is split into 4 blocks, and
each block has a sparsity of 50%. The balance range, i.e the
length of each block, is 4. The same split method and spar-
sity apply to other rows in the weight matrix.

The intuitions of designing the Balanced Sparsity are: 1)
the block partition with balanced computation work load
for each block naturally fit GPUs with high practical paral-
lelism. 2) the random distribution of non zero weights inside
a block adds very few constraints on the sparsity structure
and may not affect model accuracy.
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Figure 2: An example of pruning a dense matrix row to a
Balanced Sparsity matrix row.

Balance-aware Iterative Pruning
We introduce a balance-aware iterative pruning method to
induce Balanced Sparsity to weight matrices. For CNNs, the
weights of all kernels in one convolution layer are consid-
ered as one weight matrix. Previous pruning methods usu-
ally adopt a monotonically increasing threshold value to zero
out the weights less than this threshold. Those methods do
not consider the distribution of non-zero values.

We use an expected sparsity instead of a threshold value
to prune weights, which guarantees a balanced distribution
of non-zero weights among block partitions during pruning
iterations. Algorithm 1 illustrates our balance-aware itera-
tive pruning method. In each pruning iteration, the pruning
algorithm sorts the weights in each block by their absolute
magnitude and then zeros out a fraction of weights with
smallest absolute magnitudes under the threshold percent-
age. This threshold percentage is gradually increased from 0
to the target sparsity while the increase rate decreases with
pruning iteration. Figure 2 illustrates a balance-aware prun-
ing iteration with a threshold sparsity of 50%.

Algorithm 1: Balance-aware Iterative Pruning
Input: The matrix to be pruned, M ;

The number of blocks per row, BlockNum;
The expected sparsity, Sparsity;

Output: The pruned matrix, Mp;
1 for Mi ∈M.rows do
2 Divide Mi into blocki,j (j = 1 to BlockNum);
3 end
4 tmpsparsity = 0;
5 while tmpsparsity < Sparsity do
6 tmpsparsity = GraduallyIncrease(tmpsparsity);
7 for blocki,j ∈M do
8 Sort elements and calculate the block internal

threshold Ti,j based on tmpsparsity;
9 for each element ∈ blocki,j do

10 prune element if |element| < T ;
11 end
12 end
13 end
14 return the pruned matrix, Mp;

In our method, pruning followed by a retraining is one
iteration, which is also defined in previous methods (Han
et al. 2015; Mao et al. 2017; Narang, Undersander, and Di-
amos 2017). For multi-layer network like VGG-16 net, we
adopt a straightforward strategy which separates the whole
net into layers, then prune all those convolutional layers and

FC layers one by one.

Asymptotic Analysis
We prove that the influence of our Balanced Sparsity on
model accuracy is very slight, by theoretically showing
that the differences between random sparsity (Han et al.
2015) and our method are negligible for practical situations.
To compare the similarities and differences between these
two methods, we perform a theoretical analysis on a fully-
connected layer:

Y = W (0) ·X +B, (1)
where W (0) is an M × N matrix, X is an N -dimensional
vector of input features, B is an M -dimensional vector of
bias term, and Y denotes the output of this fully-connected
layer. For ease of elaboration, we assume that the bias vector
B is a zero vector here.

Similar to many prior works (Hernández-Lobato and
Adams 2015; Blundell et al. 2015; Salimans and Kingma
2016), we specify an independent Gaussian priors distri-
bution N (0, σ2

w) for each element w in W (0) and another
N (0, σ2

x) for each element x in inputX . Then the output dif-
ference between sparse and dense FC-layer can be denoted
as
Z(i) = W (i)·X−W (0)·X = dW (i)·X, ∀ i ∈ {1, 2} (2)

where W (1) is the matrix pruned with random sparsity and
W (2) is the matrix pruned with Balanced Sparsity.

Firstly, we defined a function H (k) as follows,

H (k) =
k (MN − k)

(MN)3 ·
[
f
(
F−1

(
k

MN

))]2 , (3)

where f and F are probability density function and cumu-
lative distribution function of W (0)’s Gaussian distribution,
F−1 denotes the quantile function associated with F .
Lemma 1 The characteristic functions of the variable z’s
distributions in Z(i) ,∀ i ∈ {1, 2}, are

ΦZ(1) (t) =
σx
r(1)

(
1 + t2

)− 1
2

r(1)∑
i=1

H (i) (4)

and

ΦZ(2) (t) =
σx
r(1)

(
1 + t2

)− 1
2

r(1)∑
i=1

H

(⌈
i

MK

⌉
×MK

)
,

(5)
where K is the number of balance range, r(1) = MK · r(2)
is the total number of pruned elements.

With the help of Lemma 1, we get the following theorem:
Theorem 1 The means of the variable z’s distributions in
Z(i) ,∀ i ∈ {1, 2}, are

MeanZ(1) (z) = MeanZ(2) (z) = 0. (6)

The variances the variable z’s distributions in Z(i) , ∀ i ∈
{1, 2}, are

V arZ(1) (z) =
σx
r(1)

r(1)∑
i=1

H (i) (7)



and

V arZ(2) (z) =
σx
r(1)

r(1)∑
i=1

H

(⌈
i

MK

⌉
×MK

)
. (8)

As showed in equations (4) and (5), Φ
(1)
Z (t) and

Φ
(2)
Z (t) have similar formulation. The mean values of

random sparsity and our purposed Balanced Sparsity
are both equal to zero. And the difference between
their variances can be regarded as a limited quantiza-
tion error (i.e., i v.s.

⌈
i

MK

⌉
× MK ). The analysis

result is consistent to what we observe in real workloads
as visualized in experiments. Please refer to https:
//github.com/Howal/balanced-sparsity/
blob/master/appendix-aaai19.pdf for proof.

Efficient GPU Implementation
We now introduce our efficient GPU library of matrix mul-
tiplication for balanced sparse matrices.

Thread 3 Bank 3
V[12] V[13] V[14] V[15]...W[0][13] * V[13]

Thread 2 Bank 2
V[8] V[9] V[10] V[11]...W[0][9] * V[9]

Thread 1 Bank 1
V[4] V[5] V[6] V[7]...W[0][4] * V[4]

Thread 0 Bank 0
V[0] V[1] V[2] V[3]...W[0][0] * V[0]

Index:0

Index:4

Index:9

Index:13

V[0]

V[4]

V[9]

V[13]

... ...

Threads Shared Memory

Figure 3: Parallelizing threads for efficient sparse matrix
multiplication. Shared memory supplies V[0], V[4], V[9],
V[13] simultaneously according to the indexes.

Our implementation first utilizes the block partition as a
workload partition for GPUs to achieve high practical paral-
lelism. Modern GPUs contain massive cores that can support
thousands of threads running simultaneously. In our case,
the multiplication and accumulation operations in one block
partition are assigned to a single thread. The same number of
non-zero values in each block partition can further increase
the GPU efficiency because it makes the workloads between
threads balance.

Sparse matrices after pruning lose the regular structure of
dense matrices which results in irregular memory accesses
in sparse matrix multiplication. Running massive threads in
parallel causes concurrent random memory access problem.
Improper handling of random memory accesses from vari-
ous threads could stall the thread execution and decrease the
performance significantly.

In order to overcome the challenge in random memory
accesses, our implementation takes advantage of the shared
memory in GPU architecture to support concurrent random
accesses. In GPU architecture, a chunk of shared memory is
visible to a fixed number of threads. To achieve high mem-
ory bandwidth for concurrent accesses, shared memory is
divided into equally sized memory modules, which is called
banks that can be accessed independently and simultane-
ously. Therefore, any memory load or store of n addresses

that spans n distinct memory banks can be serviced simul-
taneously, yielding an effective bandwidth that is n times
as high as the bandwidth of a single bank. In Figure 3, we
use the balanced sparse matrix in Figure 2 as an example to
shows how to parallelize the threads for sparse matrix mul-
tiplication. The dense vector to be multiplied is rearranged
and stored in shared memory to avoid bank conflicts.

Experiments
In this section, we compare Balanced Sparsity against the
dense model baseline, random sparsity(Han et al. 2015),
block sparsity (Narang, Undersander, and Diamos 2017),
and vector sparsity (Mao et al. 2017) for model accuracy.
For the GPU inference performance test, we use different
highly optimized libraries for different sparsity patterns. The
baseline of dense matrices is tested with the cuBLAS library.
For random sparse matrices, we use the cuSPARSE library.
For block sparse matrices, we use an open sourced GPU li-
brary (Gray, Radford, and Kingma 2017), which is highly
optimized for matrix multiplication of block sparse matri-
ces on GPU. For balanced sparse matrices, we use our own
GPU implementation as described above. Vector sparsity is
not evaluated here, because there is no available GPU imple-
mentation as far as we know.

The experiments are divided into three parts. Firstly, we
test our GPU implementation on a matrix multiplication
benchmark. Then we apply our sparsity approach to multi-
ple wide-used deep learning workloads, covering CV, NLP,
and Speech. Finally, we investigate the feature of our spar-
sity pattern in further detail by visualizing the weight map
and tuning the hyper-parameter, balance range. All the ex-
periments in this section are done with a batch size of 1, the
block number per row of our method is 32, and the block
size of block sparsity is 8 ∗ 8, unless explicitly stated.

Benchmark
In order to show the hardware efficiency of our proposed
Balanced Sparsity, we conduct a benchmark to compare the
inference time of a matrix multiplication among all exist-
ing sparsity patterns. This benchmark uses a matrix size of
16384 × 8196.

Figure 4 shows the speedup of Balanced Sparsity with
our GPU implementation. In this benchmark of matrix mul-
tiplication, our method outperforms other sparsity patterns.
When batchsize = 1, there is still a gap between our
method and idea time, because the main benchmark bot-
tleneck of this setting is the communication inside GPU.
This disadvantage can be overcome by hiding the I/O time
in more batches. For batchsize = 8 case, our method al-
most reaches the ideal inference time brought by skipping
unnecessary computation. The ideal inference time (i time)
is calculated by the following equation:

i time = (d time−o time)∗(1−sparsity)+o time (9)

where the d time denotes the inference time of a dense ma-
trix running on cuBLAS, the o time denotes the time over-
head of launching an execution kernel on GPU. Here we take
10us as o time which is a widely used number (Chu et al.
2016).
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Figure 4: Inference time benchmark comparisons of various
sparsity patterns.

Notice that using cuSPARSE for sparse computation can
achieve speedup only if the sparsity ratio is higher than
around 91%, while our method is always faster than the
dense baseline.

Real Workloads
In this subsection, we apply our balanced sparsity pattern to
vision, language, and speech tasks. We compare the com-
pression rate (i.e. achievable sparsity) of our balanced spar-
sity with other four alternatives, including dense model
baseline, random sparsity, block sparsity, and vector spar-
sity. Random sparsity performs pruning in each independent
weight matrix. Block sparsity treats a consecutive block of
parameters as a pruning unit. If a pruning decision is made,
the whole block weights will be removed. Vector sparsity
means to consider a whole row or column in a weight ma-
trix as a basic pruning unit.

In our pruning experiments, we apply the same hyper-
parameters and fine-tune techniques to various sparsity pat-
terns. During pruning, if the model accuracy drops signifi-
cantly and cannot recover via retraining, we withdraw this
pruning iteration and stop the pruning procedure. For prac-
tical speedup, we compare our GPU implementation with
other available GPU implementations for dense model, ran-
dom sparse model, and block sparse model.

VGG-16 on ImageNet For the vision task, we use VGG-
16 network (Simonyan and Zisserman 2014) on ImageNet
ILSVRC-2012 dataset (Krizhevsky, Sutskever, and Hin-
ton 2012) to evaluate the compression rate and practical
speedup. VGG-16 is a well-known network architecture
which contains 13 convolutional layers and 3 FC layers,
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Figure 5: Sparsity-Perplexity curves of various sparsity pat-
terns on PTB dataset.

Language Model /
PTB

Inference
Time / us Sparsity

Sparsity
Patterns

Dense Model 294.1 0%
Random Sparsity 370.9 80%

Block Sparsity 326.3 40%∗

Balanced Sparsity 120.2 80%

Table 1: Inference time comparisons of various sparsity pat-
terns on PTB dataset. Our methods outperforms all the other
methods. ∗Block Sparsity could only reach a sparsity ratio
of 40% without hurting the performance.

while the dataset has 1.2M training examples and 50k vali-
dation examples.

We use random sparsity, block sparsity, and balanced
sparsity to prune both convolutional and fully-connected
layers of a pre-trained VGG-16 model, respectively. Then
we evaluate the inference time of those pruned models with
their customized GPU implementations. One popular im-
plementation of convolution operation is using im2col that
converts convolution operation to matrix-matrix multiplica-
tion (Chellapilla, Puri, and Simard 2006). The operation of
a fully-connected layer is matrix-vector multiplication.

Table 2 reports the layer-wise results and the whole model
result. All these three methods as well as the dense model
baseline achieve similar top-5 accuracy of 90.3%, however,
under different sparsity ratios. In terms of compression rate,
both random sparsity and our balanced sparsity can com-
press the VGG-16 model with more than 12x, but block
sparsity can only compress the model with less than 4x. Our
GPU implementation for balanced sparsity also achieves the
best practical speedup, which is 6x faster than random spar-
sity.

LSTM on PTB In the experiment of PTB dataset (Mar-
cus et al. 1999), we adopts a 2-layer LSTM language model
with LSTM hidden layer size of 1500. We compare Bal-
anced Sparsity with other sparsity patterns by measuring the
final pruned model perplexity, a metric to quantify language
model quality (the lower the better).

Figure 5 shows perplexity results under different spar-
sity patterns. This figure shows that the perplexity curve of
our balanced sparsity is very close to the perplexity curve
of random sparsity. Both random sparsity and our balanced
sparsity can preserve the perplexity until 80% of weights
are pruned. These two patterns achieve even slightly bet-



Dense Model Random Sparsity Block Sparsity Balanced Sparsity
Inference
Time \us Sparsity Inference

Time \us Sparsity Inference
Time \us Sparsity Inference

Time \us Sparsity

conv1 1 144.0 - 714.7 42% 78.3 31% 254.7 34%
conv1 2 612.5 - 2578.0 88% 949.4 56% 1018.4 68%
conv2 1 393.5 - 1842.5 70% 356.2 41% 474.4 65%
conv2 2 588.2 - 4640.0 71% 639.9 38% 557.0 71%
conv3 1 305.0 - 2668.6 57% 286.2 30% 371.4 45%
conv3 2 584.4 - 3768.9 84% 362.6 56% 396.5 79%
conv3 3 584.4 - 4257.4 71% 490.3 35% 355.7 88%
conv4 1 333.3 - 2005.3 79% 237.8 41% 295.4 86%
conv4 2 623.0 - 3196.0 86% 316.6 57% 366.2 91%
conv4 3 623.0 - 3205.9 85% 500.5 38% 396.5 88%
conv5 1 211.0 - 920.1 88% 170.7 41% 129.9 86%
conv5 2 211.0 - 926.3 91% 132.9 52% 126.4 90%
conv5 3 211.0 - 1053.6 89% 163.8 36% 110.2 95%

fc6 979.9 - 1084.6 93% 841.8 75% 231.1 93%
fc7 265.5 - 251.0 93% 238.6 75% 70.3 93%
fc8 144.5 - 294.5 75% 120.6 60% 58.9 75%

Total∗ 6814.141 - 33407.4 91.8% 5886.1 71.7% 5213.0 92.0%

Table 2: Inference time and sparsity comparisons of various sparsity patterns on VGG-16. Our balanced sparsity and customized
GPU implementation achieve the best compression rate and practical speedup. ∗The time cost of other layers in VGG-16, such
as pooling and batch normalization, is about 230us, which is less than 3% of entire inference time.
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Figure 6: Sparsity - Phone Error Rate curves of various spar-
sity patterns on TIMIT dataset.

ter model quality, compared to the original one even around
60% sparsity. The perplexity of vector sparsity starts to in-
crease significantly at a very low sparsity ratio. The perplex-
ity of block sparsity starts to increase at a sparsity of 40%. In
summary, our balanced sparsity has almost the same efficacy
as random sparsity and outperforms both vector sparsity and
block sparsity in terms of achievable accuracy and sparsity
during pruning.

We also compare the inference time of our balanced
sparsity with dense baseline, random sparsity, and block
sparsity. Table 1 shows the speedup results. For the PTB
LSTM model, our GPU implementation for balanced spar-
sity achieves 3.1x speedup compared to the random sparse
model running on cuSPARSE, 2.7x speedup compared to
the block sparse model running on block sparse library, 2.5x
speedup compared to the baseline dense model running on
cuBLAS.

CTC on TIMIT We further examine our Balanced Spar-
sity on the TIMIT dataset, which is a read speech bench-

Speech Recognition /
TIMIT

Inference
Time / us Sparsity

Sparsity
Patterns

Dense Model 117.9 0%
Random Sparsity 190.5 87.5%

Block Sparsity 212.8 70%∗

Balanced Sparsity 83.9 87.5%

Table 3: Inference time comparisons of various sparsity pat-
terns on TIMIT dataset. ∗Notice that the sparsity percent-
age is chosen based on the accuracy experiment in Figure 6.
Block Sparsity could only reach a sparsity ratio of 70% with-
out hurting the performance.

mark and especially designed for acoustic-phonetic stud-
ies. A CTC (connectionist temporal classification) model
(Graves et al. 2006) is used here, which mainly contains
a Bi-LSTM (Bidirectional Long Short-Term Memory) cell
with a hidden size of 1024. The settings of different sparsity
patterns are the same as mentioned in previous subsection.

For the TIMIT Bi-LSTM model, Figure 6 shows the per-
plexity results under different sparsity patterns and Table 3
shows the inference time of different sparsity patterns. We
get the same conclusions as the experiment of PTB LSTM
model. In terms of pruning efficacy, our balanced sparsity is
similar to random sparsity and outperforms vector sparsity
and block sparsity. In terms of GPU acceleration, our imple-
mentation for balanced sparsity achieves around 1.4x-2.6x
speedup compared to others.

Discussions
Visualization We use the visualization method to under-
stand why we can achieve a high accuracy close to ran-
dom sparsity. Figure 7 shows a random-selected 64 × 64
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Figure 7: Weight map visualizations after applying random sparsity, Balanced Sparsity, and block sparsity (sparsity = 90%). In
(b), each row contains two block partitions (i.e., left side and right side of the dotted line).

Model Perplexity on Sparsity
60% 70% 80%

Block
Sparsity

block size: 4*4 80.6 83.2 88.1
block size: 8*8 82.4 86.4 95.2

block size: 16*16 83.7 88.3 99.5

Balanced
Sparsity

balance range: 25 78.3 78.6 79.4
balance range: 50 78.4 78.7 79.2

balance range: 100 78.4 78.6 79.2

Table 4: Perplexity results on PTB dataset with different
block size / balance range settings.

block from the same position of 1500× 1500 weight matrix
in our LSTM experiment, under the sparsity ratio of 90%.
The colored regions of the figure indicate non-zero param-
eters. Figure 7c shows that, for block sparsity, the remain-
ing blocks are randomly distributed, while intra-block, it is a
dense weight matrix, suitable for parallel acceleration. After
pruning, the weight map of Balanced Sparsity is very simi-
lar to random sparsity. Thus, Balanced Sparsity and random
sparsity can maintain good accuracy. Besides, the visualiza-
tion also indicates that Balanced Sparsity is in a balanced
weight distribution, compared with random sparsity, which
provides a valuable feature for GPU inference acceleration.
In other words, each weight matrix row contains two blocks
while each block contains three non-zero weights.

Sensitivity We also study the sensitivity of our Balanced
Sparsity method by tuning the balance range. To show this
more clearly, we take the block size of block sparsity as a
comparison. Table 4 shows how the pruned model accuracy
changes based on both different sparsity ratio and different
balance ranges / block sizes. In this case, Balanced Sparsity
keeps the same model accuracy regardless of the change of
balance range value. Even a very small balance range value
(i.e. 25) cannot hurt the model accuracy. On the contrary, for
block sparsity, the light change of block size can lead to a
significant perplexity increase.

Conclusion
In this work, we have proposed Balanced Sparsity, a new
fine-grained sparsity pattern to represent weight matrices in
deep neural networks. Experimental results on a set of neural
networks show that Balanced Sparsity achieves almost the
same model accuracy as random sparsity with various spar-
sity ratios. Our measurements in widely-used deep learn-
ing workloads show that our efficient GPU implementation
for Balanced Sparsity can achieve significant speedup, up to
3.1x on GPU without accuracy loss. Our method shows not
only the feasibility, but also the high potentials, for widely
deployment of sparsity in neural network inference.
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