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ABSTRACT

A Web crawler is an essential part of a search engine that procures
information subsequently served by the search engine to its users.
As the Web is becoming increasingly more dynamic, in addition
to discovering new web pages a crawler needs to keep revisiting
those already in the search engine’s index, in order to keep the
index fresh by picking up the pages’ changed content. Determining
how often to recrawl pages requires making tradeoffs based on the
pages’ relative importance and change rates, subject to multiple
resource constraints — the limited daily budget of crawl requests
on the search engine’s end and politeness constraints restricting
the rate at which pages can be requested from a given host. In this
paper, we introduce PoliteBinaryLambdaCrawl, the first optimal
algorithm for freshness crawl scheduling in the presence of polite-
ness constraints as well as non-uniform page importance scores
and the crawler’s own crawl request limit. We also propose an ap-
proximation for it, stating its theoretical optimality conditions and
in the process discovering a connection to an approach previously
thought of as a mere heuristic for freshness crawl scheduling. We
explore the relative performance of PoliteBinaryLambdaCrawl
and other methods for handling politeness constraints on a dataset
collected by crawling over 18.5M URLs daily over 14 weeks.
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1 INTRODUCTION

A Web crawler is an essential part of a search engine that procures
information subsequently served by the search engine to its users. It
does so by downloading the content of URLs that the search engine
is aware of, and storing their processed versions into the search
engine’s index, from which information relevant to a query can be
retrieved efficiently. The content of some of the URLs the crawler
visits is entirely new to the index. However, most of the web pages
the crawler downloads on any given day were by it multiple times
in the past. The crawler revisits them in order to keep the search
engine’s index — and its search results — fresh. Indeed, serving stale
content such as YouTube pages with taken-down videos or failing
to serve pages that the user knows to be relevant to her query due
to new content is a cause of user dissatisfaction.

Scheduling a freshness crawl, i.e., determining which web pages
in the index to re-download and when, must take into account
multiple resource constraints. On its own end, the number of crawl
requests a crawler can issue daily is constrained by the physical
limitations of the search engine’s infrastructure. On the other end,
the crawler must respect politeness constraints imposed by the hosts
it wishes to download the content from. Much like the crawler,
hosts’ infrastructure and financial feasibility limit the number of
requests they can serve in a given time period, and hosts have
preferences on how to allocate this budget. Many are willing to
allocate only a fraction of it to a search engine, and only as long
as the search engine brings them customers. These constraints
further complicate the problem of determining the optimal recrawl
policy: this optimization problem must take into account both the
importance of every web page and its change rate, and needs to be
have an algorithm efficient enough to handle very large page sets.

Our work introduces PoliteBinaryLambdaCrawl, the first op-
timal algorithm for freshness crawl scheduling in the presence
of non-uniform page importance scores and politeness as well as
the crawler’s own request rate constraints. Freshness crawl sched-
uling without regard to politeness has been studied extensively
[2, 6–10, 16, 22] starting with a work by Coffman et al. [11]. We
focus on the mathematical notion of freshness due to Cho and
Garcia-Molina [8] and use an optimization algorithm for it due to
Azar et al. [2] as PoliteBinaryLambdaCrawl’s subroutine. At
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a high level, PoliteBinaryLambdaCrawl iteratively “fixes" the
politeness-unconstrained policy computed by Azar et al. [2]. Our
key contribution is proving that this process is optimal and show-
ing its theoretical and empirical efficiency. Researchers studied
freshness maintenance under politeness constraints of a single in-
formation source [12], such as a host, and applied this result to
cache synchronization [5, 20]. However, to our knowledge, no prior
work has researched freshness optimization for many URLs under
many politeness constraints. So far, the main approach to ensuring
politeness has been throttling back the request rate to match the
host’s expectation at the level of crawler architecture [3, 21].

Specifically, this work’s contributions are:
• We present and prove the optimality of PoliteBinaryLamb-
daCrawl, a new scalable algorithm for computing a fresh-
ness crawl policy under multiple host politeness constraints
and the crawler’s own crawl rate constraint, in the presence
of non-uniform URL importance scores and change rates.
• Using PoliteBinaryLambdaCrawl’s proof of optimality,
we derive an approximation method that does not depend
on page change rates for crawl scheduling. Its politeness and
optimality depend on a condition on the distribution of URLs’
importance scores and change rates that we identify. This
result simultaneously provides the first optimality guarantee
for importance-proportional crawl scheduling [8], previously
thought to be a mere heuristic.
• We evaluate PoliteBinaryLambdaCrawl on a dataset of
18.5 million URLs crawled daily for 14 weeks. We investi-
gate the performance of PoliteBinaryLambdaCrawl and
strong alternatives, including the importance-based approxi-
mation mentioned above. We assess the approximation’s sen-
sitivity to the distribution of URLs’ importance and change
characteristics. Finally, we show that in practice PoliteBi-
naryLambdaCrawl scales even better than theory predicts.

2 BACKGROUND AND ASSUMPTIONS

Before presenting our own algorithm, we briefly survey the rele-
vant terms and describe a previously proposed crawl scheduling
algorithm that serves as a building block for ours.

2.1 Web Crawl

Web crawl is the process of downloading web pages’ content from
the corresponding URLs, e.g., by a search engine. The search engine
records this content in an index and uses it to determine the URLs’
relevance to incoming queries. Processed web page data may also be
served via question answering services or digital assistants. Thus,
the freshness of web page content in a search engine’s index, which
for now we define loosely as a measure of discrepancy between a
URL’s actual content and its indexed copy, is a major factor in the
quality of a search engine and services that rely on it.

The problem of freshness crawl scheduling consists in determining
a crawl schedule (i.e., download schedule) for a set of web pagesW ,
which we assume to be fixed, so as to maximize the freshness of
their copies in the search engine’s index. Freshness crawl is related
to but generally different from coverage crawl, whose objective is
to discover new URLs on the Web [18]. There are several types
of crawl schedules. In this paper, we assume that each URL’s is
crawled according to a time-homogeneous Poisson process:

Definition 2.1. A time-homogeneous randomized crawl schedule

(called crawl schedule in the rest of the paper) for a setW of n web
pages indexed by {1, . . . ,n} is a vector of values (ρ1, . . . , ρn ), called
crawl rates, where ρi is the Poisson rate for page i’s crawl.

2.2 Constraints on Crawl Rate

Web pages are located on machines called hosts that have associated
IP-addresses — possibly more than one. Generally, web masters do
not want search engines to request pages from hosts arbitrarily
often, since this reduces resources for serving other clients, and
impose politeness constraints on crawl rates. Like the notion of
crawl schedules, politeness constraints can be defined in several
ways. We use the following definition for host-associated politeness
constraints, with IP-associated constraints defined analogously:

Definition 2.2. For given host h with the setWh of all pages on it,
a politeness expectation constraint (called politeness constraint in the
rest of the paper) is a server-imposed crawl rate limit Rh such that∑

i ∈Wh

ρi ≤ Rh .

In reality the intent of a politeness constraint is to limit the max-

imum, not expected number of page requests that can be issued by
a crawler to a host in a given unit of time, e.g., per day. However,
in practice short-term crawl rate spikes violating politeness con-
straints usually do not trigger punitive measures from the host if
the crawl rate is below the constraint on average across several
days. Thus, the above expectation-based definition is justified.

Theoretically, a web page can be subject to both a per-host and a
per-IP politeness constraint. In practice, however, it is overwhelm-
ingly host constraints that limit crawl rates. If a host has several IP
addresses with a constraint on each, in addition to a proper per-host
constraint, then the sum of per-IP constraints is almost always more
lax the per-host constraint. In other words, IP constraints mainly
force the crawler to choose the address at which a page download
can be requested but don’t restrict downloads from a host per se.
Moreover, hosts that have only associated per-IP constraints tend
to have pages that change very infrequently, aren’t very popular,
or both, so per-IP constraints don’t limit search engines’ crawls in
this case either. Per-IP politeness constraints’ purpose is usually
different than limiting host access rates; therefore, in this paper we
focus on crawl scheduling under per-host politeness constraints only.

Last but not least, a search engine’s web crawl is also limited by
the search engine’s own capacity:

Definition 2.3. A request rate constraint is a search engine-imposed
crawl rate limit R such that

n∑
i=1

ρi ≤ R

for the set of all web pages {1, . . . ,n} in the search engine’s index.

2.3 Freshness crawl optimization

Freshness crawl optimization has been studied under a variety of
assumptions. We review that research in the Related Work section,
and here focus on the model [2] that serves as our starting point.

That model associates an importance score µi and a Poisson
change rate ∆i with every page 1 ≤ i ≤ n. The model implicitly



assumes that each page changes in a time-homogeneous way.While
not entirely accurate — a page’s change times can have notable pat-
terns [22] — this model has the advantages of being reasonably close
to reality [4, 6] and mathematically convenient. Importance µi can
also be thought of as the time-homogeneous Poisson rate at which
the page is served in response to the query stream, but can in general
be any positive stationary measure of a page’s significance. As with
the change rate, despite spikes in pages’ popularity/importance,
this assumption is a good tradeoff between accuracy and computa-
tional cost. At request time t , a page i’s freshness is binary-valued,
given by an indicator variable 1Fresh(i,t ) having value 1 if and only
if page i hasn’t changed by time t since it was last recrawled.

Under this model, the goal is to optimize the time-averaged ex-

pected freshness across all pages over a large time horizon T , i.e.

F ∗T = lim
T→∞

E

[
1
T

∫ T

0

( n∑
i=1

µi · 1Fresh(i,t )

)
dt

]
(1)

Azar et al. [2] demonstrate that for large page sets and under the
assumption of page changes being governed by Poisson processes,
finding the optimal randomized time-homogeneous scheduling pol-
icy — a vector of values ®ρ = (ρ1, . . . , ρn ) such that ρi is the Poisson
rate for page i – maximizing this expectation under the request rate
constraint amounts to solving the following optimization problem:

Problem 1 (Continuous-time policy under crawler’s page
reqest rate constraint).

Input: Request rate constraint R > 0 and importances and change

rates ®µ, ®∆ = {µi ,∆i }
n
i=1 s.t. µi ,∆i > 0 for all pages i inW .

Output: Update rates ®ρ∗ = (ρ∗1, . . . , ρ
∗
n ) satisfying ρi ≥ 0 for all

i and
∑n
i=1 ρi = R, and maximizing

F ( ®ρ) =
n∑
i=1

µiρi
ρi + ∆i

. (2)

F ( ®ρ) denotes the policy value for the policy parameterized by ®ρ.
If it wasn’t for the ρi ≥ 0 conditions for all i , which we call

semantic constraints, this would be an ordinary optimization prob-
lem under an equality constraint (crawler’s request rate constraint
д( ®ρ) =

∑
i ρi = R). Conceptually, the proposed optimization proce-

dure [2], summarized in Algorithm 1, consists of two stages:

(1) Ignore the ρi ≥ 0 conditions and solve Problem 1 as optimiza-
tion under an equality constraint, using Lagrange multipliers.
This method yields the following system of equations:

∇F ( ®ρ) = λ∇д( ®ρ)

n∑
i=1

ρi = R

Taking partial derivatives of F and д and other simple alge-
braic manipulations yield λ, the Lagrange multiplier, and a
vector of quasi-rates ®ρ = (ρ1, . . . , ρn ), some of which may
be negative. The solution is

ρi =

√
µi∆i
λ
− ∆i (i = 1, . . . ,n) (3)

λ =

(∑
i
√
µi∆i

R +
∑
i ∆i

)2
(4)

(2) Convert ®ρ to a vector ®ρ∗ of actual optimal recrawl rates using
an algorithm that sorts pages in the non-decreasing order of
µi
∆i

and finds i∗ s.t. Equations (3) and (4), when solved only

for pages with i ≥ i∗ in this ordering, yield only ρi > 0 for all
i ≥ i∗. Lines 3-9 of Algorithm 1 describe the search for this
threshold value precisely. These ρi values are the optimal
recrawl rates for pages i ≥ i∗. For pages i < i∗, ρ∗i = 0.

Algorithm 1: BinaryLambdaCrawl: Optimal Continuous-
time Policy Under Crawler’s Request Rate Constraint

Input:W – a set of web pages; R > 0 – request rate constraint; ®µ, ®∆ –
importance and change rate vectors of length n.

Output: ®ρ – the vector specifying optimal the crawl rate for each
page i ∈W

1 Sort µi , ∆i in non-descending order of µi /∆i for pages i ∈W
2 Let

r ←[
n∑
i=1

√
µi∆i , s ←[

n∑
i=1

∆i .

3 for i = 1 to n do

4 if µi /∆i ≤
( r
R+s

)2
then

5 ρi ←[ 0
6 r ←[ r −

√
µi∆i

7 s ←[ s − ∆i
8 else

9 ρi ←[
√
µi∆i (R + s)/r − ∆i

10 Return ®ρ

The correctness of Algorithm 1 is established by the following
claims [2]:

Theorem 2.4. Function F (Equation (2)) is strictly concave on

[0,R]n and has a unique optimal solution ®ρ∗.

Theorem 2.5. Assuming that web pages are sorted s.t.
µ1
∆1
≤ . . . ≤

µn
∆n

, Step 2 of the above procedure yields the optimal ®ρ∗.

Although Azar et al. [2] do not give this algorithm a name, we refer
to it as BinaryLambdaCrawl throughout this paper.

3 OPTIMAL CRAWL UNDER POLITENESS

CONSTRAINTS

To describe our approach to finding optimal crawl policy under
politeness as well as request rate constraints, we first formalize
this problem, then present our high-level algorithmic strategy and
intuition behind it, describe the algorithm formally, and finally give
a proof of its correctness.



3.1 The Formal Model

Before presenting the model and the algorithm, we summarize the
notation. Let
• W be the set of pages of size n for which we are computing
a recrawl policy.
•

⋃m
h=1 Sh =W be a partition of page setW intom subsets,

with each 1 ≤ h ≤ m corresponding to a host and Sh ⊆
W being the set of pages belonging to host h. A page can
belong to only one host, hence for any two distinct h and h′,
Sh

⋂
Sh′ = ∅.

• Rh be host h’s politeness constraint, s.t.
∑
i ∈Wh

ρi ≤ Rh .
• R be the request rate constraint, i.e.,

∑
i ∈W ρi ≤ R.

In practice, many pages belong to hosts without associated polite-
ness constraints. Theoretically crawlers are allowed to download
pages from such hosts virtually infinitely often, but realistically
pages from these hosts just aren’t popular or fast-changing enough
to warrant frequent recrawls. Mathematically, we don’t need to
distinguish between different such hosts, and therefore assume
w.l.o.g. that there is exactly one host h for which Rh = ∞. We also
assume that each finite politeness constraint Rh is smaller than our
request rate constraint: Rh < R. Finally, since we have a host with
an infinite politeness constraint, letting R =

∑
h Rh we have R ≤ R.

With these definitions in mind, finding the optimal page recrawl
rates amounts to solving the optimization problem below:

Problem 2 (Randomized continuous-time policy under po-
liteness and reqest rate constraints).

Input: crawler request rate constraint R > 0; importance scores and

change rates µi ,∆i > 0 for i = 1, . . . ,n; host partition
⋃m
h=1 Sh =

W = {1, . . . ,n}, host politeness constraints 0 < Rh ≤ R for each h

whenever Rh < ∞ such that R :=
∑
h Rh ≥ R;

Output: Recrawl rates ®ρ∗ = (ρ1, . . . , ρn )

maximizing F ( ®ρ) =
∑
i ∈W

µiρi
ρi + ∆i

subject to

∑
i ∈W

ρi = R (request rate constraint)∑
i ∈Sh

ρi ≤ Rh (∀1 ≤ h ≤ m) (politeness constraints)

®ρ ≥ 0 (semantic constraints)

3.2 The Approach

Solving Problem 2 requires non-linear optimization under inequal-
ity constraints, which, in general, could take time exponential in the
constraint number. Setting the semantic constraints aside for the
moment, the difficulty is in identifying the subset of the politeness
constraints that are saturated under the optimal solution ®ρ∗:

Definition 3.1. A recrawl rate vector ®ρ saturates a constraint Rh
if

∑
i ∈Sh ρi = Rh .

If we knew which politeness constraints Problem 2’s optimal solu-
tion saturates, we could treat them as equalities during optimization,
solving for them with the method of Lagrange multipliers.

Our main result is that one can find the optimal solution to Prob-
lem 2 efficiently by considering onlyO(m) constraint subsets, using
the following high-level approach:

(1) Solve the optimization as in Problem 1 under the request rate
constraint R only, ignoring all politeness constraints, using
BinaryLambdaCrawl. Since we assume R :=

∑
h Rh ≥ R,

the optimal solution ®ρ∗ for Problem 2 saturates the crawler’s
request rate constraint even if politeness constraints are taken

into account. Determine the hosts whose politeness con-
straints the optimal solution ®ρ∗0 of this step violates.

(2) For each host constraint Rh violated by ®ρ∗0 , apply Bina-
ryLambdaCrawl to the pages on that host, treating Rh as
an equality constraint. Then remove this host’s page set Sh
from further consideration, and subtract crawl rate Rh from
the overall crawl rate constraint R. Go to step (1) and keep
iterating until step (1)’s solution (on the remaining pages
and crawl rate budget!) obeys all politeness constraints.

Algorithm 2: PoliteBinaryLambdaCrawl: optimal algo-
rithm for Problem 2
Input: R > 0 – crawler’s request rate constraint;

®µ, ®∆ – importance and change rate vectors of length n each;
host partitionW =

⋃
Sh and host politeness constraints

0 < Rh ≤ R
Output: ®ρ∗ – vector of length n specifying the crawl rate per page.

1 ®ρ′∗ ← [ BinaryLambdaCrawl(R, ®µ, ®∆) // ignore politeness
2 if

∑
i∈Sh ρ′∗i ≤ Rh for every h then // politeness not violated

3 ®ρ∗ ←[ ®ρ′∗

4 Return ®ρ∗

5 foreach h s.t.

∑
i∈Sh ρ′∗i > Rh do // saturate violated constraint

6 ®ρ′∗ ↾Sh← [ BinaryLambdaCrawl(Rh, ®µ ↾Sh , ®∆↾Sh ). // restrict to
Sh

7 ®ρ∗ ↾Sh←[ ®ρ′∗ ↾Sh
8 W ←[W \ Sh
9 R ←[ R − Rh

10 ®ρ∗ ↾W←[ PoliteBinaryLambdaCrawl(R, ®µ ↾W , ®∆↾W )
11 Return ®ρ∗

Algorithm 2, called PoliteBinaryLambdaCrawl, implements
this intuition verbatim. Note that by the optimality of BinaryLamb-
daCrawl, if we are guaranteed that the optimal solution ®ρ∗ to
Problem 2 saturates the politeness constraint for a specific host h
— allocating the full permissible crawl rate Rh to its set of pages
Sh — we may readily obtain the optimal (in the sense of Problem
2) recrawl rates {ρ∗i : i ∈ Sh } via applying BinaryLambdaCrawl
(Algorithm 1) to this host. Moreover, as remarked in [2] in the
context of Problem 1 — and the same applies to the setting of
Problem 2 after adding the politeness constraints — the objective
function F ( ®ρ) is strictly concave on the convex polytope Q defined
by the problem constraints. Consequently, there is a unique global
maximum for the problem, and it is the only local extremum of
the domain Q. Thus, there is a unique set of saturated politeness
constraints corresponding to Problem 2’s maximum. Hence, es-
tablishing PoliteBinaryLambdaCrawl’s correctness amounts to
proving that every politeness constraint Rh to which PoliteBi-
naryLambdaCrawl applies BinaryLambdaCrawl on line 6 of
Algorithm 2 is in fact saturated by the optimal solution, so that we
are justified in executing line 7.



3.3 Correctness

PoliteBinaryLambdaCrawl’s key property is:

Theorem 3.2. Algorithm 2 finds the optimal solution for Problem 2

in time O(n logn +mn).

As described above, proving that repeatedly solving the sub-
problems on the saturated hosts as in Algorithm 2 leads to the
(unique) maximizer ®ρ∗ reduces to establishing the following lemma:

Lemma 3.3. For every input R, ®µ, ®∆, {(Sh ,Rh )}
m
h=1 to Problem 2,

let ®ρ∗ be the maximizer of Problem 2 with this input, and let ®ρ ′∗

be the maximizer of Problem 1 with the input R, ®µ, ®∆. If ®ρ ′∗ has∑
i ∈Sh ρ

′∗
i > Rh for some h (violating a politeness constraint), then

®ρ∗ necessarily has

∑
i ∈Sh ρ

∗
i = Rh (saturating this constraint).

Proof. Observe first that the maximizer ®ρ ′∗ was the unique lo-
cal extremum of F in the polytope Q1 given by Problem 1. Thus,
by the Lagrange multiplier method, the Lagrangian L1( ®ρ, λ) :=
F ( ®ρ) + λ(R −

∑n
k=1 ρk ) must obey ∇L1( ®ρ ′∗, λ′∗) = 0 for the op-

timal solution ( ®ρ ′∗, λ′∗). Computing the gradient of L1, we get
∂

∂ρi
F ↾ρ′∗i = λ′∗ = ∂

∂ρ j
F ↾ρ′∗j . For F defined in Eq. 2 this implies

µi∆i

(ρ ′∗i + ∆i )
2 =

µ j∆j

(ρ ′∗j + ∆j )
2 for all pages i, j ∈ {1, . . . ,n} . (5)

Next, consider the equivalent formulation of Problem 2 using La-
grange multipliers with the additional slack variables {q1, . . . ,qm },
where we rewrite the host politeness constraints as

∑
i ∈Sh ρi =

Rh − qh for qh ≥ 0. In this setting, we now have

L2( ®ρ, λ, λ1, . . . , λm ) := L1( ®ρ, λ) +
m∑
h=1

λh (Rh −
∑
i ∈Sh

ρi ) .

where the Karush-Kuhn-Tucker conditions dictate that λh ≥ 0 for
all h. By complementary slackness, we infer that λ∗h = 0 for every
h such that qh > 0 in the optimal solution ( ®ρ∗, λ∗, λ∗1, . . . , λ

∗
m ). For

any pages i ∈ Sh and j ∈ Sℓ on hosts h and ℓ we obtain the identity
∂

∂ρ∗i
F ↾ρ∗i −λ

∗
h = λ∗ = ∂

∂ρ j
F ↾ρ∗j −λ

∗
ℓ
, that is

µi∆i

(ρ∗i + ∆i )
2 − λ

∗
h =

µ j∆j

(ρ∗j + ∆j )
2 − λ

∗
ℓ where i, j ∈ {1, . . . ,n} . (6)

For contradiction, suppose that the politeness-unconstrained so-
lution ®ρ ′∗ satisfies

∑
i ∈Sh ρ

′∗
i > Rh yet

∑
i ∈Sh ρ

∗
i < Rh . Since∑n

i=1 ρ
∗
i =

∑n
i=1 ρ

′∗
i = R, there must exist some hosts ℓ , h such

that
∑
j ∈Sℓ ρ

′∗
j <

∑
j ∈Sℓ ρ

∗
j . In particular, there must exist a page

i ∈ Sh and a page j ∈ Sℓ such that
ρ∗i < ρ ′∗i whereas ρ∗j > ρ ′∗j . (7)

However, all partial derivatives of F , given by the mapping x 7→
µ∆/(x + ∆)2, are monotone decreasing in x ∈ [0,∞). In addition,
since we assumed that

∑
i ∈Sh ρ

∗
i < Rh , i.e., the optimal crawl rates

for host h do not saturate h’s politeness constraint, we must have
λ∗h = 0. Thus, for any ®µ, ®∆ > 0, Equations 6–7 imply that

µi∆i

(ρ ′∗i + ∆i )
2 <

µi∆i

(ρ∗i + ∆i )
2 ≤

µ j∆j

(ρ∗j + ∆j )
2 <

µ j∆j

(ρ ′∗j + ∆j )
2 ,

since λ∗h = 0 ≤ λ∗
ℓ
. This contradicts Equation 5 and thereby com-

pletes the proof. ■

The time complexity of PoliteBinaryLambdaCrawl follows
because it uses BinaryLambdaCrawl as a subroutine, and Bina-
ryLambdaCrawl involves sorting all the pages, incurring the cost
ofO(n logn). However, this sorting step needs to be done only once
during the first PoliteBinaryLambdaCrawl’s iteration – subse-
quent calls to BinaryLambdaCrawl don’t need to resort pages.
Each iteration of PoliteBinaryLambdaCrawl either discovers a
violated constraint, invoking BinaryLambdaCrawl and removing
the corresponding host from subsequent iterations, or returns the
final result. Thus, the complexity of iteration isO(mn), and the total
time complexity if O(n logn +mn).

3.4 Heuristic and Its Optimality

Using PoliteBinaryLambdaCrawl, aswell as BinaryLambdaCrawl,
in practice requires knowing pages’ importance scores and change
rates. Obtaining the change rates may be problematic, raising the
question: can we approximate PoliteBinaryLambdaCrawl with
another crawl scheduling method that doesn’t rely on them?

Consider an algorithm for Problem 1 that assigns

ρ
Imp
i =

Rµi∑n
i′=1 µi′

, (8)

i.e., crawls the pages at rates proportional to their normalized im-
portance. This algorithm is mentioned in the literature before (see,
e.g., [8, 11]), and we call it ImportanceCrawl.

So far, ImportanceCrawl has been known as a mere heuristic. The
following result, provides the first, to our knowledge, theoretical
characterization of ImportanceCrawl’s performance.

Proposition 1. If the value ratio µi
∆i

is the same for all i ∈ W ,

ImportanceCrawl is optimal in the absence of politeness constraints.

This follows immediately from the optimality of BinaryLamb-
daCrawl by plugging µi

∆i
= c , c > 0 into BinaryLambdaCrawl’s

pseudocode (Algorithm 1). In this case, (a) BinaryLambdaCrawl
assigns ρi > 0 to all pages, and (b) ρi = Rµi∑n

i=1 µi
for all i , which is

exactly the definition of ImportanceCrawl (Equation 8).
Furthermore, in the same way as PoliteBinaryLambdaCrawl’s

optimality is implied by the optimality of BinaryLambdaCrawl
via Theorem 3.2, the following holds as well:

Proposition 2. Consider the algorithm PoliteImportanceCrawl

that results from replacing BinaryLambdaCrawl with Importance-

Crawl in PoliteBinaryLambdaCrawl (Algorithm 2). If the value

ratio is the same for all pages i , PoliteImportanceCrawl is optimal

under politeness constraints.

Using the same reasoning, one can show that another popular
freshness crawl heuristic that we call ChangeRateCrawl, which
assigns recrawl rates in proportion to pages’ change rates, [2, 8, 11]:

ρChRi =
R∆i∑n
i′=1 ∆i′

, (9)

has the same optimality guarantees. Thus, ImportanceCrawl and
ChangeRateCrawl are equivalent for page sets with uniform value
ratios.

Since PoliteImportanceCrawl is not only oblivious of page
change rates but also doesn’t involve PoliteBinaryLambdaCrawl’s
page sorting step, its conditional optimality property can make it a



preferred alternative to PoliteBinaryLambdaCrawl, as long as
the value ratio statistics of the given page set are favorable. Our
experiments explore this connection.

3.5 Implementation Considerations

Deploying randomized crawl-rate-based policies computed by Po-
liteBinaryLambdaCrawl (and other algorithms in this paper)
involves an important caveat. Using a policy’s crawl rates to sample
a sequence of page crawl times from a Poisson process is sometimes
not enough to guarantee observance of politeness constraints in
practice. This is because hosts may require a time interval of a
certain length to pass between successive URL requests. While such
intervals imply politeness constraints expressed in terms of crawl
rates, the converse is not true – sampling may result in a fast se-
quence of page requests violating the host’s timeout requirements.

A solution to this problem is derandomizing the Poisson crawl
rates into a sequence of crawl times, either including the required
timeout between requests as a constraint during derandomization
[22] or using methods that guarantee that the timeout will be ob-
served with high probability [2, 14]. Azar et al. [2] also show that
derandomization improves policy performance in practice.

Implementing a crawling policy in a real search engine entails
other subproblems aswell, such as deciding how to assign individual
URL crawls to fetchers, crawler’s machines or processes that actually
download the content, so as to minimize synchronization overhead
between them. This task can be handled using existing methods
[13, 22]. In general, in light of such low-level considerations, the
contribution of our work is an algorithm for computing a high-
level politeness-compliant policy that meaningfully constrains the
crawler’s behavior but is sufficiently flexible to allow lower-level
handling of Web crawling’s intricacies.

4 RELATEDWORK

Web crawling is a large research area, and we refer the reader to a
survey by Olson and Najork [15] for a coverage of it. In particular, it
discusses research such as [13] on another important aspect of crawl
scheduling — the problem of assigning crawls of individual pages to
crawl processes. Due to that problem’s crawler architecture-specific
nature, we do not touch upon it in this work.

To our knowledge, no prior work has proposed a method for com-
puting an optimal crawl policy that takes into account both page
importance and politeness constraints. However, refresh crawl pol-
icy optimization without politeness, under different optimization
objectives and using different models for page change processes has
been studied widely [2, 6–10, 16, 22]. Cho and Garcia-Molina [8]
introduced the freshness-based optimization objective equivalent
to ours as well as the Poisson process-based page change model
that we use. However, they studied policies for this problem un-
der the uniform page importance assumption. In particular, they
show that in that case, the recrawl policy with rates proportional
to page change rates can be wildly suboptimal, as hypothesized
earlier by Coffman et al. [11]. For non-uniform page importance
and crawls under the crawler’s request rate constraint, an optimal
policy computation algorithm has been proposed in [2].

There are several other freshness crawl optimization objectives
and page change models that have also received attention in the
literature. For instance, Pandey and Olston [19] propose taking into

account the degree to which page changes affect search results,
Olston and Pandey [16] study information longevity, and Wolf et al.
[22] focus on an embarrassment minimization objective, where
pages likely to be most clicked get recrawled more frequently, under
several page change process types.

There has been little work on handling politeness constraints as
part of crawl optimization. In the literature, they are handled at the
level of crawler architecture, by appropriately throttling the stream
of page requests to hosts [3, 21], although Wolf et al’s model [22]
could be adapted to handle a variant of them.

Our model assumes its parameters to be known. Importance is
typically defined by the search engine itself based on available URL
information[19, 22], including PageRank [17]. Page change rates
can be learned from historical data, individually [9] or using page
similarities [1, 10].

5 EMPIRICAL EVALUATION

The goal of our empirical evaluation was two-fold:
• To explore the scalability of PoliteBinaryLambdaCrawl in
practice as a function of the number of URLs that need to be
crawled and as a function of the number of politeness con-
straints that BinaryLambdaCrawl’s unconstrained solution
violates.
• To assess the solution quatlity of PoliteBinaryLambdaCrawl

relative to politeness-respecting heuristic approaches, in-
cluding PoliteImportanceCrawl.

In terms of scalability, we see that PoliteBinaryLambdaCrawl’s
theoretical time complexity is overly pessimistic. In reality, Po-
liteBinaryLambdaCrawl’s running time depends on the number
of politeness constraints very weakly, with only a few iterations (see
Algorithm 2) of BinaryLambdaCrawlbeing enough to get the opti-
mal constrained solution. In terms of solution quality, the results on
an 18.5-million-URL dataset show that the tighter the politeness con-
straints are, the bigger advantage PoliteBinaryLambdaCrawl has
over the alternatives. Before presenting the results in detail, we de-
scribe our experiment setup. The dataset and code used in the exper-
iments are available at https://github.com/microsoft/MSMARCO-
Optimal-Freshness-Crawl-Under-Politeness-Constraints.

5.1 Experiment Setup

Dataset. We collected a dataset by crawling 26,598,973 URLs for
approximately 14 weeks using Microsoft Bing’s production web
crawler. For each of these URLs, we knew with high certainty
whether the URL’s host had a politeness constraint for Bing or
not. We set the crawler to request each page approximately once a
day, but occasionally crawls would fail for various reasons such as
temporary host unavailability or spikes in the crawler’s workload.
This set of URLs is also crawled regularly, although not nearly as
frequently, by the Bing search engine for the purpose of extracting
structured information (time tables, event data, etc). On every crawl
of a page, we applied Bing’s information extraction templates to
the page’s content, and considered the page as changed from one
crawl to the next if and only if the data extracted from its content
differed across the two crawls. These templates filtered out page
sections with highly changeable but not very meaningful content
such as advertisements and Related Links lists; thus, our page change

https://github.com/microsoft/MSMARCO-Optimal-Freshness-Crawl-Under-Politeness-Constraints
https://github.com/microsoft/MSMARCO-Optimal-Freshness-Crawl-Under-Politeness-Constraints


detection procedure was robust to noise.We used Bing’s importance
scores µi for these pages (Figure 1), ranging from 0 to 65535.
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Figure 1: Importance score histogram for the 18,532,326

pages with strictly positive change rates in our dataset. Pos-

sible scores range from 1 to 65536. The distribution is very

skewed, with most pages having importance less than 1000.

From the above data, we computed page change rate estimates
{∆̂i }i ∈W using the maximum-likelihood estimator for potentially
incomplete page change history [9]. Indeed, in spite of almost daily
recrawls, we could not guarantee that we observed every page
change, i.e., that each page changed at most once between succes-
sive recrawls. The change rates were measured in changes per day.
Out of the 26,598,973 URLs, 18,532,326 changed at least once during
the 14-week observation period. These are the pages we used in
the experiments.

Figures 1 and 2 show the characteristics of the resulting URL set.
Figures 1 shows that most of the importance scores are below 1000
out of possible 65536. Only ∼ 1.6M URLs out of 18.5M have scores
above 1000, i.e., significantly higher than average. Figure 2 describes
the dataset property that, according to Proposition 2, determines
the optimality of PoliteImportanceCrawl on it — the distribution
of URL value ratios µi/∆i (see Section 3.4). Ranking URLs in the
descending order of value ratio indicates that the value ratio can be
approximated very well by a constant. As with importance scores,
several hundred thousand URLs have markedly higher value ratios
than the rest.

Host Politeness Constraints. The 18,532,326 URLs on which we
evaluated policy quality came from 31599 hosts. Of these, only
1,688 hosts had politeness constraints, but they accounted for a

Figure 2: A ranking of 18,532,326 positive-change-rate URLs

in the decreasing order of their value ratios µi/∆i (see Sec-

tion 3.4). The value ratio distribution can be approximated

well by a constant across most of the URLs, except the very

head and tail of the ranking.

total of 17,144,883 of the above pages. Thus, just 1,387,443 URLs,
less than 7% of the total, could theoretically be crawled without
regard to hosts’ request rate limitations. For each host that had it,
its politeness constraint was measured in URL queries per day, like
pages’ change rates. In the experiments, we had 1688 simulated
hosts, one for each actual host with a finite politeness constraint
and one "virtual" host with an infinite politeness constraint that
accounted for the remaining 1,387,443 pages.

Unfortunately, we couldn’t use the hosts’ real-world politeness
constraints in the experiments. For each host, these constraints
were designed with all URLs on that host in mind. However, our
dataset included only a fraction of URLs from each host, and we
didn’t know the fraction of the host’s total change rate for which
our URLs accounted. Because of this, we couldn’t scale down the
known politeness constraints appropriately, and without scaling
these constraints were far too permissive for our page set.

Instead, for each host h we defined its politeness constraint as
Rh = Cp

∑
i ∈Sh ∆̂i , where

∑
i ∈Sh ∆̂i is the total estimated change

rate of h’s URLs in our dataset, and Cp is a dataset-wide "politeness
constraint coefficient". In the experiments, we varied Cp from 0.01
to 1 (see Figures 6 – 7), thereby varying constraints from very tight
to relatively loose.

The grouping of URLs by host and flags indicating whether each
host has a finite politeness constraint are available in the aforemen-
tioned dataset at https://github.com/microsoft/MSMARCO-Optimal-
Freshness-Crawl-Under-Politeness-Constraints.

Crawl rate constraint. In the experiments, we use various subsets
W ′ of URLs from the dataset described above. For every experi-
ment with URL subsetW ′, we fix the crawler’s own request rate
constraint to 20% of the total change rate of the URLs inW ′, i.e.,
R = 0.2 ·

∑
i ∈W ′ ∆̂i .

Algorithms and performance metric.We compared PoliteBi-
naryLambdaCrawl to two strong alternatives and one baseline:
• PoliteImportanceCrawl. As Section 3.4’s theory implies,
its performance can match PoliteBinaryLambdaCrawl’s
in certain settings. Our evaluation includes both these set-
tings and situations where PoliteImportanceCrawl’s opti-
mality condition is violated to various degrees.
• RespectfulBinaryLambdaCrawl, a version of BinaryLamb-
daCrawl we designed for this experiment that abides by
politeness constraints but at the cost of wasting crawl rate
budget. Specifically, a current common practice in dealing
with politeness constraints is adjusting the URL request rate
at the level of the crawler’s architecture as explained in
[3, 21], to ensure it does not exceed relevant politeness con-
straints even if the crawler would like to contact a given host
more frequently. RespectfulBinaryLambdaCrawl simu-
lates this behavior. It uses BinaryLambdaCrawl to compute
an optimal unconstrained policy, and then checks it against
each host’s politeness constraint. If this policy violates a con-
straint, RespectfulBinaryLambdaCrawl crawls that host
at the constraint rate. However, in this case the excess rate
allocated by BinaryLambdaCrawl to this host is wasted.
Nonetheless, RespectfulBinaryLambdaCrawl is a good
heuristic when politeness constraints are not very restrictive.

https://github.com/microsoft/MSMARCO-Optimal-Freshness-Crawl-Under-Politeness-Constraints
https://github.com/microsoft/MSMARCO-Optimal-Freshness-Crawl-Under-Politeness-Constraints


• PoliteUniformCrawl is an algorithm that serves as the
baseline. It operates like PoliteBinaryLambdaCrawl but
for each host with a violated constraint divides that host’s
constraint crawl rate equally among that host’s URLs, i.e.,
uses uniform crawl rate distribution instead of BinaryLamb-
daCrawl or ImportanceCrawl in Algorithm 2.

Denote the set of these algorithms and PoliteBinaryLamb-
daCrawl as A. We compute each algorithm A ∈ A’s policy
value FA by plugging its output policy parameters ®ρ along with the
learned change rates ®̂∆ and importance scores ®µ from Figure 1 into
Equation 2. However, our experiments are conducted on several
datasets and under various politeness constraints, which makes
policy values of the same algorithm on different datasets drasti-
cally different. To compare performance across datasets, we evalu-
ate algorithms w.r.t. the performance of the baseline, PoliteUni-
formCrawl, by comparing algorithms’ relative scores FArel :

FArel =
FA − Fbase

maxA′∈A FA
′
− Fbase

Here, FA is algorithm A’s absolute policy value in a given exper-
iment, Fbase is PoliteUniformCrawl’s performance there, and
maxA′∈A FA

′ is the maximum absolute policy value of any algo-
rithm participating in the experiment. Clearly, for any algorithm,
FArel ≤ 1. Also in our experiments FArel was always non-negative,
because PoliteUniformCrawl (Fbase ) happened to be the weak-
est performer in every experiment.

Software andhardware.We implemented all algorithms in Python
3.7 and ran them on a Windows 10 laptop with 16GB RAM and an
Intel quad-core 2.11GHz i7-8650U CPU.

5.2 Empirical Results

Scalability.Webegin studying PoliteBinaryLambdaCrawl’s per-
formance by examining its scalability as a function of the num-
ber of politeness constraints. Theory predicts PoliteBinaryLamb-
daCrawl’s number of iterations to scale linearly in the constraint
number, which could be prohibitively expensive in practice. Fortu-
nately, as Figure 3 suggests, in reality PoliteBinaryLambdaCrawl
makes no more than 6 iterations on our dataset with 1688 con-
straints, even in very tightly constrained scenarios with coefficient
Cp = 0.01. A possible reason for this is that PoliteBinaryLamb-
daCrawl’s running time depends on the number of constraints
PoliteBinaryLambdaCrawl activates per iteration— and hence on
the number of pages for which PoliteBinaryLambdaCrawl com-
putes final crawl rate values per iteration – rather than purely on
the number of constraints a problem instance has. Figure 3 shows
that if constraints are very tight (lowCp ), then PoliteBinaryLamb-
daCrawl is forced to find final crawl rate values for many URLs
in the first iteration, thereby making fast progress and solving the
problem after just a few iterations. If constraints are loose (high
Cp ), then the unconstrained solutions computed by BinaryLamb-
daCrawl in each iteration violate few of them, again ensuring that
the optimal constrained solution is reached after few iterations.

Figure 4 shows PoliteBinaryLambdaCrawl’s solution time as
a function of page set size, which varies from 100,000 to 18,532,326,
and the degree to which the problem is constrained, as measured by
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Figure 3: Number of URLs whose crawl rates weren’t final-

ized before k-th iteration of PoliteBinaryLambdaCrawl,

for politeness constraint coefficients Cp ranging from 0.01

to 1.0 on 18.5M URLs and 1688 hosts. Small Cp values indi-

cate tight constraints. They cause BinaryLambdaCrawl’s

unconstrained solution to violate many hosts’ constraints

in iteration 1 of PoliteBinaryLambdaCrawl. Accordingly,

PoliteBinaryLambdaCrawl solves for the correctly con-

strained crawl rates for these hosts’ URLs in the same iter-

ation, leaving fewer URLs for subsequent iterations. Thus,

smaller Cp values yield "lower" plots.

Cp varying from 0.01 to 1. The datasets used in this experiment are
"prefixes" of the full dataset sorted in the decreasing order of URL
value ratios. These plots suggest PoliteBinaryLambdaCrawl’s
nearly linear scalability in the number of pages. They also show
that Cp non-negligibly affects execution time.
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Figure 4: PoliteBinaryLambdaCrawl’s execution time for

prefixes of the full dataset from 100,000 to 18,532,326 pages,

and constraint coefficients Cp from 0.01 to 1. PoliteBina-

ryLambdaCrawl scales linearly with dataset sizes in this

range, but Cp affects the running time significantly.

Figure 5 gives additional insight into this dependence, varying
Cp on the full dataset of 18.5M URLs. It implies that PoliteBina-
ryLambdaCrawl’s dependence on constraint tightness is not only
significant but also non-monotonic: theCp = 0.4 instance is harder
to solve than Cp = 0.2 and Cp = 0.6.

Policy quality comparison. This set of experiments aims to an-
swer the question: under what circumstances does PoliteBina-
ryLambdaCrawl have a significant policy quality advantage over
strong heuristics, and when can these computationally cheaper
heuristics replace it? The first experiment, whose results are in
Figure 6, compares PoliteBinaryLambdaCrawl, PoliteImpor-
tanceCrawl, and RespectfulBinaryLambdaCrawl on the full
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Figure 5: PoliteBinaryLambdaCrawl’s execution time as

a function ofCp on the full dataset. The dependence is com-

plex and non-monotonic, which is indirectly corroborated

by Figure 3.

dataset for different degrees of constraint tightness Cp . When con-
straints are tight, PoliteBinaryLambdaCrawl outperforms the
second-best alternative, PoliteImportanceCrawl, by a large mar-
gin, but its advantage dwindles as constraints become looser. In
particular, RespectfulBinaryLambdaCrawl in addition to Po-
liteImportanceCrawl becomes a viable option. This is to be ex-
pected: when politeness constraints are loose, the optimal uncon-
strained solution produced by BinaryLambdaCrawl violates only
a few constraints, so RespectfulBinaryLambdaCrawl doesn’t
waste too much crawl bandwidth when adapting this solution to
fit the constraints perfectly.
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Figure 6: Relative policy quality of three algorithms on

the full dataset (18.5M URLs) for constraint coefficient Cp
varying from 0.01 to 1. PoliteUniformCrawl’s perfor-

mance is the weakest for all values of Cp , so its policy

score FArel is always 0 and we have omitted its plot for clar-

ity. PoliteBinaryLambdaCrawl’s advantage is greatest in

tightly constrained scenarios (low Cp ). As politeness con-

straints become less restrictive, PoliteUniformCrawl’s

and RespectfulBinaryLambdaCrawl’s performance pre-

dictably converges.

We hypothesize that PoliteImportanceCrawl performs well
on our dataset because, as Figure 2 demonstrates, its value ratio
distribution is fairly uniform. To test this hypothesis and assess
PoliteImportanceCrawl’s performance when this assumption is
violated, we ran PoliteBinaryLambdaCrawl and PoliteImpor-
tanceCrawl on top n pages from our dataset ranked as in Figure
2, with n ranging from 100,000 to 18,532,326. Note that for low
values of n, the dataset prefixes have very non-uniform value ra-
tio distributions, which should hurt PoliteImportanceCrawl’s
performance. Figure 7 shows that this is exactly what happens in
reality. In this experiment, we fixCp = 0.2 — a constraint coefficient

for which PoliteImportanceCrawl’s policy on the full dataset
is only ∼ 10% worse than PoliteBinaryLambdaCrawl’s (Fig-
ure 6). On the 100,000-URL dataset prefix, however, PoliteImpor-
tanceCrawl’s solution turns out to be 50% worse. At the same
time, as the prefix grows to sizes over 5,000,000, where pages from
the uniform middle of the value ratio distribution dominate, Po-
liteImportanceCrawl’s solution quality rebounds.
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Figure 7: PoliteBinaryLambdaCrawl vs PoliteImpor-

tanceCrawl on various prefixes of the full dataset sorted

in the decreasing order of value ratio (see Figure 2), with

constraint coefficient fixed at Cp = 0.2. Prefix sizes vary

from 100,000 to 18,532,326 URLs. As Figure 1 shows, pre-

fixes of size 100,000, 1,000,000, and 5,000,000 have very

non-uniform value ratio distributions, which hurts Po-

liteImportanceCrawl’s performance. For prefix sizes past

5,000,000, the value ratio distribution is more uniform and

PoliteImportanceCrawl’s performance approaches Po-

liteBinaryLambdaCrawl’s, as theory predicts.

6 CONCLUSION

This paper presented PoliteBinaryLambdaCrawl, the first opti-
mal algorithm for scheduling freshness crawl under the crawler’
request rate and hosts’ politeness constraints for pages with non-
uniform importance and change rates. PoliteBinaryLambdaCrawl’
central idea is an iterative reduction of this problem to a set of small
instances of crawl scheduling under a crawl rate constraint alone.
Empirically, PoliteBinaryLambdaCrawl’s biggest advantage over
alternatives is in settings with tight politeness constraints and page
sets with highly non-uniform value ratios.

We also introduced PoliteImportanceCrawl, an approxima-
tion algorithm that doesn’t use change rates for scheduling. Ap-
plying it in practice calls for verifying its uniform-value-ratio opti-
mality condition, which still involves measuring page change rates
but can be done on a small sample of pages. Even if value ratio
uniformity doesn’t hold exactly, our experiments show that it per-
forms well. This suggests a hybrid PoliteBinaryLambdaCrawl-
PoliteImportanceCrawl approach, whereby PoliteBinaryLamb-
daCrawl uses a very limited crawl budget to revisit pages with
high value ratios, and PoliteImportanceCrawl schedules crawls
for the rest. Evaluating this idea is a topic for future investigation.
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