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BMI challenges: robust, real-world performance

Performance far from natural motor conftrol
— Lower dimensionality

— Sluggish

— Less dexterous

Poor longitudinal performance
— Variable day-to-day performance

Variable individual outcomes
— "“"BMI llliteracy”

Little principled, mechanistic understanding = no ‘design
principles’
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Jarosiewicz et al., PNAS 2008; Moritz et al., Nature 2008; Ganguly & Carmena, PLoS Biol 2009;
Koyama ef al., J Comp Neuro 2010; Wander et al., PNAS 2013
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Orsborn et al, IEEE TNSRE 2012
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Can neural signal selection optimize learninge
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Subject learning is the performance bottleneck
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Enabling technology:
Modular, flexible brain interfaces

The implant:
— Chronic sub-dural access

— Minimal chronically
implanted hardware

— Modular design
hardware Enables:
adapter — Flexible recordings
. Instrumented « Electrical
artificial dura + Optical
chamber — Causal manipulations

« Stimulation
 Silencing
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Capability: Simultaneous mulfi-scale ephys
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Next steps: experiments to test how neural signals influence BMI learning




Summary: Closed-loop BMI design

Nevural
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« Revisiting system design to

accommodate, facilitate
learning and control

— Adaptive decoding
— Co-adaptation

— 'Loop design’

— Signal selection

Critical for robust interfaces
— Long-term stability
— Cross-subject generalization

Insights into control and learning
sfrategies in BMI = neural
inferface ‘design principles’
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