

Re-engineering brain-machine interfaces to optimize control and learning

Amy L. Orsborn

Microsoft Research April 11, 2019

- Performance far from natural motor control
 - Lower dimensionality
 - Sluggish
 - Less dexterous

- Performance far from natural motor control
 - Lower dimensionality
 - Sluggish
 - Less dexterous
- Poor longitudinal performance
 - Variable day-to-day performance

- Performance far from natural motor control
 - Lower dimensionality
 - Sluggish
 - Less dexterous
- Poor longitudinal performance
 - Variable day-to-day performance
- Variable individual outcomes
 - "BMI Illiteracy"

- Performance far from natural motor control
 - Lower dimensionality
 - Sluggish
 - Less dexterous
- Poor longitudinal performance
 - Variable day-to-day performance
- Variable individual outcomes
 - "BMI Illiteracy"
- Little principled, mechanistic understanding -> no 'design principles'

1. Neural "encoding" changes between BMI and arm movements

- 1. Neural "encoding" changes between BMI and arm movements
- 2. Neural "encoding" changes with practice and performance improvements

- 1. Neural "encoding" changes between BMI and arm movements
- 2. Neural "encoding" changes with practice and performance improvements

- 1. Neural "encoding" changes between BMI and arm movements
- 2. Neural "encoding" changes with practice and performance improvements

- Re-engineer BMIs:
 - Optimize learning and control

- Re-engineer BMIs:
 - Optimize learning and control

- Re-engineer BMIs:
 - Optimize learning and control
- Study learning in BMIs:
 - Neural mechanisms of learning and control

- Re-engineer BMIs:
 - Optimize learning and control
- Study learning in BMIs:
 - Neural mechanisms of learning and control

- Re-engineer BMIs:
 - Optimize learning and control
- Study learning in BMIs:
 - Neural mechanisms of learning and control

- Re-engineer BMIs:
 - Optimize learning and control
- Study learning in BMIs:
 - Neural mechanisms of learning and control

- Re-engineer BMIs:
 - Optimize learning and control
- Study learning in BMIs:
 - Neural mechanisms of learning and control

 Technology development for interfacing with brain networks

- Re-engineer BMIs:
 - Optimize learning and control
- Study learning in BMIs:
 - Neural mechanisms of learning and control

 Technology development for interfacing with brain networks

"Loop design" to optimize control

"Loop design" to optimize control

Do control loop rates influence performance?

Do control loop rates influence performance?

reedback Path

Do control loop rates influence performance?

Do control loop rates influence performance?

Shanechi*, Orsborn*, Moorman*, Gowda* et al., Nature Comms 2017

Do control loop rates influence performance?

Shanechi*, Orsborn*, Moorman*, Gowda* et al., Nature Comms 2017

Do control loop rates influence performance?

Rate-independent point-process filter (PPF)

Shanechi*, Orsborn*, Moorman*, Gowda* et al., Nature Comms 2017

slow control, slow feedback

Binned Decoded position Cursor movement Screen update Feedback path

fast control = 200 Hz (5ms bins) slow control = 10 Hz (100ms bins) fast feedback = 60 Hz (16.6 ms bins)
slow feedback = 10 Hz (100ms bins)

Fast control, Fast feedback

Fast control, slow feedback

slow control, slow feedback

Feedback path

 Faster control improves performance w/o fast feedback

Feed-forward control

Forward path

- Faster control improves performance w/o fast feedback
 - Feed-forward control
- Faster feedback improves performance
 - Feedback control

Binned Decoded position Cursor movement

Screen update

Forward path

- Faster control improves performance w/o fast feedback
 - Feed-forward control
- Faster feedback improves performance
 - Feedback control
- Feedback + control effects combine (~separate)

Forward path

- Faster control improves performance w/o fast feedback
 - Feed-forward control
- Faster feedback improves performance
 - Feedback control
- Feedback + control effects combine (~separate)

Control insights yield principled performance improvements

- PPF = fast, fast pointprocess BMI
- SB-KF = Kalman Filter
 - previous "state of the art"

Control insights yield principled performance improvements

- PPF = fast, fast pointprocess BMI
- SB-KF = Kalman Filter
 - previous "state of the art"

- 25-30% performance improvement
 - Faster feedback rate
 - Faster control rate
 - PPF model vs. KF Gaussian-assumption model

How to design a decoder for an unknown system?

How to design a decoder for an unknown system?

Goal: Robustly, reliably learn a subject's strategy regardless of the initial decoder

Goal: Robustly, reliably learn a subject's strategy regardless of the initial decoder

Subject may be trying to learn—cannot assume stationarity

Is it robust?

Is it robust?

- 56 sessions
- 4 different initialization methods

Is it robust?

- 56 sessions
- 4 different initialization methods

Is it robust?

- 56 sessions
- 4 different initialization methods

Is it robust?

- 56 sessions
- 4 different initialization methods

Is it fast?

Able to hit all targets: 13.1 ± 5.5 min

Max. performance: 20.75 ± 5.9 min

CLDA optimization further improves performance

 Adapt parameters each decoder iteration (ms scale)

 Adapt parameters each decoder iteration (ms scale)

Faster, more robust convergence

SmoothBatch	18.7 ± 3.2 min
bin-by-bin adaptation	6.5 ± 0.7 min

- Adapt parameters each decoder iteration (ms scale)
- Optimal feedback control model
 - Principled estimation of intention

Faster, more robust convergence

SmoothBatch	18.7 ± 3.2 min
bin-by-bin adaptation	6.5 ± 0.7 min

- Adapt parameters each decoder iteration (ms scale)
- Optimal feedback control model
 - Principled estimation of intention

Faster, more robust convergence

SmoothBatch	18.7 ± 3.2 min
bin-by-bin adaptation	6.5 ± 0.7 min

Re-aiming

Optimal Feedback Control

- Adapt parameters each decoder iteration (ms scale)
- Optimal feedback control model
 - Principled estimation of intention

Better intention estimation improves speed/accuracy tradeoff

SmoothBatch $18.7 \pm 3.2 \, \text{min}$ bin-by-bin $6.5 \pm 0.7 \, \text{min}$ adaptation

Faster, more robust convergence

Optimal Feedback Control

- ✓ Fast decoder adaptation can learn a subject's strategy
 - Decoder learns faster than the subject

- ✓ Fast decoder adaptation can learn a subject's strategy
 - Decoder learns faster than the subject
- ✓ CLDA can rapidly improve performance

- ✓ Fast decoder adaptation can learn a subject's strategy
 - Decoder learns faster than the subject
- ✓ CLDA can rapidly improve performance
- ✓ Achieves high performance quickly regardless of the initial decoder
 - Robust

How do we maintain performance?

How do we maintain performance?

 Neural recordings can change day-to-day

- Neural recordings can change day-to-day
- Can re-train CLDA each day
 - Avoid performance declines

- Neural recordings can change day-to-day
- Can re-train CLDA each day
 - Avoid performance declines

Can achieve high performance each day

- Neural recordings can change day-to-day
- Can re-train CLDA each day
 - Avoid performance declines
- Regular re-training doesn't eliminate variability
 - disrupts long-term learning ("skill")

Can achieve high performance each day But!

- -variable day-to-day.
- -No improvement

- Neural recordings can change day-to-day
- Can re-train CLDA each day
 - Avoid performance declines
- Regular re-training doesn't eliminate variability
 - disrupts long-term learning ("skill")
- Need decoding strategies compatible with long-term learning

Can achieve high performance each day

But!

- -variable day-to-day.
- -No improvement

1. decoder initialization

Allow plasticity

· Allow plasticity

Retain performance

Allow plasticity

- Retain performance
- Gradual shifts in ensemble

· Allow plasticity

- Retain performance
- Gradual shifts in ensemble

Co-Adaptation in Brain-Machine Interfaces:

Combining Smoothbatch decoder adaptation & neural plasticity

> A.L. Orsborn J.M. Carmena

Carmena Lab
UC Berkeley

Coadaptation provides multi-day performance retention, improvements

- Performance improvements build across days
- Improvements continue after decoder adaptation

Coadaptation provides multi-day performance retention, improvements

- Performance improvements build across days
- Improvements continue after decoder adaptation

 Maximize performance with CLDA

 Maximize performance with CLDA

 Maximize performance with CLDA

Brain might provide performance improvements beyond CLDA

Refinement

Refinement

Increased direction tuning

Refinement

 Increased modulation of BMI neurons

Performance improves because subject learns to reliably modulate neurons controlling the BMI

Increased direction tuning

Refinement

 Increased modulation of BMI neurons

Performance improves because subject learns to reliably modulate neurons controlling the BMI

Increased direction tuning

Refinement

- Increased modulation of BMI neurons
- Faster temporal recruitment

Performance improves because subject learns to reliably modulate neurons controlling the BMI

Increased direction tuning

Refinement

- Increased modulation of BMI neurons
- Faster temporal recruitment

Neural patterns stabilize over time

 Show hallmarks of 'skill learning' (e.g. Ganguly and Carmena, PLoS Biol 2009)

 Neural and decoder adaptation can interact synergistically

- Neural and decoder adaptation can interact synergistically
- Brain learning may be important for
 - Robust long-term performance
 - Skillful performance
- Learning involves refining recruitment of neural signals driving the BMI

- Neural and decoder adaptation can interact synergistically
- Brain learning may be important for
 - Robust long-term performance
 - Skillful performance

A Next step: scaling to higher dimensions?

 Learning involves refining recruitment of neural signals driving the BMI

- Neural and decoder adaptation can interact synergistically
- Brain learning may be important for
 - Robust long-term performance
 - Skillful performance

A Next step: scaling to higher dimensions? > Technology to study high DoF movements

Learning involves refining recruitment of neural signals driving the BMI

Can neural signal selection optimize learning?

Two types of learning happening:

1. Modulation: Generate reliable patterns of neural activity

- 1. Modulation: Generate reliable patterns of neural activity
- 2. Mapping: Relating patterns of neural activity to cursor movements

- 1. Modulation: Generate reliable patterns of neural activity
- 2. Mapping: Relating patterns of neural activity to cursor movements

- 1. Modulation: Generate reliable patterns of neural activity
- 2. Mapping: Relating patterns of neural activity to cursor movements

Many ways to measure neural activity:

Spikes

Spikes

Local field potentials (LFP)

Electrocorticography (ECoG)

- Closely correlated with behavior
- Poor longevity

- Closely correlated with behavior
- Poor longevity

- Relationship to behavior poorly understood
- Potentially longer-lasting

- Closely correlated with behavior
- Poor longevity

- Relationship to behavior poorly understood
- Potentially longer-lasting
- Which signal is easier to learn to control? Why?

Modular, flexible brain interfaces

Many ways to measure neural activity:

Electrocorticography (ECoG)

- Closely correlated with behavior
- Poor longevity

- Relationship to behavior poorly understood
- Potentially longer-lasting
- Which signal is easier to learn to control? Why?

Modular, flexible brain interfaces

Enabling technology: Modular, flexible brain interfaces

- Chronic sub-dural access
- Minimal chronically implanted hardware
- Modular design

Enabling technology: Modular, flexible brain interfaces

- Chronic sub-dural access
- Minimal chronically implanted hardware
- Modular design

Modular, flexible brain interfaces

- Chronic sub-dural access
- Minimal chronically implanted hardware
- Modular design

Modular, flexible brain interfaces

- Chronic sub-dural access
- Minimal chronically implanted hardware
- Modular design

Modular, flexible brain interfaces

- Chronic sub-dural access
- Minimal chronically implanted hardware
- Modular design

Modular, flexible brain interfaces

The implant:

- Chronic sub-dural access
- Minimal chronically implanted hardware
- Modular design

Enables:

- Flexible recordings
 - Electrical
 - Optical
- Causal manipulations
 - Stimulation
 - Silencing

- Combined µECoG, LFP, and spike measurements
- 32 movable penetrating electrodes (Gray Matter Research)
- 244 ECoG contacts

- Combined µECoG, LFP, and spike measurements
- 32 movable penetrating electrodes (Gray Matter Research)
- 244 ECoG contacts

1s-----

1s-----

Next steps: experiments to test how neural signals influence BMI learning

Summary: Closed-loop BMI design

- Revisiting system design to accommodate, facilitate learning and control
 - Adaptive decoding
 - Co-adaptation
 - 'Loop design'
 - Signal selection
- Critical for robust interfaces
 - Long-term stability
 - Cross-subject generalization
- Insights into control and learning strategies in BMI > neural interface 'design principles'

Thank you

Berkeley work (loop manipulations, CLDA, co-adaptation)

Jose M. Carmena and lab

Helene Moorman

Maryam Shanechi

Siddharth Dangi

Suraj Gowda

Bijan Pesaran and lab

Charles Wang, Jessica Kleinbart

Nia Channel Boles

Ryan Shewcraft

Jonathan Viventi (Duke)

Michel Maharbiz (Berkeley)

Funding

NSF GRPF

AHA pre-doctoral fellowship

NSF Career award (Carmena)

DARPA (Carmena; Pesaran)

NYU Challenge grant

L'Oreal USA

Email: aorsborn@uw.edu

Website: faculty.uw.edu/aorsborn