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Abstract—Road safety is a critical issue the world-over, and
the problem is particularly acute in developing countries, where
the combination of crowding, inadequate roads, and driver
indiscipline serves up a deadly cocktail. We believe that mobile
devices can play a positive role in this context by detecting
dangerous conditions and providing feedback to enable timely
redressal of potential dangers. This paper focuses on a specific
problem that is responsible for many accidents in developing
countries: the stopping behaviour of buses especially in the
vicinity of bus stops. For instance, buses could arrive at a bus
stop but continue rolling forward instead of coming to a complete
halt, or could stop some distance away from the bus stop, possibly
even in the middle of a busy road. Each of these behaviours can
result in injury or worse to people waiting at a bus stop as well
as to passengers boarding or alighting from buses.

We present FullStop, a smartphone-based system to detect
safety risks arising from bus stopping behaviour, as described
above. We show that the GPS and inertial sensors are unable to
perform the fine-grained detection needed, by themselves. There-
fore, FullStop is based on the view obtained from looking out to
the front of the vehicle using the camera of a smartphone that
is mounted on the front windshield. Using optical flow vectors,
with several refinements, FullStop running on a smartphone is
able to effectively detect safety-related situations such as a rolling
stop or stopping at a location that is displaced laterally relative
to the designated bus stop.

I. INTRODUCTION

Road safety is a critical issue worldwide. Road accidents

caused an estimated 1.25 million fatalities worldwide in 2013,

placing it in the top 10 causes of death worldwide [1]. This

is particularly severe in developing countries, with a rapidly

growing population of vehicles, inadequate road infrastructure,

and poor driver training and discipline. For instance, India

alone had almost 240,000 road fatalities in 2013, at a rate of

130 fatalities per 100,000 vehicles, while China had a similarly

high 105 fatalities per 100,000 vehicles, far higher than the

U.K. at 5, the U.S. at 13, and Singapore at 20 [1].

In this paper, we focus on a particular problem: the stopping

behaviour of buses. Buses are notorious in many cities for the

accidents they cause, with them even earning the unenviable

sobriquet “killer buses” in cities such as New Delhi [2]. A big

part of the problem is that the drivers are often in a hurry,

whether due to impatience or because of drive distance quotas

they are expected to fulfil, even as increasing congestion makes

it difficult for them to do so [2]. So drivers often cut corners.

This is more evident at bus stops, where drivers often engage

in a variety of unsafe behaviours, endangering the lives of

passengers [3]. Drivers could: S1: Perform a rolling stop,

wherein the bus keeps rolling forward even as passengers

Designated Bus Stop (DBS)

Direction
of motion

S1: Rolling Stop

Designated Bus Stop (DBS)

Direction
of motion S2: Stopping laterally

away from DBS

Fig. 1. Unsafe stopping behaviours

are alighting or boarding. S2: Stop away from the bus stop

laterally, i.e., in the middle of the road rather than in the

leftmost lane (we assume without loss of generality that

vehicles drive on the left-side of the road). S3: Stop away

from the bus stop longitudinally, either stopping short or

overshooting it, causing people waiting for the bus to rush

towards it.

The above issues are depicted in Fig. 1. Note that a “bus

stop” is often just a designated spot by the side of the road

itself rather than having a separate turn-out off the road for

buses to pull in to.

With the proliferation of sensor-rich smartphones, there is

a growing body of work on using these devices to monitor

driving, to detect such behaviours as speeding, sharp braking,

cornering, etc.. Our work here derives inspiration from this

body of work but focuses specifically on unsafe stopping

behaviour, which to our knowledge has not been studied

before. To this end, we present FullStop, a smartphone-based

system that uses the camera to monitor the stopping behaviour

of buses. This paper focuses on situations S1 and S2, while

S3 is present in our technical report [4].

The key challenge in detecting S1 and S2 lies in the fine

granularity of sensing required. For instance, consider the case

of a bus stopping at left extreme of the road, as it should,

versus it stopping one lane over to the right. These two cases

are poles apart from a safety viewpoint but may only represent

a difference of about 3m in location, too small to be reliably

detected using GPS. Likewise, a bus that is rolling forward at

say 5 Kmph would pose a significant safety risk versus one that

has fully stopped. However, as we show later, detecting rolling

at such low speed is challenging with GPS or an accelerometer

sensor. Further, GPS accuracy worsens in urban canyons.

To address these challenges, FullStop uses the smartphone’s
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camera, which is positioned to look out from the front of

the vehicle. At its core, our camera-based detection employs

optical flow computation to detect (a lack of) movement or a

shift in position even to a slight degree (e.g., a slow roll or

a slight shift in position). However, we have had to do much

fine-tuning to fit the specific problem context, as we elaborate

in later sections. We also make the following assumptions:

A1: The GPS coordinates of the designated bus stops (DBS)

along the bus route are known. A2: Instead of being recessed,

the bus stops could be at the left edge of a road itself, as is

the case in many cities.

We mention the related work in Section II and then discuss

the design of FullStop in detail in Section III. We then evalu-

ate FullStop, both via controlled experiments and experiments

in the wild in Sec. IV. Our results, based on over 140km of

smart-phone video data collected on city buses, over several

days and a variety of road scenarios, show FullStop can

detect the stop-of-bus event (S1) with low false positive rate

(FPR) and false negative rate (FNR) of 10-15%, a significant

improvement over detection using the GPS or accelerometer.

The lateral displacement (S2) detection algorithm too performs

with FPR and FNR of under 10%, even in challenging city

road conditions. Based on the data from the city buses, we also

quantify the occurence of unsafe stopping behaviours noted

above and show that these are indeed quite common.

II. RELATED WORK

Smartphones and similar hardware has been used in prior

work in various road transportation related applications. Ner-

icell [5] uses smartphones to detect various road and traffic

events such as potholes, honking, etc. Pothole patrol [6] too

uses sensors such as the accelerometer to detect road anoma-

lies, though using a dedicated measurement box. The work

in [7] uses smartphone-based crowd-sourcing for prediction of

bus arrival time. While our work is related to these in terms of

the use of a smartphone or similar sensing hardware, we focus

on road safety aspects, specifically the stopping behaviour of

buses, not considered thus far.

Camera-based sensing has also been used for traffic-related

applications. Signal Guru [8] used a dashboard-mounted

smartphone to detect traffic signals and deduce their timing,

to make traffic flow smooth. The iOnRoad app [9] uses a

similarly-mounted camera to do ranging with respect to the

vehicle in front, assuming well-marked, fixed-width lanes.

Other work has used external cameras to measure traffic; e.g.,

[10] does so in a developing regions context, with heteroge-

neous traffic and chaotic road conditions. While our work also

leverages the camera of a windshield-mounted smartphone,

our specific application is quite different. In particular, we use

camera-based sensing to detect movement and displacement

that is too fine to be reliably detected with other sensors.

There has also been much work focusng on using sensors for

improving road safety. High-end cars and self-driving cars [11]

include an array of sensors (e.g., RADAR, LIDAR) and

communication technologies such as DSRC and VANETs [12]

to improve safety. Of greater interest to us is work on

smartphone-based systems for improving safety. [13] uses

a smartphone’s inertial sensors to detect unintentional lane

departures of a moving vehicle. CarSafe [14] uses the front and

back camera, respectively, to monitor external conditions (e.g.,

following distance, lane trajectory) and also internal (e.g., the

driver’s state). This body of work inspires our work, although

both our application (stopping behaviour of buses) and the

setting (developing regions) are different. For instance, with

regard to lane position of a stopping event, our approach

(Section III-D) can depend on neither lane markers being

present nor there being measurable movement (since the bus

would have stopped).

Finally, we also note that there is growing interest in

insurance telematics using smartphones and/or other dedicated

sensors [15], [16]. There are a number of start-ups focused on

measuring driving for this purpose [17]–[20]. However, to

the best of our knowledge, none of this work considers the

problem of the stopping behaviour of buses, perhaps because

economics means that these start-ups are focusing on the

developed regions where this problem does not quite exist.

III. DESIGN OF FULLSTOP

We now describe the development of algorithms in Full-
Stop, aimed at detecting situations S1 and S2. Our algorithm

development has undergone many iterations, guided in each

step by experimental observations. Hence, we begin with a

description of our experimental data (Sec. III-A), and there-

after describe the various algorithms (Sec. III-B-Sec. III-D).

A. Data Collection
To develop and evaluate our various algorithms, we have

collected extensive video data on buses plying on various

bus routes in Mumbai. To mimic a real deployment setting,

a smartphone is mounted on the front-left windshield of a

bus (the driver sits on the front-right), with its back camera

looking out to the front of the bus. Since the phone cannot

be left unattended because of concerns regarding its physical

safety, we use a strong adhesive tape that helps hold the phone

firmly in place during data collection while also permitting us

to remove it easily at the end of the bus trip.

Since the set of visible features will likely vary significantly

between day and night, we collect data during both day and

night periods. Our algorithms assume that the buses ply on

city roads which are well lit at night time. This is true in most

scenarios (see Fig. 5), especially near designated bus-stops

where people wait.

As summarized in Table I, the data collected represents a

wide variety of roads, bus routes, traffic conditions, and time-

of-day. During these runs, our mobile app collected not only

video data but also GPS and accelerometer sensor readings.

Ground Truth Marking: To evaluate our algorithms, we

need two kinds of ground truth. First, in the case of a stop-

of-bus event (SBE), we need to know the time instant when

the bus stopped and when it started moving again, i.e., the

start and end of each SBE. Second, we need to know the

locations of the designated bus stops (DBS) on each route,
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TABLE I
SUMMARY OF DATA COLLECTED ON BUSES

Day Night

Number of trips 22 10
Avg trip length (km) 5.1 3.5

Total distance (km) 106.3 34.7
Avg trip duration (hr:min) 0:24 0:23

Total duration (hr:min) 8:29 3:48
Avg DBSs/trip 13.6 9.0

Total DBSs 285 90
Total unique DBSs 26 20

Avg SBEs/trip 21.1 18.7
Total SBEs 443 187

Video frames/time

FDBS FSBE-start FSBE-end

Stop of bus event (SBE)

Last frame where the
designated bus stop (DBS)
is visible

Stop-of-bus
start

Stop-of-bus
end

Fig. 2. Designated bus stop (DBS), stop-of-bus event (SBE)

and for each bus stop, where with respect to the DBS the bus

actually stopped (if it did stop at all, i.e., there was an SBE).

To mark the above ground truth, we manually went through

the videos offline. We used this offline procedure instead of

attempting to record the ground truth in real time, concurrently

with the data collection, since the latter approach would have

been tedious and error prone. We marked the video frame

numbers corresponding to the start and end of each SBE.

Note that the SBEs include those at DBS as well as other

locations such as traffic signals and any unplanned stops in

congested traffic. From the set of SBEs, we manually identified

the subset which corresponds to a DBS. To characterize where

with respect to a DBS the SBE occurs, we have manually

marked the video frame number corresponding to the last

frame where the bus-stop is visible. Fig. 2 explains this. In

this example, the bus stopped past the designated bus stop:

FSBE−start and FSBE−end come after FDBS .

B. Detecting Stop-Of-Bus Events (SBEs)

We first consider some simple alternatives and show their

limitations, which then motivate our camera-based approach.
1) GPS-speed based approach: The first approach to de-

tecting SBEs, we consider using the GPS sensor, which reports

location as well as the estimated speed of movement. We can,

in principle, apply a threshold on the speed estimate to infer

if the vehicle (containing GPS unit), is stopped or moving.

To evaluate the effectiveness of this approach, we use the

ground-truth marked data described above. For each video

frame, we have marked its correspondence to a stopped state or

a moving state. And for each such frame, we also have a GPS-

reported speed estimate1. We divide our trace into stopped

versus moving time periods, as per the marked ground truth.

Fig. 3 shows the cumulative frequency of the reported

speed values: a plot each is shown for the stopped versus

1Android API for GPS is a triggered update API. For a particular video
frame, we simply take last updated value of GPS speed as the speed estimate.
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Fig. 3. CDF of GPS speeds

moving time periods. As is apparent from the graph, the

natural threshold of 0m/s would result in both significant

false positives (moving state detected as stopped: � 15%) as

well as significant false negatives (stopped state detected as

moving: � 47%). Even a threshold as high as 2m/s would

result in over 30% false negatives and over 20% false positives.

These results are in consonance with the GPS real-time speed

estimation error of 3.1mph reported in SenSpeed [21].

Thus it is clear that use of GPS sensor is erroneous for our

purpose of distinguishing a rolling stop from a proper stop.

2) Accelerometer-based approach: The next possibility we

consider to detect SBEs is using the accelerometer. Intuitively,

we expect that when the bus is stopped, there would be less

jerkiness and vibrations than when the bus is moving. To build

an accelerometer-based vehicle state classifier, we considered

time windows of 1-second. Note that a significantly larger time

window is not suitable in our context, as an SBE may not last

more than a few sec, even at DBSs [3]. Each 1-second window

is marked with the ground truth: stopped versus moving.

We were unable to find prior work that uses accelerometer

for our specific problem of detecting vehicle stoppings. But

accelerometer usage has been explored for activity recognition

in the past [22], [23]. These works use time domain features

such as mean, standard deviation and energy as well as

frequency domain feature such as entropy. Along these lines,

we tried an SVM (Support Vector Machine) based classifier

with the following accelerometer-based features: mean, stan-

dard deviation, energy and entropy of the readings along the

vehicle’s direction of motion, and standard deviation along the

vertical direction. This gives an FPR of 21.1% and an FNR

of 30.4%. These values are little better than the use of GPS.

To dig deeper, we examine whether at all accelerometer

data from the moving and stopped states can be distinguished

as belonging to different distributions. For this, we employ

a standard Kolmogorov-Smirnov (KS) test on pairs of 1-

second worth of z-axis (vertical direction) data (at 20Hz).

We performed 23 such KS tests on a particular bus run with

23 SBEs. The null hypothesis was not rejected at the 95%

confidence level, 54% of the time. That is, with the given

accelerometer data, it was not possible to distinguish stopped

versus moving states. This observation matches the earlier

observation with the SVM classifier (which only used the

second moment, i.e. the standard deviation)2.

2We note however that both the KS test and the SVM features consider
only aggregate statistics and not the temporal pattern of the signal.

2018 10th International Conference on Communication Systems & Networks (COMSNETS)

67



Fig. 4. Accelerometer: Moving vs Stationary

Fig. 5. Radially outward optical flow: day, night

Fig. 4 plots the accelerometer readings along the two

axes for representative 2-second windows in the moving and

stationary states. We can visually observe what is shown in

the KS tests: the two states are not that different.

To explain this, we examined our video data closely. We

found that false negatives are primarily due to vibrations,

which happen even in stopped state, say because of the engine

in an old and rickety bus or the jostling of a crowd of

passengers climbing up or down steps to board or alight from

the (high-floor) bus. Conversely, we noticed that false positives

arise when there is very little vibration (on smooth roads) even

as the bus rolls into a stop or starts moving from a rest position.

Thus, in sum, distinguishing between stopped and moving

states based on the amount of vibrations, as measured by

the accelerometer is error-prone too. We now turn to the

design of the camera-sensor based classification approach. In

our evaluation in Sec. IV-A, we also consider combining the

camera-based classification with the accelerometer sensor, but

this has marginal benefits.

C. S1: SBE Detection

As we explored the various algorithm designs for the video-

based SBE detection, we used a subset of the road videos for

the analysis. This helped us in quickly exploring the space of

design options and converging on the effective choices. We

used a subset of 6 videos for this purpose.

The key technique that FullStop uses is that of computing

optical flow from images. Given two images, optical flow

calculates how the pixels or other features “flow” from one

image to the other. Flow vectors are used commonly in

video analysis to detect motion [24]. When the vehicle moves

forward with respect to the surrounding environment, we

expect to see flow vectors computed across successive frames

pointing radially outward. This is shown in Fig. 5.

Based on this intuition, we define a metric we term as the

Radial Flow Vector (RFV) metric, which just the sum of the

flow vectors’ radial components.

TABLE II
PRELIMINARY RFV ANALYSIS

Metric FPR(%) FNR(%)
RFVpos 9.8 24.0

RFVpos+lh 9.6 20.9
RFVpos+lhbot 11.9 14.5

Fig. 6. Optical flow due to: oncoming traffic, people

RFVall =
∑

i

�FVi.�ri (1)

Here FVi is the i’th flow vector across a pair of frames,

and ri is the unit outward radial vector passing through the

tail of FVi, and . denotes the dot-product of vectors.

The RFV metric we use as a feature for the classification

of a time-window as being in stopped or moving state, is the

average of the metric values computed across each successive

pair of frames in the time-window. For instance, we use a

frame rate of 10fps, then the RFV metric for a 1-second time

window will be the average of RFV metrics computed across

the 9 pairs of successive frames in that 1-second window.

There is a practical issue with the above metric, arising

when the bus is stationary. As a bus is stopped, several vehicles

could go past the bus, and these contribute flow vectors with

negative radial components (i.e. radially inward). Note that any

negative radial component flow vector could be caused only

due to overtaking/passing vehicles, or due to reverse motion

of the bus itself. Since the latter scenario is quite rare, we

modify the RFV metric as:

RFVpos =
∑

i

pos( �FVi.�ri) (2)

where pos(x) = x if x > 0, 0 otherwise. That is, we take

into account only those flow vectors which have a positive

radial component.

Table II summarizes the FPR and FNR of the various design

options we considered. The first row shows the results for the

RFVpos metric. We can see that the false negative rate is

quite high. On closer examination of several instances of false

negatives, we uncovered another practical issue with the RFV
metric, not addressed in RFVpos. This issue too arises when

the bus is stationary. There are flow vectors with positive radial

components (i.e., radially outward) caused due to oncoming

traffic. After all, a stationary bus has forward relative motion

with respect to oncoming traffic (example shown in Fig. 6(a)).

We realized that this is a problem especially on relatively

narrow roads with no central road divider or only a small

divider. To address this problem, we apply the intuition that

such ‘spurious’ flow vectors are mostly toward the right side
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TABLE III
EFFECT OF VIDEO RES. & FRAME RATE

FPR(%) FNR(%) Resolution FPS
11.9 14.5 1920 x 1080 30
16.7 17.2 960 x 540 30
13.2 5.4 960 x 540 5
10.7 6.0 960 x 540 3
19.2 9.2 960 x 540 1

of the video frame (where the opposing traffic appears). So

we further refine the RFV metric as:

RFVpos+lh =
∑

i∈LH

pos( �FVi.�ri) (3)

where LH is the set of indices of flow vectors in the left half

of the frame. This takes into account only those flow vectors

which have a positive radial component, and whose tails are

in the left half of the frame.

The second row of Table II shows the FPR and FNR for

the RFVpos+lh metric. While the FNR has decreased, it is still

quite high. Once again, we took a close look at the video frame

instances which contributed to such false negatives. This led

to us uncovering another contributing factor to false negatives:

people movement right in front of the vehicle, when it is

stopped at a traffic signal. We realized that the magnitude of

the flow vectors contributing to such false negatives was very

high. An example of this is shown in Fig. 6(b). To address

this source of error, we further tune the RFV metric as:

RFVpos+lhbot =
∑

i∈LHBOT

pos( �FVi.�ri) (4)

Here LHBOT is a subset of LH corresponding to the

bottom 20% by magnitude. That is, we discard the top 80%

of the flow vectors by magnitude. The intuition here is that if

a vehicle is in motion, we expect all flow vectors to have a

positive radial component, including the bottom 20%. This is

akin to the human brain deducing that the vehicle in which one

is sitting, is moving, even if there are only a few things in the

background which appear to be moving. Here the percentile

number 20 is chosen empirically: we found that our algorithm

is not very sensitive to the exact value so long as we discard

the top vectors by magnitude as outliers.

The third row of Table II shows the FPR and FNR results

for RFVpos+lhbot. The FNR has significantly reduced in

comparison with RFVpos+lh. We use this as our final RFV
metric: henceforth, RFV will refer to RFVpos+lhbot.

Video resolution, frame rate: How does the choice of video

resolution affect the classification accuracy, and how does it

affect the computational requirement? Thus far we have used

a video resolution of 1920x1080 at a frame rate of 30 fps.

Table III shows the FPR and FNR in classification for different

choices of video frame rate and resolution.

The main computational step during real-time classification

is the flow-vector computation; subsequent to that, we simply

have to apply a pre-learnt threshold on the RFVpos+lhbot met-

ric for the actual classification. The flow-vector computation

Fig. 7. Left lane divider vs Right lane divider

is, in turn, linear in the number of pixels. Thus the computation

required in each 1-second window is Tcomp ∝ F × Npixels,

where F is the number of frames per second.

We see in Table III that the classification accuracy decreases

with decrease in frame resolution. However, there is a signifi-

cant improvement in the classification accuracy with decrease

in frame rate. This is due to the fact that the flow vectors

computed across frames which are further apart in time are

less noisy as compared to when they are close together in

time. We see that the best accuracy is achieved at a frame rate

of 3fps. Reasonable FPR and FNR values are achieved for a

frame size of 960×540 (50% resolution in our camera) at this

frame rate. We thus use these parameter values in our RFV
based classification algorithm.

D. S2: Detecting Lateral Position (LatPosSBE)

Bus stopping safely at the left edge of the road, and stopping

unsafely one lane over, might only mean a lateral displacement

too small to be detected reliably with a GPS fix. So just as in

the case of S1 above, FullStop turns to using the camera. More

concretely, we wish to detect cases where the bus has stopped

in a lane which is not the left-most. For ease of explanation,

we shall consider a scenario where there are two lanes in

the direction of travel, and flag the stops on the right-lane as

“unsafe” – laterally away from the bus-stop.

A natural option to consider for the above detection is the

presence of lane markers and/or central divider.

The feature related to the central divider is based on the

intuition that the straight line in the image, corresponding to

the divider appears “different” when the bus is in the left lane

versus the right lane. This is shown in Fig. 7. The difference is

captured in terms of (a) θx, the angle the line segment makes

with the x-axis, and (b) yrt, the y-coordinate of the intersection

with respect to the right edge of the image frame.

To compute the above two metrics, we first detect all the

line segments in the image. We filter out lines whose θx ≤ 0◦

or θx ≥ 90◦ – cases where the central divider would make

such angles are implausible and such line segments likely

correspond to other features (e.g. a lamp post). We then

identify Lmed, the line segment with the median θx in the

above set; the feature for that particular image frame is then

the tuple (θx, yrt) of Lmed.

A problem with the above feature is that lane markers

are absent on most roads in developing countries, except

in highways/freeways. Central dividers (separating the two

directions of traffic on a road) are more common, but these

too are not universal on city roads.
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We therefore use another feature. This is based on the

intuition that when a bus is stopped on the right lane, other

vehicles generally overtake/pass the bus from its left side – in

fact, this is precisely the reason why such stops are unsafe.

To capture this, we compute a flow vector metric comparing a

given frame to its previous one. This flow vector is computed

using only the left half of the frame as we are only interested

in vehicles overtaking from the left side. We take the average

magnitude of those flow vectors which have a negative y-

component and a positive x-component (i.e. corresponds to

overtaking vehicles). We call this feature FVleft.

The above three metrics θx, yrt, FVleft are all averaged over

the frames corresponding to a 1-second duration starting from

the detection of the SBE: θ̄x, ȳrt, ¯FVleft. These averages are

then used to train a machine learning classifier.

Note that unlike the case of LongPosSBE detection where

we did not rely upon manual labels, here we have to use

manual labels in the training process. Hence, while for

LongPosSBE determination, we could afford a per-bus-stop

training, here we need a model which can work across roads.

We shall show in our evaluation that this is indeed possible.

IV. EVALUATION OF FULLSTOP

We now present an evaluation of the two mechanisms in

FullStop using data from roads of Mumbai. It is to be noted

that algorithms for detecting S1, S2 need to be run only in the

vicinity of DBSs. We may use GPS, or any other approximate

location mechanism to determine that the bus is in the vicinity

of a DBS and only then invoke the camera-based analysis.

A. Evaluating SBE Detection

This section presents the results of evaluation of the camera-

based mechanism to identify SBEs. We use the data collected

on the roads of Mumbai, as summarized in Table I. The

following results are presented for a frame rate of 3fps and

an image resolution of 960 x 540 (taking only the left half of

which will give 480 x 540).

Table IV summarizes the FPR and FNR metrics for the

evaluation of the RFV metric based identification of SBEs.

Rows 1-3 of the table present the results of the standard 10-

fold cross-validation, with SVM (Support Vector Machine)

as the underlying algorithm. We can see that performance

is significantly better than the alternatives based on GPS or

accelerometer (Sec. III-B): FPR and FNR are both under 11%.

In the first two rows, we have used day-time training

for classification in day-time, and likewise for night-time,

respectively. The third row presents the evaluation where we

do not distinguish between day versus night. We initially

expected that separate training for daytime versus nighttime

would be required as we likely have much less visibility of

finer features of the surrounding environment at night than

during the day. Contrary to this expectation, we find that the

same RFV based mechanism works well at night time too,

with night-time data used for training (row 2 in Table IV), with

classification accuracy being similar to that during daytime

(row 1). Furthermore, the accuracy remains similar even when

TABLE IV
EVALUATION OF RFV BASED SBE DETECTION

Approach Time FPR(%) FNR(%)

1 RFV Day 11.0 6.3
2 RFV Night 8.0 7.1
3 RFV All 10.9 7.8
4 RFV+Acc All 11.4 6.1
5 Train:RtA, Test:RtB Day 15.4 10.3
6 Train:RtB, Test:RtA Day 8.8 7.2
7 Train:RtA, Test:RtB Night 3.7 23.8
8 Train:RtB, Test:RtA Night 16.0 4.4

TABLE V
DATA USED FOR LATERAL POSITIONING

Left lane stopping Right lane stopping
Route-A(day) 34 mins (9 stops) 64 mins (13 stops)
Route-B(day) 29 mins (7 stops) 72 mins (14 stops)
Route-B(night) 15 mins (4 stops) 35 mins (7 stops)

all data, from the daytime and nighttime, is mixed together

(row 3). This is likely because even in night time, there are

enough static features in the surrounding environment visible

for the algorithm to be effective. Thus, no separate day versus

night training is necessary.

Combining camera and accelerometer sensors: Can the

RFV metric be used in combination with the accelerometer

data, to improve the overall classification accuracy, in a multi-

modal sensing approach? To answer this question, we consid-

ered the accelerometer features along with the RFVpos+lhbot

metric for SVM-based classification. Row 4 in Table IV shows

the results. We see that the use of the accelerometer sensor

neither significantly improves nor significantly degrades the

FPR or FNR. We also examined whether a decision-tree based

approach will result in an improved performance of the multi-

modal approach, but the results for these were similar to the

use of SVM (and hence not shown).

A disadvantage of the above approach is that we require

manually labeled training data. Clearly, it would be infeasible

to train and manually label video data for all roads. A relevant

question then is, can one road’s training data be used for

classification on another? To evaluate this, we identify two

different routes, A and B, in our dataset, and examine the effect

of training on one and testing on another. Route A is relatively

less congested and has better road conditions compared to

route B. Rows 5-8 in Table IV present these results. We see

that the FPR and FNR tend to increase in some cases but are

still better than for GPS and accelerometer based detection.

In terms of the prevalence of rolling stops at designated bus

stops (DBSs), in our dataset, we found (for a subset of 5 bus

runs analyzed manually), we observed that 9 of the 55 total

stops, i.e. nearly 1 in 6 stops were in fact unsafe rolling stops.

B. Evaluation of LatPosSBE Classification

We have evaluated our lateral position detection algorithm

as follows. Our aim is to detect whether the bus has stopped

in the correct lane. Although lateral displacement does happen

(see videos at http://tinyurl.com/z4vt4c5), our bus data set

has infrequent instances of this, thus making it unsuitable for
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TABLE VI
LATERAL POSITIONING RESULTS

Features FPR(%) FNR(%)
Optical flow 14.2% 23.8
Central divider 8.6% 20.7
All 5.4% 10.2

TABLE VII
MAXIMUM SUPPORTABLE FPS

Workload Max fps
Nil 32.36
No Threading (SBE detection) 2.48
Multi-Threading (SBE detection) 4.84
Multi-Threading (SBE detection 3.81
+ LatPosSBE classification)

evaluation of our algorithm. So we emulate stop-of-bus in the

right lane as follows. We hired a taxi and made it to stop on

the right side of the road. This allows us to have better control

over the experiments. Now since live traffic plies in the right

lane, it was difficult to halt the taxi in the right lane for an

extended period of time (of even a few seconds). Hence, for

this, we chose a set of places where civil work was going on

the right side of the road, and all the traffic is bound to travel

on the left lane. We found several different such spots on the

right side of the road and stopped the taxi at these spots. The

summary statistics of the data collection is in Table V.

Table VI gives results of a decision-tree classifier using

the features mentioned in Sec III-D. These results are for a

standard 10-fold cross validation. We see that both the optical

flow feature (FVleft) as well as the central divider related

features (θ̄x, ȳrt) are not individually as successful as their

combination. The combination of the 2 sets of features gives

an overall FPR & FNR of about 5% and 10% respectively.

V. FULLSTOP ANDROID APP

In order to test the efficacy of FullStop in real-time, we pro-

totyped an android application (510 LoC, excluding libraries).

We have used OpenCV library for vision related utilities. In

the current version, the application has two modules: SBE

detection and LatPosSBE classification. In our tests below,

we have run the app on an LG Nexus 5x phone. Table VII lists

the effective frames-per-second (fps) obtained for different

scenarios. Optical flow calculation is an essential part of both

the modules. We observed that the effective fps obtained is

below 3 fps, if optical flow is calculated without using threads.

Also, the CPU which is multi-core remains under utilized in

such a case. We found that, if two worker threads operate upon

two different parts of the frames, the effective fps obtained

is above 4, which is acceptable considering the fact that we

evaluated our algorithms for 3 fps (Sec. IV-A). Further, it is

observed that on adding LatPosSBE classification module,

which involes finding lines in a frame, effective fps drops

below 4 but remains above 3. It is possible to improve upon

this performance further, by using a GPU, if available; in

our current prototype, although the LG-Nexus phone has a

1.8GHz hexa-core 64-bit Adreno GPU, the library we have
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Fig. 9. FullStop app: SBE detection, LatPosSBE classification

used (OpenCV) does not support this. Improving our prototype

along this dimension is part of our future work.

Along with running optical flow, the application also poten-

tially needs to keep the GPS activated, to implement location

triggered camera operation, i.e. turn on camera only in the

vicinity of bus stops. When camera and GPS can be ON, is

the app sustainable in terms of energy consumption? In our test

runs on the road, we observed a near 20% fall in battery levels

when the app is operated for around 25 minutes. However,

when the phone is plugged-in using a 1.5A charger, it becomes

self-sustainable. Fig. 8 shows the phone’s energy levels with

and without plugging-in.

The prototype FullStop application shows the current view

of the camera as well as a status bar at the bottom which shows

the decision made by the two modules. Some screenshots of

the app are shown in Fig. 9. We also share the current version

of the apk here [3].
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Sample run of FullStop app on road:
To demonstrate the viability of the app under various real-

road scenarios, but with vehicle movement under our control,

we engaged a taxi and performed runs in day-time as well as

night-time. Fig. 10(a) shows a sample marking of ground truth

as well as the SBE detection algorithm for an illustrative time-

window. The vehicle is stationary in the window 0-14 seconds,

which is classified correctly by the app. Misclassification (false

positives) occurs in the interval 47-49 seconds, where vehicle

is classified stationary even though it is moving. This occurs

because during this time interval, another vehicle occupied

the whole view of the camera resulting in low RFV metric

value. Correct classifications occur in intervals 49-58 seconds

when vehicle was stationary and 58-125 seconds when it

is moving. Misclassification (false negatives) occurs again

in the window 125-130 seconds, where vehicle is classified

moving as opposed to stationary. This occurs due to people

crossing over from right to left, very close to the vehicle, hence

resulting in high RFV value. However, false classifications are

overall rare, with overall accuracy of over 90% in day as well

as night. The overall FPR was 2% and FNR was 9.6%; these

values are similar to that reported in Table IV in Section IV.

The overall classification accuracy for LatPosSBE was

81% in our test run. Fig. 10(b) shows a plot for LatPosSBE

classification for an illustrative time window of our test run. In

this plot, unmarked stretches of time represent the state when

the vehicle was moving. For instance, in this plot, the vehicle

was moving 0-8 seconds after which it became stationary in

the window 8-50 seconds. Recall here that the LatPosSBE

detector is triggered only after a vehicle is classified as

stationary. False SBE was detected at 4 seconds (vehicle at

very low speed), which in turn triggered LatPosSBE . Since

the vehicle was in the right lane, it was classified so.

This test run also revealed some situations in which the

LatPosSBE classification algorithm can be erroneous. In

heavily congested traffic, there is significant occlusion, due

to which we are unable to spot any lane dividers, and nor

are there (m)any optical flow vectors. In such situations, our

current algorithm has no feature to rely upon for classification.

Such situations arose in intervals 18-22 seconds and 36-39

seconds in Fig. 10(b). Misclassifications also occurred between

65-67 seconds where vehicle was in the left lane but classified

as in right lane. This too happened in congested traffic, but due

to straight lines on other vehicles to the right being confused

with the road divider. We are in the process of exploring the

use of other sensors such as the gyroscope to detect lane

changes [13], in combination with our current set of features,

to handle such scenarios of heavy optical occlusion.

VI. CONCLUSION

This paper has focused on an important aspect of road

safety: the stopping behaviour of buses. Using the camera sen-

sor of a windshield-mounted smart-phone, and a set of optical

flow based metrics, we have carefully designed algorithms in

our system, FullStop, to detect two unsafe behaviours: rolling

stops at designated bus stops (DBSs), and lateral displacement

from DBSs. We have evaluated the algorithms of FullStop on

an extensive set of data from city roads and shown that these

are effective in achieving low false positive and false negative

rates. We have also built a prototype Android app of FullStop
to show the practicality of our approach.
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