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Abstract— Driver inattention is one of the leading causes
of vehicle crashes and incidents worldwide. Driver inattention
includes driver fatigue leading to drowsiness and driver distrac-
tion, say due to use of cellphone or rubbernecking, all of which
leads to a lack of situational awareness. Hitherto, techniques
presented to monitor driver attention evaluated factors such
as fatigue and distraction independently. However, in order
to develop a robust driver attention monitoring system all
the factors affecting driver’s attention needs to be analyzed
holistically. In this paper, we present AutoRate, a system that
leverages front camera of a windshield-mounted smartphone
to monitor driver’s attention by combining several features.
We derive a driver attention rating by fusing spatio-temporal
features based on the driver state and behavior such as head
pose, eye gaze, eye closure, yawns, use of cellphones, etc.

We perform extensive evaluation of AutoRate on real-
world driving data and also data from controlled, static vehicle
settings with 30 drivers in a large city. We compare AutoRate’s
automatically-generated rating with the scores given by 5
human annotators. Further, we compute the agreement between
AutoRate’s rating and human annotator rating using kappa
coefficient. AutoRate’s automatically-generated rating has an
overall agreement of 0.87 with the ratings provided by 5 human
annotators on the static dataset.

I. INTRODUCTION

Driver inattention is one of the leading causes for road
accidents in the world. According to National Highway
Traffic Safety Administration (NHTSA), 15% of crashes in
the U.S. in 2015 were due to driver inattention [2]. Driver
inattention occurs when the drivers divert their attention from
the driving task to focus on other activity. The various factors
contributing to driver inattention are fatigue, drowsiness,
distraction including talking on the phone or with other
passengers, looking off the road, etc.

Driver attention monitoring aims to analyze the driver’s
state and behavior to determine whether the driver is atten-
tive. In general, a driver is considered to be attentive when
(s)he concentrates on the road ahead for the majority of the
time during the drive, but also scans the mirrors regularly to
maintain adequate situational awareness.

Traditionally, the factors affecting driver inattention such
as fatigue, drowsiness and distraction, have been evaluated
independently. For instance, some high end cars like Honda
CR-V and Accord [1], [3] constantly monitor steering wheel
input and raise alerts when the driver is frequently veering
out of the lane. However, these solutions are expensive and
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Fig. 1: AutoRate to predict driver inattention based on
specific and generic facial features. The figure on top shows
the videos captured and annotated ratings. The figure at
the bottom shows the use of AutoRate to predict driver
inattention over a long video

are not present in all the vehicles. Hence, several camera-
based ADAS systems have been designed. For instance, [44],
[6] propose smartphone-based drowsiness detection based on
analyzing features such as eye closure and yawn frequency.
In [45], [42] various algorithms have been proposed to detect
driver’s gaze information to assess driver distraction, e.g.,
eyes off the road.

Thus far, most of the techniques proposed [44] have
focused on monitoring the factors that affect driver’s at-
tention in individual silos. However, when humans (e.g.,
a supervisor or a passenger) assess a driver, they consider
all of these factors in combination. Therefore, to make an
effective assessment and to promote safe driving, we need to
develop a comprehensive driver attention monitoring system
that monitors and analyze all the factors affecting the driver’s
attentiveness. Such a system could be used to provide a
quantitative rating of driver attention.

Designing a system to derive an accurate driver attention
rating is challenging because: (i) Unlike typical image classi-
fication tasks, classifying a video snippet is more challenging978-1-7281-0089-0/19/$31.00 c©2019 IEEE



as the system needs to identify and extract spatiotempo-
ral information across sequence of frames to capture the
dynamics of driver attention. (ii) Ratings provided by
human annotators (even highly reputed ones) are subjective
and therefore differ from person to person, as the task of
rating is inherently ambiguous (e.g., the difference between
adjacent levels of attention rating is not clear-cut). This
results in ground truth not being precise, making it hard
for the prediction task. (iii) To our knowledge, there exists
no dataset with driver attention information in real-world
driving scenarios that could be used to train the system
comprehensively.

To address these challenges, in this paper we propose
AutoRate, a camera-based system to automatically deter-
mine the driver’s attention rating. We use the front cam-
era of a windshield-mounted smartphone, which gives a
60◦view of the scene centered on the driver. The objective
of AutoRate is to derive a driver’s attention rating using
the visual features from the camera feed, such that it is
equivalent to a rating provided by a human annotator looking
at the driver’s video. We use human annotation instead of
physiological sensors [5] to detect inattention as sensors are
intrusive. Further, due to the inherent subjectiveness of the
ratings provided by human annotators, “equivalent to” in
this context means making AutoRate “indistinguishable
from” human annotators rather than exactly matching a
particular human annotator. AutoRate derives a rating by
identifying and fusing spatiotemporal features that affect the
driver’s attention. AutoRate is trained and tested using an
extensive real-world dataset comprising over 2900 unique
video snippets, each of length 10 seconds, across 30 drivers
in a large city (i.e., 145,000 total images when sampled at
5 fps). We used 5 human annotators to rate each 10-second
video snippet on a 5-point scale to get ground truth driver
attention rating.

Since the objective of AutoRate is to derive a rating
that is indistinguishable from that of a human annotator,
we need to obtain ratings from human annotators. Unlike
typical image labeling tasks, the task of annotating video
snippets is inherently subjective because there is no clear-
cut definition of what constitutes (in)attentiveness. Therefore,
we need to rely on multiple human annotators for each video
clip. However, that brings up the question of how to reconcile
the disagreements in the ratings. One way to overcome this is
to eliminate the instances in which human annotators ratings
do not match, resulting in a reduced dataset. Another ap-
proach is to learn using privileged information (LUPI) [39],
[34], where confidence associated with a snippet is used
to distinguish between easy and difficult snippets. While
LUPI based techniques can be used, our objective is not
to distinguish between snippets (easy vs. hard) but rather
it is to make AutoRate’s rating of the driver’s attention
indistinguishable from human rating.

To this end, we evaluate AutoRate with three ap-
proaches: (1) Mode-based: In this approach, the mode of
the ratings for a video snippet among all the annotators, i.e,
the rating with the highest number of votes, is considered as

the ground truth rating. We then show AutoRate’s efficacy
using the F1 score metric in deriving driver’s attention
rating that closely matches the majority rating (Section V-
B). (2) Agreement-based: In this approach, we compute
the kappa coefficient (κ) that measures inter-rater agreement
between raters [41], [10]. This is considered as a more
robust measure than majority-based agreement. We compute
the kappa coefficient (κ) between AutoRate’s rating and
human annotators to show an agreement between the two
(Section V-C). (3) Turing test based [38]: In this approach,
a new human evaluator is presented with the ratings from
another human annotator and from AutoRate and is asked
to tell which rating came from a human vs. from AutoRate.
If the evaluator cannot distinguish between the ratings pro-
vided by humans and AutoRate, then AutoRate has done
a good job in providing a rating that resembles a human
annotator (See section V-E).

Our main contributions are, (1) We gather driver video data
(both static and driving setting) that can be used for building
a comprehensive driver attention system. (2) We propose a
method to exploit spatial and temporal facial features from
the video data to automatically rate driver attention in the
range of 1 to 5, where 1 implies least attentive and 5 implies
most attentive. (3) We propose a novel method for evaluating
our model, so as to incorporate the subjective nature of
decision making rather than avoiding the ambiguity.

II. RELATED WORK

Prevalent work on driver attention can be broadly classified
into sensor-based and camera-based techniques.

Sensor-based techniques: Lee et al. [23] propose a driver
safety monitoring system that gathers data from different
sensors such as cameras, electrocardiography, blood vol-
ume change sensor, temperature sensor, and a three-axis
accelerometer, and identifies if the driver is driving safely or
not. A kinect based system was developed in [11], where the
driver attention was monitored using color and depth maps
obtained from the kinect. The system analyzed eye gaze, arm
position, head orientation and facial expressions to detect
if the driver is making a phone call, drinking, sending an
SMS, looking at an object inside the vehicle (either a map
or adjusting the radio), or driving normally. In [47] and [7],
head tracking sensors and 3D range cameras were used to
monitor driver’s head pose and driver distraction. The above
techniques require installation of additional physiological
sensors into the vehicle, which is intrusive and cumbersome
to maintain. In contrast, AutoRate uses just a windshield-
mounted smartphone to monitor driver’s attention.

Camera-based techniques: Several camera-based ADAS
systems have been proposed to determine driver distraction
and fatigue [44], [6]. Dong et al. [13] present a review
of various state-of-the-art techniques proposed to detect
driver drowsiness, fatigue and distraction. Rezaei et al. [31]
present an ADAS system that correlates the driver’s head
pose information to road hazards by analyzing two camera
views simultaneously. The system combines the head pose
information with distance to the vehicle in front to reason



rear-end collisions. A technique to detect driver drowsiness
based on eye blinking pattern was proposed in [18]. These
approaches can only monitor specific aspects of driver’s at-
tention, however, to have a robust driver attention monitoring
system all the factors affecting the driver’s attention needs
to be monitored holistically. Vicente et al. [40] propose a
system to detect eyes off the road. The system uses head
pose information to detect where the driver is looking. In real
driving scenarios, head pose information alone may not be
sufficient to accurately determine where the driver is looking
as the driver can perform a quick scan by rolling the eyes.
Song et al. [36] describe a system to detect talking over the
phone using the microphone’s audio data and driver’s voice
features. Sheshadri et al. [33] detect driver cell phone usage
by analyzing the face view videos. The authors develop a
custom classifier to detect if the phone is present or not in
an image. In contrast, AutoRate takes a holistic approach
to identify and monitor all the factors that affect driver atten-
tion monitoring such as fatigue, drowsiness and distraction
using a windshield-mounted smartphone. AutoRate goes
beyond existing works [29] to derive a driver attention rating,
which can be used by insurance companies to determine the
premium, or to provide effective feedback to the drivers. We
show that deriving a robust driver attention rating is non-
trivial due to the ambiguity in rating driver’s attention. To
this end, we propose a deep learning system that combines
generic and specific facial features towards deriving a driver
attention rating. We show the efficacy of AutoRate on a
real-world dataset comprising of 30 drivers in a large city.

III. AutoRate DESIGN

We now present the design of AutoRate to determine
driver’s attention rating. The objective of AutoRate is to
derive a rating (in the range of 1 to 5) that is equivalent to
a rating provided by a human annotator.
Rating-1 represents inattentive and distracted driving,

e.g., talking over the phone or with other passengers for
the most part of 10 seconds. Rating-2 represents driver
being highly distracted, e.g., frequently looking off the road.
Rating-3 represents driver being moderately distracted,
e.g., looks off the road but not frequently. Rating-4
represents driver being slightly distracted, e.g., looks off
the road but for a short time period. Rating-5 represents
attentive driving, e.g., the driver concentrates on the road
ahead, while also scanning the mirrors regularly to maintain
situational awareness. Note that our rating of driver attention
is based on the driver behavior, and not on their driving. An
assessment of driving would likely need additional sensing
streams to detect sharp braking, jerks, honking, etc., and
would be quite challenging to do (and even more subjective)
if attempted based just on the driver-facing video.

We present two approaches for determining the rating from
the given video, in the first approach we use pre-trained CNN
to extract the generic features and then apply a GRU across
the frames to get a final representation of the entire video
snippet. In the second approach which we refer to as the
AutoRate architecture, besides having the features from a

CNN, we also have other specific features which are then
combined using GRU to get overall feature vector for the
video.

A. CNN (generic features) and GRU or (CNN + GRU)

As recent works [27] have shown that deep neural net-
works (DNNs) trained for one task capture relationships in
the data that can be reused for different problems in the
same domain. The pre-trained models have a strong ability
to generalize to images outside the training dataset. This has
led to transfer learning, where the idea is to use pre-trained
models such as VGG16 [35] trained on the ImageNet [12]
dataset, to extract bottleneck features. Figure 2(a) shows the
architecture of such an approach. These features are then
used to extract the temporal information. In detail, the input
to the network is a sequence of frames from a 10-second
video snippet. Each image is fed to a pre-trained VGG16
network that extracts bottleneck features at the first fully
connected layer. These features are then aggregated using
GRU to predict driver attention rating.

B. AutoRate Architecture

Figure 2(b) shows the proposed architecture of
AutoRate for determining driver attention rating.
The key idea is that for each input frame we extract both the
generic features and specific facial features. The intuition
here is that generic features capture high-level patterns in
a frame and specific facial features guides the network to
learn key actions performed by the driver, which may not
be captured by the previous approach that uses only generic
features.
AutoRate takes a sequence of frames as input; we

used a 10-second video snippet sampled at 5 frames per
second (fps), resulting in 50 frames. The input frames,
along with ground truth ratings, are fed to a series of pre-
trained networks to extract relevant features. The facial and
generic features obtained are separately fed into two different
sequential models, i.e., a series of GRU (gated recurrent
unit) [8] blocks to extract spatiotemporal information. The
features from the final layers of both the GRU models are
then concatenated to obtain the overall representation of the
video. We now discuss the building blocks of AutoRate’s
architecture.

1) Feature identification and extraction: As mentioned
earlier, AutoRate extracts two types of features, (i) generic
features and (ii) specific facial features.

Generic features: The idea of extracting generic features is
to ensure high-level object patterns in the image is captured.
To this end, we use the transfer learning approach outlined
in Section III-A above, with a pre-trained VGG16 [35] con-
volutional network being used to extract a low-dimensional
feature representation (or bottleneck features) of the frames.

Specific facial features: Generic features alone are not
sufficient to adequately capture the dynamics entailed in
driver attention monitoring. Therefore, AutoRate identifies
a comprehensive set of features that are relevant to the
rating task, viz., facial landmarks, eye closure, yawns, head
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Fig. 2: Design choices. (a) CNN + GRU design (b) AutoRate’s design and (c) Specific facial feature block.

pose, eye gaze, talking over the phone, and face area. These
features were identified after an extensive analysis of real-
world driving videos and understanding driver behavior [13].
We use state-of-the-art pre-trained models to extract these
specific facial features from a sequence of frames. Fig-
ure 2(c) shows the facial feature extraction block for each
frame. We now discuss the key facial features and describe
how these are extracted from an input image:
1. Facial landmarks: Facial landmark detection is a funda-
mental component in AutoRate to extract features. It aims
to localize facial feature points such as eye corners, mouth
corners, nose tip, etc. AutoRate uses facial landmarks to
detect eye closure, yawns, and eye gaze, which form the
features of interest. Real-world conditions call for the facial
landmark detection to handle (i) large head pose variation
due to frequent mirror scanning or looking off the road,
and (ii) diverse lighting conditions like sunny, shadows, etc.
There exists several techniques from active appearance model
to Convolutional Neural Networks (CNNs) to extract facial
landmarks from an image [19], [4], [15]. In this work, we
employ a pre-trained Face Alignment Network (FAN) to
extract facial landmarks.
2. Eye closure & yawns: Several studies have identified
behavioral measures such as eye closure and yawn frequency
to detect drowsiness [32]. AutoRate leverages facial land-
marks to detect eye closure and yawns [25]. Specifically, to
detect eye closure we use the eye aspect ratio (EAR) [37]
metric, which is the ratio of the height of the eye to its width.

Similarly, to detect yawns we use the mouth aspect ratio
(MAR) metric, which is the ratio of the height of the mouth
to its width. Unlike past work that has used EAR and MAR
to detect eye closure and yawns as signs of drowsiness,
AutoRate uses the raw EAR and MAR values as features
towards driver attention rating.
3. Head pose: Head pose information is a key feature
for determining where the driver is looking and monitoring
the driver’s alertness. In a real driving scenario, the driver
tends to scan her/his environment to maintain situational
awareness, hence head pose detection should be robust
to such variation. While head pose can be derived using
traditional techniques such as PnP (Perspective-n-Point) al-
gorithms [26], we employ a pre-trained CNN [21] due to its

robustness. The pre-trained network viz., Deepgaze [28] is
trained using datasets such as Prima [14], AFLW [24], and
AFW [20] to handle large pose variations.
4. Eye gaze:

In a driving scenario, eye gaze is also an important cue
to determine where the driver is looking in addition to head
pose. Hence, eye gaze information is important to determine
where the driver is looking [25]. We employ a standard
LeNet-5 [22] network that takes an eye patch as the input
and outputs the gaze information, viz., yaw and pitch values.
The input eye patch is obtained by considering the landmarks
associated with the eye region. We train the LeNet model
using in-the-wild MPIIGaze [46] dataset, which contains
213,659 images from 15 participants.
5. Talking over the phone: Talking over the phone while
driving is a form of distracted driving. Identifying talking
over the phone is a challenging task, as the phone object
varies in type and size. We are not aware of any pre-trained
network for phone detection, so we collected around 1200
sample images when the driver is talking on the phone
(by holding it up to their face) and manually marked the
bounding box around the phone. The labeled images with
bounding box of the phone was used to train a custom object
detector using CNNs. We use a pre-trained YOLOv2 [30]
network trained on COCO dataset [43], where we freeze all
but last few layers and fine tune the network with our dataset.
The final predictions are then restricted to only detection of
a phone and the corresponding bounding box in an image.
6. Face area: AutoRate uses face area as a feature
to determine the change in driver’s seating position, e.g.,
leaning forward or leaning back. To detect face area, we use
a robust face detection algorithm viz., Tiny Faces [17] that
can deal with extreme illumination, blurring, pose variation,
and occlusion.

2) Feature Aggregation:: We now describe how to aggre-
gate feature vectors (Vi) obtained for a sequence of frames
in a video snippet. The objective of the aggregation function
is to combine the feature vectors across frames (in our
setup it is 50 frames) to capture both spatial and temporal
information.

To this end, we employ a Gated Recurrent Unit (GRU),
which is a variant of LSTM that can model long-term



Dataset Driving Static Merged
Train Test Train Test Train Test

Rating-1 249 65 313 66 555 138
Rating-2 68 8 126 25 191 36
Rating-3 55 13 247 57 312 60
Rating-4 91 28 308 55 409 73
Rating-5 557 103 425 98 972 211

Total 1020 217 1419 301 2439 518

TABLE I: Dataset description with train and test split.

dependencies in the data [16]. A GRU has two gates viz., a
reset gate r, and an update gate z. The reset gate determines
how to combine the input with the previous memory, and the
update gate defines how much of the previous memory to
keep. In general, GRUs train faster and perform better than
LSTMs when the training data is less [9]. In AutoRate,
a GRU layer has 256 neurons and the feature vector (Vi)
from each frame is fed to a GRU layer. Finally, the output
layer is a softmax classifier resulting in 5-way classification
corresponding to the 5 rating levels.

IV. EXPERIMENTAL EVALUATION

In this section, we describe the real-world dataset collected
and the metrics used to evaluate AutoRate.

A. Datasets

We considered two datasets [25]: (i) Driving dataset,
where we collected data from real driving scenarios, and
(ii) Static dataset, where we collected data in a static vehicle
setting. We split the video into 10-second snippets, allowing
fine-grained driver attention analysis. Each 10-second video
snippets was then rated by the human annotators based on the
driver’s attention level, ranging from rating-1 (least attentive)
to rating-5 (most attentive). Note that, such an annotator
would not have access to the full range of signals (e.g.,
vehicle jerks, honks, etc.) that might inform the assessment
of a person who was actually at the scene. So this is a
limitation of our study.

We now provide a detailed description of our datasets.
1) Driving dataset: In this dataset, we collected real-

world driving data by deploying smartphones in a fleet of
10 cabs across multiple days1. In total 8 hours of data was
gathered across the 10 cabs. As mentioned earlier, we then
split the video’s into 10-second snippets. Finally, only a
subset of 10-second snippets is selected to ensure that the
correlation between consecutive videos is avoided. In total
we retained around 1200 video snippets from 10 drivers.
The training and test split for this dataset is shown in Table
I.We see that rating-5 has over 800 samples (out of the 1200
snippets in all) whereas rating-1 has fewer than 100 samples.
This reflects the situation that drivers are attentive most of
the time. Nevertheless, the instances of inattentiveness, even
if relatively few, could have serious safety consequences, so
it is important to be able to rate these accurately.

1HAMS Project: https:/aka.ms/HAMS

2) Static dataset: As noted above, the data is skewed
towards the driver being attentive and it is challenging
and also risky to gather inattentive driving data in real-
world settings. To get around this difficulty and augment
the inattentive driving data, we performed targeted data
collection with 20 different drivers in a static vehicle to
improve the data distribution for ratings 1 to 4. We asked the
driver to perform various actions (as realistically as possible)
corresponding to the definitions of each rating described in
Section III. Table I shows the training and test split for the
static dataset.

3) Merged dataset: To create this dataset, we merge both
the driving and static datasets. In total this dataset includes
data from 30 drivers with over 2900 videos each of 10
seconds. Table I shows the training and test split in the
merged dataset.

B. Evaluation metrics

We now describe the various metrics used for evaluation.
F1 score: It is a measure of test’s accuracy and is defined

as harmonic mean of the precision and recall.

F1 = 2 ·
P ·R
P +R

, (1)

where P and R represents the precision and recall, re-
spectively. Precision (P) is computed by first considering
each predicted class (i.e., predicted driver attention rating)
in turn and computing the fraction of predictions in that
class that are correct, i.e., match the ground truth. Then the
fractions are combined across the classes, using the weighted
arthematic mean to obtain the overall precision. The Recall
(R) is computed analogously, by considering the ground truth
classes instead of the predicted classes.

Kappa coefficient (κ) between two annotators [41]: It
measures agreement between two annotators and defined as,

κ =
Po − Pe

1− Pe
,

Po =

R∑
i

R∑
j

wijxij , Pe =

R∑
i

R∑
j

wijmij ,
(2)

where Po is the relative observed agreement between anno-
tators and Pe is the probability of chance agreement if the
annotators were totally independent. R represents the total
number of ratings (in our case, 5) and wij , xij and mij

corresponds to the weight, observed and expected values,
respectively. If the annotators are in complete agreement then
κ = 1 and if there is no agreement then κ = 0.

In this paper, we use quadratic weighted kappa [10],
where we treat disagreements differently, for e.g., difference
between ratings off by 2 is penalized more than ratings off
by 1. The weight assigned to each rating category is given
by,

wd = 1−
d2

(R− 1)2
, (3)

where d is the difference between ratings.
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Fig. 3: Confusion matrix obtained for AutoRate, for (a) driving, (b) static and (c) merged datasets. For each ground truth
rating, the row of numbers represents the percentage of predicted ratings from 1 to 5. The higher the percentage the darker
the shade of the cell.

V. RESULTS

We now present our evaluation of the CNN+GRU archi-
tecture and of the AutoRate for driver attention rating. We
also show the efficacy of our model on datasets captured
under various conditions.

A. Ground truth rating

Driver attention rating is a non-trivial task as there is no
clear-cut definition of what constitutes (in)attentiveness. In
some cases it may be hard for the annotators to distinguish
between driver frequently looking off the road against moder-
ately looking off the road. This results in ambiguity, where
the ratings obtained differ from one annotator to another.
Hence, it is important to first understand the agreement
between annotators before evaluating AutoRate’s efficacy.

In our experiments, we used five human annotators to
rate the 10 second video snippets. In the driving dataset,
the average agreement between all the five annotators is
0.88 and in static dataset the agreement is 0.91. The higher
kappa coefficient in the static dataset can be attributed to
the unambiguous and deliberate actions (e.g., simulated inat-
tentive driving) performed by the driver in a static vehicle.
Furthermore, the kappa coefficient for the merged dataset
is 0.94. This exhibits that there is no perfect agreement
among the five annotators and hence some of the video
snippets may not have true ground truth ratings. In light
of this, in the sections that follow, we evaluate AutoRate
using the three approaches noted in Section I, Mode-based,
Agreement-based, and Turing test based evaluation.

We asked the five annotators to rate the video snippets
based on their notion of driver attention, i.e., without pro-
viding them any guidelines or definition for each rating.
However, this resulted in poor agreement, with a kappa
of just 0.5 in the driving dataset. Hence, we proceeded to
provide the annotators some broad guidelines and definitions
for the various rating levels, to boost the degree of agreement.

B. Mode based evaluation

We now present results where we consider the mode of
the ratings for a video snippet among all the annotators
as our ground truth rating. Figure 4 shows the F1 score
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Fig. 4: F1 score for four methods for all three dataset(driving,
static, merged) and static2driving i.e. trained on static and
test on driving data

for AutoRate, CNN+GRU and other approaches across
all the three datasets. The results are obtained after doing
10-fold cross-validation across all the datasets. F1 score of
AutoRate and CNN+GRU is consistently higher than other
approaches. We also plot the F1-score for the model trained
on static data and fine-tuned on 1200 driving data. The F1
score reported 0.75 is purely on driving data, which is on par
with that of a model trained entirely on driving data, 0.87.
This indicates that our pre-trained model can be used for
different road conditions just by fine-tuning using a minimal
amount of data. Figure 3 shows the confusion matrix for
AutoRate, where each cell of confusion matrix shows the
percentage of predicted rating. The off-diagonal values are
high for adjacent rating levels indicating the ambiguity in the
ground truth which results in majority of misclassifications.

C. Agreement based evaluation

We now present evaluation based on the kappa coefficient
to quantify the agreement between AutoRate’s predicted
rating with the individual human annotator rating. Table
III shows the agreement between AutoRate, mode and
average rating among the 5 human annotators using the
kappa coefficient(κ). We first compute the mode and av-
erage ratings (rounded using the floor function) for each
video snippet across all the human annotators. We then



Datasets AutoRate vs Majority AutoRate vs Average
Driving 0.89 0.72
Static 0.87 0.82

Merged 0.9 0.83
Stat2Driving 0.83 0.77

TABLE II: Agreement between AutoRate and Major-
ity/Average ratings using kappa coefficient.

compute kappa coefficient between the human rating and
AutoRate’s rating using Equation 2.

It can be seen that for the driving dataset, AutoRate has
an overall agreement of 0.89 and 0.72 with the mode and
average ratings, respectively. Note that, for the same driving
dataset, among the 5 annotators the agreement was 0.89.
Further, AutoRate has around 0.9 agreement for mode and
0.83 average ratings provided by human annotators in the
merged dataset. This indicates that the driver attention rating
predicted by AutoRate matches closely with the ratings
provided by human annotators which is 0.88.

Figure 5 shows the agreement between the ratings obtained
by AutoRate and each individual human annotator across
all datasets. For the driving dataset, the kappa coefficient is
around 0.89. Given that the agreement among the human
annotators in driving dataset was itself low (i.e., 0.88), we
conclude that AutoRate is doing quite well in mimicking
a human annotator.

Method Acc F1 Mode κ Avg κ
HP + SVM 0.41 0.54 0.25 0.21

HP + EG + SVM 0.38 0.43 0.22 0.19
EB + yawning + SVM 0.33 0.36 0.12 0.11

HP + EG +EB + yawning + SVM 0.41 0.46 0.31 0.28
All facial features + SVM 0.68 0.63 0.68 0.62
All facial features + GRU 0.69 0.7 0.8 0.74

CNN + GRU 0.73 0.73 0.81 0.75
AutoRate 0.75 0.75 0.83 0.77

TABLE III: Comparison of model trained on static dataset
and tested on driving dataset for various feature combina-
tions. Note: κ denotes kappa coefficient used for inter rater
agreement. The abbreviations used in the table stand for Head
Pose (HP), Eye Gaze (EG) and Eye Blink (EB).

D. Ablation study

We also conducted an ablation study by combining various
features used to train the model on static dataset and test on
real dataset. Table III, shows the results of combination of
various features such as head pose, eye gaze, eye blink and
yawning. It shows that individual features are not enough for
determining driver inattention accurately. Our system uses a
combination of these features along with deep features to
detect driver inattention, which gives better results as shown
in Table III.

E. Turing test evaluation

We now report on a Turing test [38], where a new human
evaluator is presented ratings from another human annotator
and from AutoRate. The job of the evaluator is to tell
which rating came from the human vs. from AutoRate. If
the evaluator cannot reliably tell which rating came from
whom, then AutoRate would have done a good job in
rating driver’s attention. Note that the focus here is on having
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Fig. 5: Agreement between AutoRate ratings and human
annotators across datasets.

AutoRate be indistinguishable from a human annotator, not
on accuracy per se, although the latter would likely have a
bearing on the former.

On our unseen dataset (i.e., 782 test videos), we first de-
termined the ratings predicted by AutoRate. AutoRate’s
rating match with the human rating for 70% of the videos
(i.e., 549 out of 782). The samples that were misclassified
(i.e., 782-549=233 video snippets) were presented to 3 evalu-
ators along with the human rating and the AutoRate rating.
Each evaluator decided which of the ratings across the 233
snippets came from a human and which from AutoRate.
For each snippet, we picked the majority decision, i.e., where
two or three of the evaluators were in agreement. We found
that in 55% of cases, the majority decision was correct, i.e.,
it correctly called out human ratings vs AutoRate ratings.
Thus, the AutoRate ratings in majority of the cases is
perfectly indistinguishable from human ratings, i.e., based on
an unbiased coin binomial model we would have expected
the majority decision to have been correct 50% of the time,
with a standard deviation of 3%. Hence ratings derived by
AutoRate is mostly indistinguishable from a human, and
can be applied to rate driver attention effectively.

VI. CONCLUSION

In this paper, we have proposed AutoRate, a
smartphone-based system for driver attention rating.
AutoRate employs deep learning techniques that combine
generic and specific facial features towards deriving driver’s
attention rating. We have evaluated AutoRate on a real-
world dataset with 30 drivers. AutoRate’s automatically-
generated rating has an overall agreement of 0.87 with the
ratings provided by 5 human annotators on static dataset. In
addition, the results obtained on a model trained on static
dataset and tested on driving dataset is comparable to the
result obtained by training and testing on the driving dataset.
Our analysis shows that AutoRate’s driver attention rating
closely resembles a human annotator rating, thus enabling
automated rating system.2

2The features and code is available at https://github.com/
duaisha/AutoRate
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[37] T. Soukupová. Real-time eye blink detection using facial landmarks.
2016.

[38] A. M. Turing. Computing machinery and intelligence. In Parsing the
Turing Test, pages 23–65. Springer, 2009.

[39] V. Vapnik and R. Izmailov. Learning using privileged information:
similarity control and knowledge transfer. Journal of machine learning
research, 16(2023-2049):2, 2015.

[40] F. Vicente, Z. Huang, X. Xiong, F. De la Torre, W. Zhang, and D. Levi.
Driver gaze tracking and eyes off the road detection system. IEEE
Transactions on Intelligent Transportation Systems, 16(4):2014–2027,
2015.

[41] A. J. Viera, J. M. Garrett, et al. Understanding interobserver agree-
ment: the kappa statistic. Fam Med, 37(5):360–363, 2005.

[42] Y. Wang, T. Zhao, X. Ding, J. Bian, and X. Fu. Head pose-free eye
gaze prediction for driver attention study. In 2017 IEEE International
Conference on Big Data and Smart Computing (BigComp), pages 42–
46, Feb 2017.

[43] T. yi Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
and C. L. Zitnick. Microsoft coco: Common objects in context.

[44] C.-W. You, M. Montes-de Oca, T. J. Bao, N. D. Lane, H. Lu,
G. Cardone, L. Torresani, and A. T. Campbell. Carsafe: a driver
safety app that detects dangerous driving behavior using dual-cameras
on smartphones. In Proceedings of the 2012 ACM Conference on
Ubiquitous Computing, pages 671–672. ACM, 2012.

[45] Y. Yun, I. Y. H. Gu, M. Bolbat, and Z. H. Khan. Video-based detection
and analysis of driver distraction and inattention. In 2014 International
Conference on Signal Processing and Integrated Networks (SPIN),
pages 190–195, Feb 2014.

[46] X. Zhang, Y. Sugano, M. Fritz, and A. Bulling. Appearance-based
gaze estimation in the wild. In Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 4511–4520,
June 2015.

[47] Y. Zhao, L. Görne, I.-M. Yuen, D. Cao, M. Sullman, D. Auger, C. Lv,
H. Wang, R. Matthias, L. Skrypchuk, et al. An orientation sensor-
based head tracking system for driver behaviour monitoring. Sensors,
17(11):2692, 2017.


