
Metareasoning in Modular Software Systems: On-the-Fly Configuration
using Reinforcement Learning with Rich Contextual Representations

Aditya Modi1, Debadeepta Dey2, Alekh Agarwal2, Adith Swaminathan2,
Besmira Nushi2, Sean Andrist2, Eric Horvitz2

1 University of Michigan, Ann Arbor
2 Microsoft Research, Redmond

Abstract

Assemblies of modular subsystems are being
pressed into service to perform sensing, reason-
ing, and decision making in high-stakes, time-
critical tasks in such areas as transportation,
healthcare, and industrial automation. We ad-
dress the opportunity to maximize the utility of
an overall computing system by employing re-
inforcement learning to guide the configuration
of the set of interacting modules that comprise
the system. The challenge of doing system-
wide optimization is a combinatorial problem.
Local attempts to boost the performance of a
specific module by modifying its configuration
often leads to losses in overall utility of the
system’s performance as the distribution of in-
puts to downstream modules changes drasti-
cally. We present metareasoning techniques
which consider a rich representation of the in-
put, monitor the state of the entire pipeline, and
adjust the configuration of modules on-the-fly
so as to maximize the utility of a system’s op-
eration. We show significant improvement in
both real-world and synthetic pipelines across
a variety of reinforcement learning techniques.

1 INTRODUCTION

The lives of a large segment of the world’s population are
greatly influenced by complex software systems, be it the
software that returns search results, enables the purchase
of an airplane ticket, or runs a self-driving car. Software
systems are inherently modular, i.e. they are composed of
numerous distinct modules working together. As an ex-
ample, a self-driving car has modules for sensors such as
cameras, lidars which poll the sensors and output sensor
messages, and a mapping module that consumes sensor

Figure 1: Face detection and landmark detection mod-
ular system. The input is an image stream to the face
detection module which outputs locations of faces in the
image which are then input to the face landmark detec-
tion module which outputs locations of eyes, nose, lips,
brows etc on the detected face landmark modules. The
metareasoning module receives the input stream of im-
ages along with intermediate outputs of the face detector
to dynamically decide the configuration of the pipeline
such that it optimizes the end system loss.

messages and creates a high-resolution map of the imme-
diate environment. The output of the mapping module is
then input to a planning module whose job is to create
safe trajectories for the vehicle. These distinct modules
often operate at different frequencies; the camera mod-
ule may be producing images at 120Hz while the GPS
module may be producing vehicle position readings at
1000Hz. Furthermore, they may each have their own set
of free parameters which are set via access of a configu-
ration file at startup. For example, the software serving
as the driver of a camera in the self-driving pipeline may
have a parameter setting for the rate at which images are
polled from the camera and another parameter for the
resolution of the images. Similarly, the function of the
mapping module may be controlled by a parameter that
specifies the maximum amount of memory it is allowed to
consume, leading to the continual removal of information
about more distant and thus less relevant map content.

Large software systems typically are composed of a set of
distinct modular components. The operating characteris-

ar
X

iv
:1

90
5.

05
17

9v
1

 [
cs

.L
G

]
 1

2
M

ay
 2

01
9

tics of all of the components are usually manually config-
ured to achieve system performance targets or constraints
like accuracy and/or latency of output. Configurations
of parameters may result from the tedious and long-term
tuning of one parameter at a time. Once such nominal
configurations have been produced, they are then held
constant during system execution. The reliance on such
fixed policies in a dynamic world may often be subopti-
mal. As an example, modules may take different amounts
of time depending on the specific contents of the inputs
they receive.

As a running example, we illustrate a pipeline for ex-
tracting faces with keypoint annotations from images in
Figure 1. A natural performance metric for the pipeline
might blend the prediction latency and accuracy, where
the latency of a face-detection module may vary dramati-
cally based on the number of people in the camera view.
In this case, one might prefer switching to a parameter
setting which allows the face detector to sacrifice some
accuracy but which is much faster hence raising the over-
all utility of the entire pipeline. Also modules which are
upstream from the face detector like the camera driver
module might ideally throttle back the rate at which it
is producing images since most of these images will not
get processed anyways, due to a bottleneck at the face
detector module. Attempts to separately optimize dis-
tinct modules can often lead to losses in utility Bradley
(2010) because of unaccounted shifts in the distribution
of outputs produced by upstream modules.

Revisiting the self-driving car example, a basic utility
function is to simply navigate passengers to their destina-
tion safely and in a reasonable amount of time. Highlight-
ing the contextuality again, the emphasis on driving time
might be higher when trying to get to an important meet-
ing or a flight than going grocery shopping. Furthermore,
the utility function will typically be deeply personal to
the user and has to be inferred over time. Importantly,
this is a complex pipeline-level feedback which is hard to
attribute to individual components.

Optimizing the configuration of large modular systems
is challenging for the following reasons: 1. Changing
the parameters of an upstream module can drastically
change the distribution of inputs to downstream modules.
Jointly choosing configuration for each module leads to a
combinatorial optimization problem where the space of
assignments is the cross product of the action space of
the parameters of each module. 2. Even if we solved the
combinatorial optimization problem, a fixed configuration
is not good across all inputs. Hence, we need to choose the
configuration in an input-adaptive manner. This decision
about a particular module’s parameter assignment has to
be made before input is passed through it. 3. There are

challenges of credit assignment about how much each
particular parameter assignment, for each module along
the way, contributed to the final utility. For non-additive
utility functions, this is especially challenging Daumé III
et al. (2018). 4. Finally, the metareasoning process by
itself should add negligible latency to the original system.
If the cost of metareasoning is significant, it may be best
to run the original pipeline with different configurations
and select the best performing assignment.

In this work, we leverage advances in representation and
reinforcement learning (RL) to develop metareasoning
machinery that can optimize the configuration of modular
software systems under changing inputs and compute en-
vironments. Specifically we demonstrate that by having
a metareasoner continuously monitor the entire system
we can switch parameters of each module on-the-fly to
adapt to changing inputs and optimize a desired objective.
We also study the distinction between attainable perfor-
mance between choosing the best configuration for the
entire pipeline as a function of just the initial input, versus
further choosing the configuration of each module based
on all the preceding actions and outputs. We experiment
with a synthetic pipeline meant to require adaptivity to
the inputs, and we find that by doing so at each mod-
ule, we improve by roughly 50% or more over the best
constant assignment, and typically by a similar margin
over the choice of a configurationn just as a function of
the initial input. For the face and landmark detection
pipeline 1, we use the activations of a pretrained neural
network model as a contextual signal and leverage this
rich representation of context in decisions about the con-
figuration of each module before the module operates on
its inputs. We characterize the boosts in utility provided
via use of this contextual information, improving 9% or
more across different utility functions as opposed to the
best static configuration of the system. Overall, our ex-
periments demonstrate the importance of online, adaptive
configuration of each module.

2 RELATED WORK

RL to control software pipelines: Decisions about com-
putation under uncertainties in time and context have
been described in Horvitz and Lengyel (1997), which
presented the use of metareasoning to guide graphics
rendering under changing computational resources, con-
sidering probabilistic models of human attention so as to
maximize the perceived quality of rendered content. The
metareasoning guided tradeoffs in rendering quality under
shifting content and time constraints in accordance with
preferences encoded in a utility function. Principles for
guiding proactive computation were formalized in Horvitz
(2001). Raman et al. (2013) characterize a tradeoff be-

tween computation and performance in data processing
and ML pipelines, and provide a message-passing algo-
rithm (derived by viewing pipelines as graphical models)
that allows a human operator to manually navigate this
tradeoff. Our work focuses on the use of metareasoning
to replace the operator by seeting the best operating point
for any pipeline automatically.

Bradley (2010) proposed using subgradient descent cou-
pled with loss functions developed in imitation learning
in order to jointly optimize modular robotics software
pipelines which often involve planning modules, when
the modules are differentiable with respect to the over-
all utility function. This is not suited to most real-world
pipelines with modules described not with parameters
but lines of code. In this work we instead develop fully
general methods, which only assume the ability to evalu-
ate the pipeline. Another form of pipeline optimization
is to accordingly pick or configure the machine where
each module should be executed. Methods in this am-
bit (Mirhoseini et al. (2017)) are complementary to this
work in that optimizing the pipeline configuration per se
remains a problem even with optimal device placement.

RL in distributed system optimization: The use of ma-
chine learning for optimizing resource allocation in dis-
tributed systems for data center and cluster management
has been very well studied (Lorido-Botran et al. (2014);
Demirci (2015); Delimitrou and Kozyrakis (2013, 2014)).
Many of these techniques use supervised learning as well
as collaborative filtering for resource assignment, which
rely on the assumption of having a rich set of processes
in the training data and might as a result suffer from
eventual data bias for new workloads. Most recently,
the use of reinforcement learning for learning policies
which dynamically optimize resources such that service
level agreements can be better satisfied has received a
lot of attention especially with the rise of reinforcement
learning with neural networks as function approxima-
tors (colloquially termed as ‘deep reinforcement learn-
ing’ (Li (2017); Arulkumaran et al. (2017)). Methods
using model-free methods Mao et al. (2016) based on
policy-gradients Williams (1992); Sutton et al. (2000) and
Q-learning Watkins (1989); Xu et al. (2012) have shown
promise as modeling such large-scale distributed systems
is a challenge in itself. Similarly, RL has found impres-
sive success in energy optimization for data centers (Gao
(2014); Memeti et al. (2018)).

RL for scheduling in operating systems: Even at the
single machine level, RL has found promise for thread
scheduling and resource allocation in operating systems.
For example Fedorova et al. (2007); Hanus (2013) use
RL-based methods to learn adaptive policies which outper-
form the best statically optimal policy (found by solving a

queuing model) as well as myopic reactive policies which
greedily optimize for short term outcomes. The problem
of scheduling in operating systems however differs from
pipeline optimization in two fundamental ways. First, the
operating system (as well as the scheduler) is oblivious
to accuracy dependencies between different processes or
threads. Second, due to either architectural or general-
ity constraints, schedulers do not optimize process-level
parameters but mainly focus on machine configuration.

3 PROBLEM DEFINITION

3.1 FORMAL SETTING AND NOTATION

A pipeline of M modules can be viewed as a directed
graph where each node j is a module and an edge from
j to k represents module k consuming the output of j as
its input. We assume the graph does not have any cycles.
Without loss of generality, let the modules be numbered
according to their topological sort; i.e. j refers to the in-
dex of a module in a linear ordering of the DAG. For each
module j, we have a set of possible configurations—these
are the actions that are available for the metareasoner to
choose from. We denote this set by Aj . A module j can
then be viewed as a mapping from its inputs x ∈ Sjin
to outputs z ∈ Sj

out, and each configuration a ∈ Aj
implies a different mapping. As a running example, we
will consider the face detection pipeline of Figure 1. The
pipeline contains two modules with module 1 having 4
choices and module 2 having 3 choices. The input space
to the first module S1

in is the space of images (possibly
in a feature space). The output space S1

out is the same as
S2

in and can encode the image, the locations of faces in
the image, and the latency induced by the first module.

The quality of a pipeline’s operation is measured using a
loss function denoted by L : SM

out 7→ R. In the exam-
ple pipeline of Figure 1, the outputs from the landmark
detector can be labeled by human evaluators to assess
accuracy and L can be a complex trade-off between the
latency incurred by the overall pipeline in processing an
image vs. the accuracy of the detected landmarks. If
labels are not available, accuracy might be inferred from
proxies such as an incorrect denial of authentication for
a user based on the landmark detector output, which can
be observed when the user authenticates via alternative
means such as a password. Crucially, we only observe
the value of this loss-function for the specific outputs
z ∈ SMout that the pipeline generates based on a certain
configuration of actions at each module in response to an
input x. We highlight that the loss function L can be any
function mapping the pipeline’s final output and system
state to a scalar value, such as a passenger’s satisfaction
with a ride in a self-driving car as discussed in Section 1.

A metareasoner can be represented as a collection of
(possibly randomized) policies π := {π1 . . . πM}, where
πj : Sj

in 7→ ∆(Aj) specifies a context-dependent con-
figuration of the module and ∆(Aj) is the set of distri-
butions over the action set Aj . We abuse the notation
for Sjin here to denote any succinct representation of
the preceding pipeline component’s outputs, actions and
system state variables which are needed to choose the
appropriate action for module j. The pipeline receives a
stream of inputs and we use t to index the inputs. At time
t, the pipeline receives an initial input x1t ∈ Sin1 , based
on which an action a1t ∼ π1(x1t) is picked at the first
module and it produces an intermediate output z1t . This
induces the next input x2t ∈ S2

in at the second module,
at which point the policy π2 is used to pick the next ac-
tion and so on. At each intermediate module j, the input
xjt depends on the outputs of all its parents in the DAG
corresponding to the pipeline and we assume that the in-
put spaces Sjin are chosen appropriately so that a good
metareasoner policy for module j can solely depend on
xjt instead of having to depend explicitly on the outputs
of its predecessors. Proceeding this way, the interaction
between the metareasoner and the environment can be
summarized as follows:

1. x1t ∈ S1
in is fed as input to the pipeline.

2. metareasoner chooses actions for each module based
on the output of its predecessors and induces a trajec-
tory: (x1t , a

1
t , z

1
t , . . . , x

M
t , a

M
t , z

M
t); eventual output

of the pipeline is zMt .
3. Observe loss L(zMt).

Formulated this way, the task of the metareasoner can be
viewed as an episodic fixed-horizon reinforcement learn-
ing problem, where the state transitions are deterministic
(although the initial input can be highly stochastic, such
as an image in the face detection example). Each input
processed by the pipeline is an episode, the horizon is
M , actions chosen by policies for the upstream modules
affect the state distribution seen by downstream policies.
The feedback is extremely sparse with the only loss being
observed at the end of the pipeline. The goal of the metar-
easoner is to minimize its average loss: 1

T

∑T
t=1 L(zMt),

and the ideal metareasoner can be described as:

arg min
π1...πM

T∑
t=1

Eπ1,...,πM

[
L(zMt) | x1t

] .
= J(π). (1)

Our goal is to learn a metareasoner during the live opera-
tion of the pipeline. Since we only observe pipeline losses
for the current choices of the metareasoner’s policies, we
must balance exploration to discover new pipeline config-
urations, and exploitation of previously found performant
configurations. In such explore-exploit problems, we
measure the average loss accumulated by our adaptive

learning strategy as a benchmark; a lower loss is better. A
better learning strategy will quickly identify good context-
dependent configurations and hence have lower average
loss as T increases.

3.2 CHALLENGES

In this section we highlight the important challenges that
a metareasoner needs to address.

Combinatorial action space: Viewing the entire pipeline
as a monolothic entity, with an aim to find the best
fixed assignment for each module with no input de-
pendence, leaves the metareasoner with combinatorially
many choices (every possible combination of module
configurations) to consider. This can quickly become in-
tractable even for modest pipelines (e.g. See Figure 3),
despite the use of the simplest possible static policy class.

Adaptivity to inputs: Having a static action assignment
per module is overly simplistic in general and we typi-
cally need a policy for manipulating configurations that is
context-sensitive. For example, in Figure 4, we observe
that the number of faces in the input image implies a
fundamentally different trade-off between latency and ac-
curacy; implying a different optimal choice for the image
processing algorithm.

Credit Assignment: Since we only observe delayed
episodic reward, we do not know which module was to
blame for a bad pipeline loss.

Exploration: Pipeline optimization offers a fundamentally
challenging domain for exploration. Though we employ
ideas from contextual bandits here, we anticipate future di-
rections that explore by using pipeline structure to derive
better learning strategies.

4 METHODS

The methods we outline now each address some of the
challenges in Section 3.2. The simplest strategy is a non-
adaptive (i.e. insensitive to the context) approach that can,
however, effectively handle combinatorial actions (Sec-
tion 4.1) to search for a locally optimal static assignment.
A simple context-sensitive strategy views the pipeline
optimization problem as a monolithic contextual bandit,
and is vulnerable to a combinatorial scaling of complexity
with pipeline size (Section 4.2). Finally, the most sophis-
ticated strategy we develop produces a context-adaptive
policy, exploits pipeline structure to learn per-module
policies and uses policy-gradient algorithms to quickly
reach a locally optimal configuration policy (Section 4.3).

4.1 GREEDY HILL CLIMBING

The simplest (infeasible) strategy for pipeline optimiza-
tion with input examples x11, . . . , x

1
T is to brute-force

try every possible configuration for each of the T in-
puts and pick the configuration that accumulates the
lowest loss. This strategy will identify the best non-
adaptive (i.e. context-insensitive) configuration, but needs
T ·
∏M
j=1 |Aj | executions of the pipeline to find this config-

uration. Since this is typically intractable even for modest
values of T and Aj (especially in real-time), we now
describe a tractable alternative to find an approximately
good configuration via random co-ordinate descent.

Rather than identifying the best configuration, suppose
we aim to find a “locally optimal” configuration – that is,
for every module, if we held all other module configura-
tions fixed then deviating from the current configuration
can only worsen the pipeline loss. To achieve this, we be-
gin by randomly picking an initial configuration for each
module in the pipeline. In each epoch, we first sample K
out of T examples sampled uniformly with replacement
from the dataset, where is K is a hyperparameter that can
be set based on the available computational budget. We
then choose one of the modules j ∈ {1, 2, . . . ,M} uni-
formly at random and keep the configurations of all other
modules fixed. We cycle through every possible action for
that module (using, for instance, K/ |Aj | examples for
each choice of action at this module) and pick the configu-
ration that achieves the lowest accumulated loss. We then
repeat this process until our training budget of examples
is exhausted, or we cycled through every module without
making a configuration change (which means we are at
a local optimum). This is akin to a greedy hill-climbing
strategy, and has been used in many diverse applications
of combinatorial optimization as an approximate heuris-
tic, for instance in page layout optimization (Hill et al.,
2017). More sophisticated variants of this approach can
use best-arm identification techniques during each epoch,
but fundamentally, this strategy finds an approximately
optimal context-insensitive policy.

4.2 GLOBAL BANDIT FROM INITIAL INPUT

For many real-world pipelines, the modules’ operating
characteristics are sensitive to the initial input, meaning
that a context-insensitive configuration policy can be very
sub-optimal w.r.t. the pipeline loss. This motivates our ap-
proach to find a context-adaptive policy using contextual
bandit (henceforth CB) algorithms.

A CB algorithm receives a context xt in each round t,
takes an action a ∈ A and receives a reward rt. The
algorithm learns a policy π : x 7→ ∆(A) that is context-
sensitive and adaptively trades-off exploration and ex-

ploitation to maximize
∑
t rt. In our setting xt is the

input example to the pipeline, A .
= A1 × A2 · · · × AM

is the cartesian product of all module-specific configura-
tions and the reward is simply the negative of the observed
pipeline loss.

In our experiments, we use a simple CB algorithm
that uses Boltzmann exploration (see e.g. (Kaelbling
et al., 1996)). Concretely, the policy is represented by a
parametrized scoring function sθ : S1

in × A 7→ R. The
score for each global configuration is computed sθ(x, a)
and the policy is a softmax distribution of these scores:

πθ(a | x) =
exp(λsθ(x, a))∑
a′ exp(λsθ(x, a′))

, (2)

where λ > 0 is a hyperparameter that governs the trade-
off between exploration and exploitation. The score func-
tion is typically updated using importance-weighted re-
gression (Bietti et al., 2018) (henceforth IWR); that is,
if we observe a reward rt after configuring the pipeline
with action at ∼ πθ(a | xt), then the score function is
optimized to minimize 1

πθ(at|xt) (rt − sθ(xt, at))
2.

These contextual bandit algorithms can very effectively
find context-sensitive policies π and adaptively explore
promising configurations. However, by viewing the en-
tire pipeline as one monolithic object with combinato-
rially many actions, they cannot tractably scale to even
moderate-sized pipelines.

4.3 PER-MODULE BANDIT: USING
INTERMEDIATE OBSERVATIONS

The contextual bandit approach of Section 4.2 does not
scale well with the size of the pipeline, but it does guaran-
tee (under mild assumptions, like an appropriate schedule
for λ, see e.g. Singh et al. (2000)) that we will eventu-
ally find the best context-adaptive policy expressible by
our scoring function sθ. It also does not capture the out-
puts of prior modules in choosing the configuration at a
successor, which can be vital such as when a previous
module incurs a large latency. Suppose we again relax
the goal to instead find an approximately good “locally
optimal” policy. Our key insight is to now employ a CB
algorithm for each module, so that the algorithm for mod-
ule j only needs to reason about Aj actions. Moreover,
as inputs are processed by the pipeline, the metareasoner
can use up-to-date information (e.g. about latencies intro-
duced by upstream modules) as part of the context for the
downstream bandit algorithm.

One can again perform a variant of randomized co-
ordinate ascent as in Section 4.1, holding all but one
module fixed and running a CB algorithm for that module.
This ensures that each bandit algorithm faces a stationary
environment and can reliably identify a good context-

sensitive policy quickly. However, this can be very data-
inefficient; we will next sketch an actor-critic based rein-
forcement learning algorithm that can apply simultaneous
updates to all modules.

Suppose we consider stochastic policies of the form (2)
for a module j, but where xjt ∈ Sinj and ajt ∈ Aj . A
common approach to optimize the policy parameters θ
is to directly perform stochastic gradient descent on the
average loss, which results in the policy gradient algo-
rithm. Specialized to our setting, an unbiased estimate of
the gradient for the parameters θj of πj , that is∇θjJ(θ)

(recall (1) is given by L(zMt)∇θj log πθ(a
j
t | x

j
t) since

the loss is only incurred at the end. Typically, policy gra-
dient techniques use an additional trained critic C(xjt) as
a baseline to reduce the variance of the gradients (Konda
and Tsitsiklis, 2000). We train the critic to minimize the
mean squared error between the observed reward and the
predicted reward, (L(zMt)− C(xjt))

2.

5 EXPERIMENTS

The algorithms discussed in the previous section are tested
on two sets of pipelines: a synthetic pipeline with strong
context dependence and a real-world perception pipeline.
Our results show performance improvement by adaptively
choosing the configuration of the pipeline. For all our
experiments, we use a PyTorch based implementation
(Paszke et al., 2017) with RMSProp (Hinton et al., 2012)
as the optimizer. For hyperparameter tuning, we perform
a grid search over the possible choices. The common
hyperparameters for both methods are:

• Learning rate ∈ {0.0001, 0.0004, 0.001, 0.005}
• Minibatch size ∈ {5, 10, 20, 50, 100}
• `2-weight decay factor ∈ {0.01, 0.05, 0.1, 1}

All our plots include 5 different runs with 5 randomly
chosen random seeds with standard error regions. The
specific details for each algorithm are as follows:

Greedy hill-climbing For finding the greedy step in each
iteration, we use a minibatch of 1000 samples per action
(K = Aj ∗ 1000). The procedure is run until it converges
to a fixed assignment. In the plots, we outline this as the
non-adaptive baseline with which each method is com-
pared. The final assignment obtained by the procedure is
evaluated using Monte Carlo runs with sufficiently large
number of samples from the input distribution (synthetic
pipeline) or using samples present in a holdout set (face
detection pipeline).

Global contextual bandit The policy parameters consist
of a single policy that maps the input x1t to a configuration
for the entire pipeline, and policy class is a neural network
with a single hidden layer. The inverse temperature coef-

Method Hyperparameter choices
Global CB λ ∈ {0.1, 0.3, 1, 5, 10}

Per-module CB ent wt ∈ {0.01, 0.03, 0.1, 0.3, 1}

Table 1: Algorithm specific hyperparameter choices

Figure 2: Synthetic pipeline

ficient for Boltzmann exploration, λ, is considered to be
a hyperparameter. We use the IWR loss with minibatches
to perform updates to the policy. For hyperparameter tun-
ing, we choose the setting with the minimum cumulative
loss for the pipeline across the input stream.

Per-module contextual bandit The policy function at
each module is a single hidden layer neural network with
a softmax layer at the end. We use the policy gradient
update rule as discussed in Section 4.3. The context
for each module is the concatenation of the sequence
of actions chosen for previous modules, current latency
and the initial input to the system. Additionally, for each
module, we implement a critic which predicts the final
loss of the pipeline for the given context as described
in Section 4.3. The critic is again a single hidden layer
neural network with a single output node and is trained
using squared loss over the observed and predicted loss.
We use the same learning rate for both networks. We use
minibatches for training the networks for each module
and these are concurrently updated for each minibatch. In
addition, we also use entropy regularization weighted by
ent wt with the policy gradient loss function (Haarnoja
et al., 2018). We tune hyperparameters using the best
cumulative pipeline loss across the input stream.

At a high-level, our experiments seek to uncover the im-
portance of adaptivity to the inputs in configuring the
pipeline. To capture practical trade-offs, we consider
loss functions which combine the latency incurred while
processing an input, along with the accuracy of the final
prediction compared to ground truth annotations.

5.1 SYNTHETIC PIPELINES

We begin with an illustrative synthetic pipeline designed
to highlight: (1) benefits of adaptivity to the input over a
static assignment, and (2) infeasibility of the global CB
approach for even modestly long pipelines. The structure

of the synthetic pipeline with n modules is a linear chain
of length n as shown in Figure 2. Each module has two
possible actions: 0 and 1 (cheap/expensive action) which
incur a latency cost of 0 and 1 respectively. Inputs to the
pipeline consist of uniformly sampled binary strings from
{0, 1}n, with the ith bit encoding the preferred action for
module i. If the ith bit is set to 0, both actions give an
accurate output and if it is 1, only the expensive action
gives an accurate output. If we make an incorrect pre-
diction at module i, then the final prediction at the end
of the pipeline is always incorrect. At each episode t,
we provide an input to the pipeline by first sampling a
random binary string as mentioned above, but then add
uniform noise in the interval [−0.3, 0.3] to each entry and
this perturbed input constitutes the initial context x1t for
the pipeline. The loss function for the final output of the
pipeline is

`(a) := 4
n2 (latency− n/2)2 + error

We center the latency term at n/2, which is the latency
of the optimal policy that routes each input perfectly to
the cheapest action that makes the correct prediction for
it and the normalization keeps this term in [0, 1]. The
second term measures the error in the eventual prediction,
which requires each module to make an accurate predic-
tion. The value is set to 1 for an incorrect output and
0 otherwise.While the initial input encodes the optimal
configuration,suited to global CB, there is further room to
adapt. When module i makes an error in prediction, then
all modules j > i should pick the cheap action.

We show results of our algorithms for n = 4, 8 and 11.
For static assignments, we compute both the solution of
the greedy hill climbing strategy and a brute force search
over all assignments, which results in similar average
losses under the input distribution. The context for each
module for per-module CB contains the pipeline’s input,
a binary string to denote upstream actions and the current
latency. We use ReLU activations with the number of
hidden layers for each network in our experiments as the
average of input dimension and the output dimension. For
instance, for global CB, the number of hidden layers for
n = 4 is h = 10 and for per-module CB is h = din

2 + 1.

We show the evolution of the average loss as a function
of the number of examples for different values of n in
Figure 3. Our results show significant gains for being
adaptive over the constant assignment baseline in all the
plots. For n = 4, the total number of assignments is
16 and it can be clearly seen that global CB is effective
when compared to the per-module counterpart. However,
global CB is slower in convergence than per-module CB.
For n = 8, the difference between the two is more pro-
nounced as the per-module CB method converges rapidly.
For n = 11, the total number of assignments for the

pipeline is 2048 and global CB completely fails to learn a
better adaptive policy. The per-module CB has a slower
convergence in this harder case, but still improves upon
the best constant assignment extremely quickly.

5.2 FACE AND LANDMARK DETECTION

Pipeline and dataset: We use a two-module production-
grade real-world perception pipeline service to empiri-
cally study the efficacy of our proposed methods (Figure
1). The first module is a face detection module which
takes as input an image stream and outputs the location
of faces present in the image as a list of bounding box
rectangles. This module has four different algorithms
for detecting faces. The exact details of the algorithms
are proprietary and hence we only have black-box access
to them. We benchmarked the latency and accuracy of
the algorithms on 2689 images from the validation set
of the 2017 keypoint detection task of the open source
COCO dataset (Lin et al., 2014). COCO has ground truth
annotations of up to 17 visible keypoints per person in
an image. We notice that not only do each of the algo-
rithm choices have large variation in latency and accuracy
on average when compared to each other, more crucially
their latencies and accuracies vary drastically with the
number of true faces present in the incoming images, i.e.
they are context dependent. Specifically, we observe that
latency drastically increases with the number of faces
present in the image. Figure 4 shows the latencies of all
four detection algorithm choices vs. number of true faces
present in the image. Note that different algorithms have
different latencies on average with Algorithm 0 being
the fastest (∼ 0.2 seconds) and Algorithm 3 the slowest
(∼ 2.5 seconds).

The second module is a face landmark detection module
which takes as input the original image and the predicted
face rectangles output by the face detection module and
computes the location of landmarks on the face like nose,
eyes, ears, mouth etc. There are three different land-
mark detector algorithm choices: 5 points, 27 points or
87 points landmark detector. Again we observe in our
benchmarking that the landmark detector which outputs
87 points takes the most time at 0.25 ms per image on
average vs. 0.17 ms per image for the 27 points algorithm
and 0.08 ms per image for the 5 points one. Since the
landmark detectors are applied on each face rectangle
detected by the face detector, the computational time re-
quired goes up proportional to the number of faces. Figure
5 shows example face detections and landmarks detected
on images from the validation sets of the COCO dataset.

Accuracy calculation: For evaluating when a predic-
tion by the face detection module is a true/false posi-
tive/negative, we closely follow the scheme laid out in

Figure 3: Average loss as a function of the number of examples for the synthetic pipeline. The flat line corresponds to
the expected loss of the best constant assignment. The shaded region represents one standard error over 5 runs.

Figure 4: Face detection algorithm choices vs. latency in seconds as a function of true number of faces present in the
image. Algorithm 0 and 2 are much faster than Algorithm 1 and 3. All algorithms exhibit increasing latencies as the
number of faces goes up in the image.

Figure 5: Example face and landmark detections from
COCO validation set. (Left) Face detected (blue rectan-
gle) and landmarks detected within the face (blue dots).
The red dots represent groundtruth face landmarks not
detected. (Right) False face detections (blue rectangles)
and wrong landmarks within the rectangles.

the COCO Keypoints evaluation page Lin et al. (2014).
Specifically a rectangle location on the image is con-
sidered a true positive if it is within 30 pixels of a
ground truth face annotation which is quite conservative
as the images we use are all resized to constant size of
1280(W) × 960(H) pixels. Otherwise, it is marked as a
false positive. Ground truth faces which are not “covered”
by any of the predicted faces cause an entry in the false
negative count. If an image contains no faces and the face
detection module also predicts no faces then we count

such scenarios as true negatives.

Similarly, for the face landmark module, we mark a pre-
diction as a true positive if it is within 5 pixels of the
ground truth landmark annotation, else a false positive.
All landmarks not “covered” by any of the predicted faces
are counted as false negatives. Note since the COCO key-
point annotations include only 17 keypoint annotations on
the entire human body including only 5 face landmarks
we don’t penalize predictions of the 27 or 87 landmark de-
tection algorithms which are not within threshold distance
of any ground truth landmark as that unfairly counts as
false positives (due to lack of ground truth annotations)1.

Results: The dataset of 2689 images is divided into train
and test sets of size 2139 and 550 respectively. For train-
ing, we use minibatches randomly sampled from the train-
ing set and test curves are plotted using the average loss
over the complete test set.2 We use the embedding from

1Since we find an optimal matching between predicted and
true keypoints, each false negative also results in a false negative

2Unlike the synthetic pipeline we do not use average loss
over the run of the algorithm here as the number of episodes
is much larger than the size of our data set, which means algo-
rithms can overfit to the data set unlike in the synthetic case
where we have effectively an infinite data set. So we evaluate a
proxy for average loss as the average test performance on held

Figure 6: Test performance curves for the Face Detection and Landmark pipeline with t0 = 1.3 and t0 = 1.7. The
Y -axis is the performance percentage improvement over static global policy after every 200 episodes of learning on
held-out examples. The plots use a latency-based loss (left), latency and false negative rate (middle) and latency,
false negative rate and false discovery rate (right). The adaptive approaches significantly improve over the best fixed
configuration in all the cases. Shading represents standard error across 5 runs.

Figure 7: Action counts in module 2 for per-module CB

the penultimate layer of ResNet-50 (He et al., 2016) as the
contextual representation for each image for both adap-
tive methods. Thus, the context is a 1000 dimensional
real valued vector. For per-module CB, the first module’s
policy network gets the embedding as input whereas the
second one gets additional concatenated values of number
of faces detected by module 1 and its latency. All net-
works here have a hidden layer with 256 units with ReLU
activations. For evaluating the final loss function of the
pipeline, we consider a combination of three metrics:

Pure latency: Squared loss between the pipeline’s la-
tency and a threshold t0: `(a) := (latency− t0)2.

out examples, following standard methodology.

Latency and accuracy: In addition to the squared dis-
tance, we now consider the false negative rate (FNR)
of the pipeline for the landmarks detected in each im-
age. Since false negative rate is always in [0, 1], it is
robust to different number of landmarks in different im-
ages as well as different number of predicted landmarks
by different actions (5, 27 and 87), unlike a direct clas-
sification error in landmark prediction. In this case,
`(a) := (latency− t0)2 + FNR.

Latency, accuracy and false detection penalty: For the
face detection module, in many cases there are non-zero
false positives. This further increases the number of false
positive landmarks for those cases and therefore we add
another penalty of the false discovery rate for face detec-
tion.

In our experiments, we choose a value of t0 = 1.3 and
t0 = 1.7 for all three loss functions for the pipeline. Note
that, if one tries to optimize total latency of the pipeline,
then the non-adaptive solution of choosing the cheap-
est action for both modules works well. Therefore, we
choose the bell shaped squared loss for latency which
reflects the specification of aiming for a target latency.
Figure 6 shows the observed improvement of the adaptive
methods over the static global policy for t0 = 1.3 and

#Faces #Images Global CB Per-module CB
≥3 124 11.82% 15.23%
≥4 83 18.58% 22.51%
≥5 63 23.04% 24.12%

Table 2: Performance percentage improvement over static
global policy for global contextual bandit and per-module
contextual bandit, broken down by the number of true
faces in the image. Numbers shown here are for latency
and accuracy loss with t0 = 1.3.

t0 = 1.7. Per-module CB and global CB show improve-
ment for all loss functions against the constant assignment
baseline found by greedy hill climbing. The numbers in
Table 2 show the context-dependency of the pipeline. The
benefits of algorithms which are able to effectively uti-
lize context (Global CB and Per-module CB) is really
highlighted in the parts of the dataset which contain more
than 3, 4 or 5 faces. As the number of faces in an im-
age increases, the percentage gain increases as well. The
observed gains of approximately 15, 22 and 24 percent
in respecting the utility function are arguably significant
for sensitive mission-critical applications. Although these
two methods are hard to distinguish on average, we think
this is due to the small length of the pipeline and the inter-
mediate context for the second module’s policy not being
very informative. In order to show that the adaptivity
to the final loss function influences the chosen actions,
we compare the counts of action 0 and 1 for the second
modules using the first two loss functions. We show these
counts for per-module CB. It can be seen from Figure 7
that changing the loss function leads to a change in the
chosen actions for the test set.

5.3 DISCUSSION

We observe that contextual optimization of software
pipelines can provide drastic improvements in the av-
erage performance of the pipeline for any chosen loss
function. Our experiments show that for small pipelines,
both global CB and per-module CB can give potential
improvement over a constant assignment. However, these
experiments should only be considered as a controlled
study of the power of contextual optimization and there
are additional caveats which we defer for future work:

Computational overhead: The loss functions consid-
ered by us for the pipeline involve a combination of la-
tency and accuracy. In addition to the pipeline’s latency,
any metareasoning module will add to the cost. In our
experiments, the total time for inference and updates is
less than 5-7 ms per input which is orders of magnitude
less the the pipeline’s latency. Moreover, making the
pipeline configurable in real-time might induce further
communication/data re-configuration costs. We focus on

the potential improvements from adaptivity in this paper
and leave the engineering constraints for future work.

Non-stationarity during learning: For the per-module
CB algorithm, the input given to each network is ideally
the input for the corresponding module. Changing the
configuration of these pipelines can vary the distribution
of the inputs to these modules drastically and change in
one action changes the input for downstream modules.
The pipelines in our experiments do not showcase this
issue. We ignore this aspect in our current exposition and
leave a more involved study to future work.

6 CONCLUSION

We presented the use of reinforcement learning to perform
real-time control of the configuration of a modular system
for maximizing a system’s overall utility. We employed
contextual bandits and provided them with a holistic rep-
resentation of a visual scene and with the ability to both
sense and control the parameters of each module. We
show significant improvement with the use of the metar-
easoning methodology for both the face detection and
synthetic pipelines. Future directions include studies of
scaling up the mechanisms we have presented to more
general systems of interacting modules and the use of
different forms of contextual signals and their analyses,
including the use of more flexible neural network infer-
ence methods.

Acknowledgements

This work was done while AM was at Microsoft Research.
AM acknowledges the concurrent support in part by a
grant from the Open Philanthropy Project to the Center
for Human-Compatible AI, and in part by NSF grant
CAREER IIS-1452099.

References
Arulkumaran, K., Deisenroth, M. P., Brundage, M., and

Bharath, A. A. (2017). A brief survey of deep rein-
forcement learning. arXiv preprint arXiv:1708.05866.

Bietti, A., Agarwal, A., and Langford, J. (2018). A contex-
tual bandit bake-off. arXiv preprint arXiv:1802.04064.

Bradley, D. M. (2010). Learning in modular sys-
tems. Technical report, CARNEGIE-MELLON UNIV
PITTSBURGH PA ROBOTICS INST.

Daumé III, H., Langford, J., and Sharaf, A. (2018). Resid-
ual loss prediction: Reinforcement learning with no
incremental feedback.

Delimitrou, C. and Kozyrakis, C. (2013). Paragon: Qos-
aware scheduling for heterogeneous datacenters. In

ACM SIGPLAN Notices, volume 48, pages 77–88.
ACM.

Delimitrou, C. and Kozyrakis, C. (2014). Quasar:
resource-efficient and qos-aware cluster management.
In ACM SIGARCH Computer Architecture News, vol-
ume 42, pages 127–144. ACM.

Demirci, M. (2015). A survey of machine learning ap-
plications for energy-efficient resource management in
cloud computing environments. In 2015 IEEE 14th
International Conference on Machine Learning and
Applications (ICMLA), pages 1185–1190. IEEE.

Fedorova, A., Vengerov, D., and Doucette, D. (2007).
Operating system scheduling on heterogeneous core
systems. In Proceedings of the Workshop on Operating
System Support for Heterogeneous Multicore Architec-
tures.

Gao, J. (2014). Machine learning applications for data
center optimization.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018).
Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In In-
ternational Conference on Machine Learning, pages
1856–1865.

Hanus, D. (2013). Smart scheduling: optimizing Tilera’s
process scheduling via reinforcement learning. PhD
thesis, Massachusetts Institute of Technology.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep
residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 770–778.

Hill, D. N., Nassif, H., Liu, Y., Iyer, A., and Vish-
wanathan, S. (2017). An efficient bandit algorithm
for realtime multivariate optimization. In Proceedings
of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’17,
pages 1813–1821.

Hinton, G., Srivastava, N., and Swersky, K. (2012). Neu-
ral networks for machine learning lecture 6a overview
of mini-batch gradient descent.

Horvitz, E. (2001). Principles and applications of contin-
ual computation. Artificial Intelligence, 126(1-2):159–
196.

Horvitz, E. and Lengyel, J. (1997). Perception, attention,
and resources: A decision-theoretic approach to graph-
ics rendering. In Proceedings of the Thirteenth con-
ference on Uncertainty in artificial intelligence, pages
238–249. Morgan Kaufmann Publishers Inc.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996).
Reinforcement learning: A survey. Journal of artificial
intelligence research, 4:237–285.

Konda, V. R. and Tsitsiklis, J. N. (2000). Actor-critic algo-
rithms. In Advances in neural information processing
systems, pages 1008–1014.

Li, Y. (2017). Deep reinforcement learning: An overview.
arXiv preprint arXiv:1701.07274.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Dollár, P., and Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. In Euro-
pean conference on computer vision, pages 740–755.
Springer.

Lorido-Botran, T., Miguel-Alonso, J., and Lozano, J. A.
(2014). A review of auto-scaling techniques for elastic
applications in cloud environments. Journal of grid
computing, 12(4):559–592.

Mao, H., Alizadeh, M., Menache, I., and Kandula, S.
(2016). Resource management with deep reinforcement
learning. In Proceedings of the 15th ACM Workshop
on Hot Topics in Networks, pages 50–56. ACM.

Memeti, S., Pllana, S., Binotto, A., Kołodziej, J., and
Brandic, I. (2018). Using meta-heuristics and machine
learning for software optimization of parallel comput-
ing systems: a systematic literature review. Computing,
pages 1–44.

Mirhoseini, A., Pham, H., Le, Q. V., Steiner, B., Larsen,
R., Zhou, Y., Kumar, N., Norouzi, M., Bengio, S.,
and Dean, J. (2017). Device placement optimization
with reinforcement learning. In Proceedings of the
34th International Conference on Machine Learning-
Volume 70, pages 2430–2439. JMLR. org.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and
Lerer, A. (2017). Automatic differentiation in pytorch.
In NIPS-W.

Raman, K., Swaminathan, A., Gehrke, J., and Joachims, T.
(2013). Beyond myopic inference in big data pipelines.
In Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 86–94.

Singh, S., Jaakkola, T., Littman, M. L., and Szepesvári, C.
(2000). Convergence results for single-step on-policy
reinforcement-learning algorithms. Machine learning,
38(3):287–308.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Man-
sour, Y. (2000). Policy gradient methods for reinforce-
ment learning with function approximation. In Ad-
vances in neural information processing systems, pages
1057–1063.

Watkins, C. J. C. H. (1989). Learning from delayed re-
wards. PhD thesis, King’s College, Cambridge.

Williams, R. J. (1992). Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256.

Xu, C.-Z., Rao, J., and Bu, X. (2012). Url: A unified
reinforcement learning approach for autonomic cloud
management. Journal of Parallel and Distributed Com-
puting, 72(2):95–105.

	1 INTRODUCTION
	2 RELATED WORK
	3 PROBLEM DEFINITION
	3.1 FORMAL SETTING AND NOTATION
	3.2 CHALLENGES

	4 METHODS
	4.1 GREEDY HILL CLIMBING
	4.2 GLOBAL BANDIT FROM INITIAL INPUT
	4.3 PER-MODULE BANDIT: USING INTERMEDIATE OBSERVATIONS

	5 EXPERIMENTS
	5.1 SYNTHETIC PIPELINES
	5.2 FACE AND LANDMARK DETECTION
	5.3 DISCUSSION

	6 CONCLUSION

