A fork() in the road:

=

Andrew Baumann Jonathan Appavoo Orran Krieger Timothy Roscoe
Microsoft Research Boston University Boston University ETH Zurich
gl',;.".ﬁ
'? ’

-~

The Open Group Base Specifications Issue 7, 2018 edition
IEEE Std 1003.1-2017 (Revision of IEEE Std 1003.1-2008)
Copyright © 2001-2018 IEEE and The Open Group

NAME

fork - create a new process
SYNOPSIS

#include <unistd.h>

pid_t fork(void);
DESCRIPTION

The fork() function shall create a new process. The new process (child process) shall be an exact copy of the calling process (parent process)
except as detailed below:

Motivation

* We've first-hand experience of many research OSes
L4, Wanda, Nemesis, Mungi, Hurricane, Tornado, K42, Barrelfish, Drawbridge ...

e Supporting fork, or choosing not to, repeatedly tied our hands
* This is common wisdom among those who have built non-Unix OSes
* And yet...

Motivation

&~ = O &y | https://cs61.seas.harvard.edu/site/2018/WeensyQS/ hxd = 71 =

CS 612018 Info ¥ Problem sets ¥ Lectures ¥ Sections ~

Problem set 4: WeensyOS

In this assignment, you implement process memory isolation, virtual memory, and some system calls in a tiny operating system. This
will introduce you to virtual memory and operating system design.

Step 5: Fork

The fork system call is one of Unix’'s great ideas. It starts a new process as a copy of an existing process. The fork system call
appears to return twice, once to each process. To the child process, it returns 0. To the parent process, it returns the child's process
ID.

Motivation

Operating

Systems

Lhree Easy Pleces

Remazi Arpaci-Dusseau

Andrea Arpaci-Dusseau”

5.4

lntAavhiiAA: Dean~ann A DI

Why? Motivating The API

Of course, one big question you might have: why would we build
such an odd interface to what should be the simple act of creating a new
process? Well, as it turns out, the separation of fork () and exec() is
essential in building a UNIX shell, because it lets the shell run code after
the call to fork () but before the call to exec () ; this code can alter the
environment of the about-to-be-run program, and thus enables a variety
of interesting features to be readily built.

TIP: GETTING IT RIGHT (LAMPSON’S LAW)

As Lampson states in his well-regarded “Hints for Computer Systems
Design” [L83], “Get it right. Neither abstraction nor simplicity is a sub-
stitute for getting it right.” Sometimes, you just have to do the right thing,
and when you do, it is way better than the alternatives. There are lots
of ways to design AFIs for process creation; however, the combination
of fork () and exec () are simple and immensely powerful. Here, the
UNIX designers simply got it right. And because Lampson so often “got
it right”, we name the law in his honor.

Why do people like fork?

* It's simple: no parameters!
 cf. Win32 CreateProcess

* It’s elegant: fork is orthogonal to exec
» System calls that a process uses on itself also initialise a child
* e.g. shell modifies FDs prior to exec

* It eased concurrency
* Especially in the days before threads and async I/O

Fork today

* Fork is no longer simple

* Fork doesn’t compose

* Fork isn’t thread-safe

* Fork is insecure

* Fork is slow

* Fork doesn’t scale

* Fork encourages memory overcommit

* Fork is incompatible with a single address space

* Fork is incompatible with heterogeneous hardware
* Fork infects an entire system

Fork doesn’t compose

* Fork creates a process by cloning another

 Where is the state of a process?
* |n classic Unix:

2 Language runtime

8 \\/ho would accept fork() today? i

\
* Threads / g Application i

* Server processes
 Hardware accelerator context

* Every component must support fork
* Many don’t = undefined behaviour

o 2]2] []]
Kernel

<§§;V<§§;V Hardware

Fork is slow

N
U

——fork + exec (fragmented)
——fork + exec (dirty)

N
o

——pOSiX_Spawn

=
£15
Q
-
= 10
5
0 — 0.5ms
0 50 100 150 200 250

Parent process size (MiB)

Fork infects a system: the K42 experience

The Answer To ...

* Scalable multiprocessor OS, developed at IBM Research

* Object-oriented kernel and libraries
* Separation of concerns between files, memory management, etc.
* Multiple implementations (e.g. single-core, scalable)

* Aimed to support multiple OS personalities
 However, competitive Linux performance demanded efficient fork...

* Efficient fork requires:
* Centralised state - lack of modularity, poor scalability
* Lazy copying - complex object relationships

e Result: every interface, and every object, must support fork
* Made a mess of the abstractions
* Led to abandoning other OS personalities

— N ___

So Ken, where did fork come from anyway?

Origins of fork TR UNIX Tie

Sharing System

Dennis M. Ritchie and Ken Thompson
Bell Laboratories

Unix designers credit Project Genie

(Berkeley, 1964-68)

operating system for the Digital Equipment Corporation
POPLL/A0 and 11745 computers, It offers a number of
fentures seldom found even in larger operating systems,
Including: (1) w hierarchicnl file system incorporating
d bie vol 3 (2) compatible e, deviee, nnd
Inter-process 1,07 (3) the ability to initiate nsynchronous
V4 . 4 processess (4) system command lungunge selectable on n
Th e fork Op era tlon essen tlally as We per-user basis; and (5) over 100 subsystems including a
V4 dozen languages, This paper discusses the nature and
Tmplementation of the e system and of the user

implemented it, was present in the GENIE
time-sharing system”

CR Categories: 4.0, 4,32

[Ritchie & Thompson, CACM 1974

Copyright (3 1978, Associntion for Computing Machinery, [ne
Genernl permission o republish, but mot for peofit, all o part
OF they material s granted peovided that ACM's copyright notice
B ven and that reference is made to the pablication, 1o its date
OF Issue, nd 10 the fact that repenting peivilepes were granted
by permisscon of the Associntion for Computing Machimery

This s u revised wesion of o paper presented at the Fourth
ACM Sympostum on Operating Systems Peinciples, TOM Thomas
). Watson Research Cemter, Yorkiown Helghts, New York, October
1507, 1973, Authoss' address: Bell Laborntorkes, Murray Hill
NJ 07974

Jos

1. Introduction

There huve been theee versions of uNix. The carliest
version (cirea 1969-70) ran on the Digital Equipment
Corporation pop.7 and -9 computers. The second ver-
sion ran on the unprotected #or-11/20 computer. This
paper describes only the por-L1/40 and /45 [1] system
since 1t iy more modern and many of the differences
between it and older UNIX systems result from redesign
of fentures found to be deficient or lueking

Since ror 11 UNIx became operational in February
1971, ubout 40 installations have been put into service;
they are generally smaller than the system described
here. Most of them are engaged in applications such as
the prepuration und formatting of patent applications
und other textual materinl, the collection and processing
of trouble data from various switching machines within
the Bell System, and recording and checking telephone
service orders, Our own Installation is used mainly
for rescarch in operating systems, languages, com
puter networks, and other toples in computer sciency,
and also for document preparation.

Perhups the most important achievement of UNIx
is to demonstrate thut o powerful operating system
for internctive use need not be expensive either in
equipment or in human effort: UNIX cun run on hardware
costing s little as $40,000, and less than two man-
years were spent on the main system software. Yet
UNIX contuing n number of features seldom offered even
in much lurger systems. It s hoped, however, the users
of unix will find that the most important charseteristics
of the system are its simplicity, eleganee, and ease of use.

Besides the system proper, the major programs
availuble under UNIX ure: ussembler, text editor based
on gro (2], linking loader, symbolic debugger, compiler
for w longuage resembling neen |3 with types and
structures (C), interpreter for o dinlect of nasc, text
formatting program, Fortean compiler, Snobol inter
preter, topdown compiler-compiler (rma) (4], bot
tom-up compiler-compiler (Yacc), form letter generator,
macro processor (M6) (5], und permuted index program

Ihere ts also o host of muintenance, utility, recren-
tion, and novelty programs, All of these programs were
written locully, 1t is worth noting that the system is
totully self-supporting, All UNIX software is maintained
under uNIX; likewise, UNIX documents are generated
und formitted by the unx editor and text formatting
program,

2, Hardware und Software Environment

The ror-11/45 on which our uNIX installation is
implemented is o 16.bit word (8-bit byte) computer with
THK bytes of core memory; UNIX occupies 42K bytes,
This system, however, includes n very lurge number of
device drivers and enjoys a generous allotment of space
for 1/0 buflers and system tables; o minimal system

Communications July 1914
of Volume 17
e ACM Number 7

Project Genie aka

SDS 940 Time-Sharing Computer

3. FORKS AND JOBS

CREATION OF FORKS

A fork may create new, dependent, entries in the PAC table
by executing BRS 9. This BRS takes its argument in the A
register, which contains the address of a seven-word panic
table with the format given in Table 2.

Table 2. Panic Table

Word Contents

Program counter

A register

B register

X register

First relabeling register
Second relabeling register

o U b W N = O

Status

The status word may be
-2 Dismissed for input/output
-1 Running
0 Dismissed on escape or BRS 10
1 Dismissed on illegal instruction panic

2 Dismissed on memory panic

The panic table address must not be the same for two de-
pendent forks of the same fork, or overlap o page boundary.
If it is, BRS 9 is illegal. The first six bits of the A register
have the following significance as shown in Figure 3.

Bit Significance
0 Make fork Executive if current fork is Executive.
1 | Set fork relabeling from panic table. Otherwise,

use current relabeling.
2 Propagate escape assignment to fork (see BRS 90).

3 Make fork fixed memory. It is not allowed to
obtain any more memory than it is started with.

B Make fork local memory. New memory will be
assigned to it independently of the controlling
fork.

5 Mcke fork Exec type 1 if current fork is Exec.

Figure 3. Significance of Bits in A Register

When BRS 9 is executed, a new entry in the PAC table is
created. This new fork is said to be a fork of the fork cre-
ating it. Thisiscalled the controlling fork. The fork is said
to be lower in the hierarchy of forks'than the controlling
fork. The lotter may itself be a fork of some still higher
fork. A job may have a maximum of eight forks including
the executive. The A, B and X registers for the fork are set
up from the current contents of the panic table. The address
at which execution of the fork is to be started is also taken
from the panic table. The relabeling registers are set up
either from the current contents of the panic table or from
the relabeling registers of the currently running program.
An executive fork may change the relabeling., A user fork
is restricted to changing relabeling in the manner permitted
by BRS 44. The status word is set to -1 by BRS9. The fork
number that is assigned is kept in PIM. This number is an
index to the fork parameters kept in the TS block.

The fork structure is kept track of by pointersin PACT. For each
fork PFORK points to the controlling fork, PDOWN to one of the
subsidiary forks, and PPAR to a fork onthe same level, All the
subsidiary forks of a single fork are chained in a list.

Why did Unix fork copy the address space?

FROCEEDINGS OF THE SYMPOSIUM ON
LANGUAGE DESIGN AND PROGRAMMING METHODOLOGY
SYDNEY, 10-11 SEFTEMBER. 1979

For |mp|ementatI0n expedience [RItChle, 1979 THEEVOLUTIONOgJS}}’%HlNLXTIME—SHARING

Dennis M. Ritchie

Bell Laboratories
USA

ABSTRACT

[P 7
. fo r k Wa S 2 ; I I I I e S Of P D - a S S e l I l b | This paper presents a brief history of the early development of the Unix
operating system. It concentrates on the evolution of the file system, the

* One process resident at a time
* Copy parent’s memory out to swap
* Continue running child

e exec didn’t exist — it was part of the shell
 Would have been more work to combine them

tion is paid Lo social conditions during the development of the system

Introduction

During the past few years, the Unix
operating system has come into wide use, so
wide that its very name has become a trade-
mark of Bell Laboratories. Its important
characteristics have become known to many
people. It has suffered much rewriting and
tinkering since the first publication describ-
ing it in 1974,! but few fundamental
changes. However, Unix was born in
1969 not 1974, and the account of its
development makes a little-known and
perhaps instructive story. This paper
presents a technical and social history of the
evolution of the system.

Origins

For computer science at Bell Labora-
tofies, the period 1968-1969 was somewhat
unsettled. The main reason for this was the
slow, though clearly inevitable, withdrawal
of the Labs from the Multics project. To
the Labs computing community as a whole,
the problem was the increasing obvicusness
of the failure of Multics to deliver promptly
any sort of usable system, let alone the
panacea envisioned earlier. For much of
this time, the Murray Hill Computer Center
was also running a costlly GE 643 machine
that inadequately simulated the GE 635,
Another shake-up that occurred during this
period was the organizational separation of
computing services and computing research.

From the point of view of the group
that was to be most involved in the begin-
nings of Unix (K. Thompsen, Ritchie, M.
D. Mcllroy, J. F. Ossanna), the decline and
fall of Multics had & directly felt effect. We
were among the last Bell Laboratories hold-
outs actually working on Multics, so we still
felt some sort of stake in its success. More
important, the convenient interactive com-
puting service that Multics had promised to
the entire community was in fact available
to our limited group, at first under the CTSS
system used to develop Multics, and later
under Multics itself. Even though Multics
could not then support many users, it could
support us, albeit at exorbitant cost. We
didn’t want to lose the pleasant niche we
occupied, because no similar ones were
available; even the time-sharing service that
would later be offered under GE’s operating
system did not exist. What we wanted to
preserve was not just a good environment in
which to do programming, but a system
around which a fellowship could form. We
knew from experience that the essence of
communal computing, as supplied by
remote-access, lime-shared machines, is not
Jjust to type programs into a terminal instead
of a keypunch, but to encourage close com-
munication,

Thus, during 1969, we began trying to
find an alternative to Multics. The search
w0k several forms. Throughout 1969 we
(mainly Ossanna, Thompson, Ritchie)

Fork was a hack!

* Fork is not an inspired design, but an accident of history
* Only Unix implemented it this way

* We may be stuck with fork for a long time to come

* But, let’s not pretend that it’s still a good idea today!

Get the fork out of my OS!

* Deprecate fork!

* Improve the alternatives
* posix_spawn(), cross-process APls

* Please, stop teaching students that fork is good design
* Begin with spawn
* Teach fork, but include historical context

e See our paper for:
* Alternatives to fork, specific use cases, war stories, and more

