
A fork() in the road
Andrew Baumann

Microsoft Research
Jonathan Appavoo
Boston University

Orran Krieger
Boston University

Timothy Roscoe
ETH Zurich





Motivation

• We’ve first-hand experience of many research OSes
L4, Wanda, Nemesis, Mungi, Hurricane, Tornado, K42, Barrelfish, Drawbridge …

• Supporting fork, or choosing not to, repeatedly tied our hands

• This is common wisdom among those who have built non-Unix OSes

• And yet…



Motivation

…



Motivation



Why do people like fork?

• It’s simple: no parameters!
• cf. Win32 CreateProcess

• It’s elegant: fork is orthogonal to exec
• System calls that a process uses on itself also initialise a child

• e.g. shell modifies FDs prior to exec

• It eased concurrency
• Especially in the days before threads and async I/O



Fork today

• Fork is no longer simple
• Fork doesn’t compose
• Fork isn’t thread-safe
• Fork is insecure
• Fork is slow
• Fork doesn’t scale
• Fork encourages memory overcommit
• Fork is incompatible with a single address space
• Fork is incompatible with heterogeneous hardware
• Fork infects an entire system



Fork doesn’t compose

• Fork creates a process by cloning another

• Where is the state of a process?
• In classic Unix:

• CPU context, address space, file descriptor table

• Today:
• User-mode libraries
• Threads
• Server processes
• Hardware accelerator context

• Every component must support fork
• Many don’t → undefined behaviour

Kernel

OS libraries

Other libraries

Language runtime

Application

Hardware

Server

0 1 2

Who would accept fork() today?



Fork is slow

0

5

10

15

20

25

0 50 100 150 200 250

Ti
m

e 
(m

s)

Parent process size (MiB)

fork + exec (fragmented)

fork + exec (dirty)

posix_spawn

0.5ms



Fork infects a system: the K42 experience

• Scalable multiprocessor OS, developed at IBM Research
• Object-oriented kernel and libraries

• Separation of concerns between files, memory management, etc.
• Multiple implementations (e.g. single-core, scalable)

• Aimed to support multiple OS personalities
• However, competitive Linux performance demanded efficient fork…

• Efficient fork requires:
• Centralised state → lack of modularity, poor scalability
• Lazy copying → complex object relationships

• Result: every interface, and every object, must support fork
• Made a mess of the abstractions
• Led to abandoning other OS personalities



History
So Ken, where did fork come from anyway?



Origins of fork

Unix designers credit Project Genie 
(Berkeley, 1964-68)

“The fork operation, essentially as we 
implemented it, was present in the GENIE 
time-sharing system”

[Ritchie & Thompson, CACM 1974]



Project Genie aka SDS 940



For implementation expedience  [Ritchie, 1979]

• fork was 27 lines of PDP-7 assembly
• One process resident at a time

• Copy parent’s memory out to swap

• Continue running child

• exec didn’t exist – it was part of the shell
• Would have been more work to combine them

Why did Unix fork copy the address space?



Fork was a hack!

• Fork is not an inspired design, but an accident of history

• Only Unix implemented it this way

• We may be stuck with fork for a long time to come

• But, let’s not pretend that it’s still a good idea today!



• Deprecate fork!

• Improve the alternatives
• posix_spawn(), cross-process APIs

• Please, stop teaching students that fork is good design
• Begin with spawn

• Teach fork, but include historical context

• See our paper for:
• Alternatives to fork, specific use cases, war stories, and more

Get the fork out of my OS!


