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Abstract

Batch Reinforcement Learning is a common setting in sequential decision-making under un-
certainty. It consists in finding an optimal policy using trajectories collected with another
policy, called the baseline. Previous work shows that safe policy improvement (SPI) meth-
ods improve mean performance compared to the basic algorithm (Laroche and Trichelair,
2017). Here, we build on that work and improve the algorithm by allowing finer opti-
mization under the safety constraint. Instead of binarily classifying the state-action pairs
into two sets (the uncertain and the safe-to-train-on ones), we adopt a softer strategy by
considering locally the error due to the model uncertainty. The method takes the right
amount of risk to try uncertain actions all the while remaining safe in practice, and there-
fore is less conservative than the state-of-the-art methods. We propose four algorithms for
this constrained optimization problem and empirically show a significant improvement over
existing SPI methods.

Keywords: safe policy improvement, batch reinforcement learning, model uncertainty.

1. Introduction

In sequential decision-making problems, a common goal is to find a good policy using a
limited number of trajectories that were generated with another policy, called the behavioral
policy or baseline. This approach, also known as Batch Reinforcement Learning (Batch
RL, Lange et al. (2012)), is motivated by the many real-world applications that naturally
fit this setting, where data collection and optimization are decoupled (contrary to online
learning which integrates the two tasks): dialogue systems (Singh et al., 1999; El Asri
et al., 2016), technical process control (Ernst et al., 2005; Riedmiller, 2005), and medical
applications (Guez et al., 2008).

While most reinforcement learning techniques aim at finding a high-performance pol-
icy (Sutton and Barto, 1998), the final policy does not necessarily perform well once it is
deployed. In this paper, we focus on Safe Policy Improvement (SPI, Thomas et al. (2015);
Petrik et al. (2016)), where the goal is to train a target policy that approximately performs
at least as well as the baseline with high confidence from a batch of data. SPI thus learns
a policy that outperforms the baseline with high probability, which makes it very useful in
real-world applications where bad decisions may lead to harmful consequences.

Among the existing SPI algorithms, one recent computationally efficient and provably-
safe methodology is SPI with Baseline Bootstrapping (SPIBB) (Laroche and Trichelair,
2017). The idea is to build a set of rare state-action pairs in the dataset, called the boot-
strapped set, to copy the baseline policy for all pairs in this set and train greedily on the
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rest. While the empirical results show that SPIBB is safe and performs significantly better
than the standard model-based approach, it strongly relies on the binary classification of
the bootstrapped set: a pair is either in it and the policy cannot be changed, otherwise, the
policy can be changed entirely.

As the main contribution of the paper, we propose a reformulation of the SPIBB objec-
tive that allows slight policy changes for uncertain state-action pairs while remaining empir-
ically safe. In that sense, the safety constraint is softer, we thus coin this SPI methodology
Soft Safe Policy Improvement with Baseline Bootstrapping (Soft-SPIBB). We develop four
algorithms to compute a policy that is an approximate solution of the new objective. We
empirically evaluate the performance and safety of our algorithms on a gridworld task and
explain their significant advantages.

2. Background

Markov Decision Processes: We consider problems in which the agent interacts with an
environment modeled as a Markov Decision Process (MDP): M∗ = 〈X ,A, P ∗, R∗, γ〉, where
X is a set of states, A a set of actions, P ∗ the unknown transition probability function,
R∗ the unknown stochastic bounded reward function bounded by ±Rmax, and γ ∈ [0, 1)
the discount factor for future rewards. The goal is to find a policy π : X → ∆A, with ∆A
the set of probability distributions over the set of actions A, that maximizes the expected

return of trajectories ρ(π,M∗) = V π
M∗(x0) = Eπ,M∗

[∑
t≥0 γ

tR∗(xt, at))
]
, where x0 is the

initial state and V π
M∗(x) is the value of being in a state x when following policy π in MDP

M∗. We denote by Π the set of stochastic policies. Similarly to V π
M∗(x), QπM∗(x, a) denotes

the value of taking action a in state x. Given a dataset of transitions D, we denote the
state-action pair counts by ND(x, a), and its Maximum Likelihood Estimator (MLE) MDP

by M̂ = 〈X ,A, P̂ , R̂, γ〉.

Safe Policy Improvement with Baseline Bootstrappping: The objective is to max-
imize the expected return of the target policy under the constraint of improving with high
probability 1− δ the baseline policy. This is known to be a NP-hard problem (Petrik et al.,
2016) and some approximations are required to make it tractable. This paper builds on the
Safe Policy Improvement with Baseline Bootstrapping methodology (SPIBB, Laroche and
Trichelair (2017)). SPIBB approximates the problem by searching for a policy maximizing

the expected return in the MLE MDP M̂ under the constraint of guaranteeing a policy
improvement with high probability 1− δ:

π� = argmax
π∈Π

ρ(π, M̂), s.t. ∀M ∈ Ξ(M̂, eδ), ρ(π,M) ≥ ρ(πb,M)− ζ (1)

with Ξ(M̂, eδ) =

{
M = 〈X ,A, R, P, γ〉 s.t.

||P (·|x, a)− P̂ (·|x, a)||1 ≤ eδ(x, a),

|R(x, a)− R̂(x, a)| ≤ eδ(x, a)Rmax

}

where ζ is a precision hyperparameter and eδ is an error function such that the true MDP
M∗ has a high probability of at least 1− δ to belong to Ξ(M̂, eδ) (Iyengar, 2005; Nilim and
El Ghaoui, 2005). The error function is classically bounded from concentration bounds over
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the state-action counts in the dataset D (Petrik et al., 2016):

eδ(x, a) ≤

√
2

ND(x, a)
log

2|X ||A|2|X |

δ
(2)

In other terms, SPIBB optimizes the target performance in M̂ such that this performance
is ζ-approximatively at least as good as πb in the admissible MDP set. Expressed this way,
the problem is untractable and the SPIBB methodology proposes a sub-optimal solution by
building a set of uncertain state-action pairs in the dataset D, called the bootstrapped set
and denoted by B. The bootstrapped set contains all the state-action pairs (x, a) ∈ X ×A
that were not sampled enough in D, i.e. whose counts are lower than a hyperparameter N∧.
Then, the policy-based SPIBB approach constructs a set of allowed policies and searches
the optimal policy in this space by performing policy iteration. Πb-SPIBB is a provably-
safe greedy algorithm that assigns πb to the state-action pairs in the bootstrapped set. Our
novel method, called Soft-SPIBB, relaxes the hard definition of the bootstrapping set and
allows soft policy changes for the uncertain state-action pairs. It is shown to improve the
empirical performance.

3. Soft Safe Policy Improvement with baseline Bootstrapping

We reformulate the SPIBB objective as follows:

π� = argmax
π∈Π

ρ(π, M̂), s.t. ∀x ∈ X ,
∑
a∈A
|π(a|x)− πb(a|x)|e′δ(x, a) ≤ 2ε, (3)

where ε is a hyperparameter that may be interpreted as a local error budget, and e′δ(x, a) is
the error function on the baseline policy evaluation: |QπbM∗(x, a)−Qπb

M̂
(x, a)| ≤ e′δ(x, a)Vmax

holds with high probability 1 − δ
|X ||A| . In comparison with eδ(x, a), concentration bounds

are tighter when using the Monte Carlo estimator for Qπb
M̂

(x, a):

e′δ(x, a) ≤

√
2

ND(x, a)
log

2|X ||A|
δ

(4)

Πb-SPIBB (Laroche and Trichelair, 2017) is the exact solution of Equation 3, when the
error function is loosely bounded by e′δ(x, a) ≤ ∞ if (x, a) ∈ B and e′δ(x, a) ≤ ε otherwise.

In this paper, we propose to use the finer concentration bounds error function of Equa-
tion 4. However, finding π� requires optimization under constraint. In order to contain
the computational complexity, we propose two algorithms that return sub-optimal target
policies π�∼. They both rely on policy iteration, where the policy improvement step is per-
formed under the constraint defined in Equation 3. This approach guarantees to improve
the baseline in M̂ : ρ(π�∼, M̂) ≥ ρ(πb, M̂).

Soft-SPIBB-max-Q: In the appendix, Algorithm 1 provides the pseudo-code of Soft-
SPIBB-max-Q. The policy evaluation works as in any standard policy iteration algo-

rithm: Q
(i)

M̂
is the evaluation of policy π(i) computed at iteration (i). However, the pol-

icy improvement must satisfy the Soft-SPIBB constraint. As a consequence, in each state,
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the Soft-SPIBB-max-Q algorithm computes the local error expense E by moving greed-
ily all the policy probability mass to the action with maximal state-action value: a∗ =

argmaxa∈AQ
(i)

M̂
(s, a).

E = (1− πb(a∗|x))e′δ(x, a
∗) +

∑
a6=a∗

πb(a|x)e′δ(x, a) (5)

If E remains under the budget 2ε, then the greedy policy is allowed, else, the budget is
consumed in proportion:

π(i+1)(a∗|x) = πb(a
∗|x) + 2ε

E (1− πb(a∗|x)) (6)

∀a 6= a∗, π(i+1)(a|x) =
(
1− 2ε

E

)
πb(a|x) (7)

Note that with this update, the local error expense is exactly 2ε. Soft-SPIBB-max-Q
has the advantage of being simple, but also presents two drawbacks. First, if the maximal
action has a large error, then the policy probability mass move remains small, even though
the error budget could have been used more efficiently. Second, the suboptimal actions are
all consumed equally and it takes only one with a large error to prevent the other policy
probability mass moves. Soft-SPIBB-sort-Q solves these issues with a more sophisticated
mass redistribution and without significant computational complexity increase.

Soft-SPIBB-sort-Q: In the appendix, Algorithm 2 provides the pseudo-code of Soft-
SPIBB-sort-Q. Soft-SPIBB-sort-Q local policy improvement consists in removing the policy
probability mass m− from the action a− with the lowest Q-value. Then, m− is attributed
to the action that offers the highest Q-value improvement by unit of error ∂ε:

a+ = argmax
a∈A

∂π

∂ε
(x, a)

(
Q

(i)

M̂
(x, a)−Q(i)

M̂
(x, a−)

)
(8)

= argmax
a∈A

Q
(i)

M̂
(x, a)−Q(i)

M̂
(x, a−)

e′δ(x, a)
(9)

Once m− has been reassigned to another action with higher value, the budget is updated
accordingly to the error that has been spent, and the algorithm continues with the next
worst action until a stopping criteria is met: the budget is fully spent, or a− = a∗.

Soft-SPIBB-max-Q-λe and Soft-SPIBB-sort-Q-λe: In Soft-SPIBB algorithms, a rare
state-action pair with an overestimated state-action value can receive a higher probability
value than the baseline, which might constitute a significant advantage over SPIBB when the
optimal action is rarely taken by the baseline, but not when the rare actions are yielding bad
returns. Generally, the baseline has a bias towards the good actions. We derive versions of
Soft-SPIBB-max-Q and Soft-SPIBB-sort-Q, respectively called Soft-SPIBB-max-Q-λe and
Soft-SPIBB-sort-Q-λe, that exploit this bias by considering a lower confidence bound on

Q
(i)

M̂
(x, a). A proper lower confidence bound is hard to compute. Instead, we estimate it as

Q
(i)

M̂
(x, a)− λe′δ(x, a). λ is a hyperparameter that controls the desired amount of bias.
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Convergence condition In our algorithms, there is no guarantee that the current itera-
tion policy search space includes the previous iteration policy, which can cause divergence:
the algorithm can indefinitely cycle between two policies. To ensure convergence, we de-
cide to update π(i) with π(i+1) only if there is a local policy improvement, i.e. when

Ea∼π(i+1)(·|x)[Q
(i)

M̂
(x, a)] ≥ Ea∼π(i)(·|x)[Q

(i)

M̂
(x, a)].

4. Soft-SPIBB Empirical Evaluation

The Gridworld Task We consider the exact same setting as in Laroche and Trichelair
(2017): a discrete and stochastic 5× 5 gridworld with 4 actions (up, down, left and right).
The goal is to go from the bottom left corner to the top right one with a maximum cumula-
tive reward. The action taken moves the agent in the specified direction with 75% chance, in
the opposite direction with 5% chance, and sideways with 10% chance each. The agent gets
a −10 reward when hitting a wall (and does not move in this case), +100 when reaching the
final state, and 0 elsewhere. Each run consists in generating trajectories with the baseline,
training the algorithms on this batch of data and evaluating the performance of the learned
policies. We analyze the mean performance of all the runs and the mean performance over
the 1% worst runs (worst-centile performance) to empirically assess safety.

Results We evaluate Soft-SPIBB-max-Q, Soft-SPIBB-sort-Q, Soft-SPIBB-max-Q-λe and
Soft-SPIBB-sort-Q-λe with λ = 1 on the gridworld task and compare them against Πb-
SPIBB (Laroche and Trichelair, 2017) and basic RL (which consists in computing the MLE
MDP of the environment and solving it with dynamic programming). The Q-function was
initialized with a pessimistic value (0), and the baseline policy is obtained with a softmax
exploration around the optimal Q-function. We repeated 8000+ runs for each algorithm in
the benchmark, 10 dataset sizes ranging from 10 to 10000, 10 ε values from 0.01 to 5 and
δ = 1. Figure 1 shows the results for ε = 0.05, 2 and 5.

Basic RL fails at being safe: its worst-centile performance is too low to appear on
the plots. For low ε values, Πb-SPIBB does not outperform the baseline as it bootstraps
on πb for each state-action pair (see figures where ε = 0.05 i.e. N∧ > 23500). Our Soft-
SPIBB methods perform better than Πb-SPIBB in both mean and worst-case scenarios. The
improvement is all the more significant than the dataset is large: with 10000 trajectories,
Soft-SPIBB gives a mean and worst-case performance at least 20 points better than the
baseline and Πb-SPIBB. Even with very few trajectories, Soft-SPIBB outperforms SPIBB,
and its worst-centile performance is at most less than 2 points below the baseline. This
confirms that our new safety constraint is less binding than the bootstrapped set.

When ε = 2, our Soft-SPIBB algorithms are safe and give the best mean and worst-
centile performances for small datasets. For all dataset sizes, Soft-SPIBB-sort-Q-λe per-
forms the best on average. We also notice that Soft-SPIBB-sort-Q and Soft-SPIBB-sort-
Q-λe yield better mean and worst-centile results than Soft-SPIBB-max-Q and Soft-SPIBB-
max-Q-λe respectively, which was expected since Soft-SPIBB-sort-Q allows a smarter and
more efficient use of the local error budget. However, we notice that Πb-SPIBB outperforms
Soft-SPIBB with larger datasets. This is explained by our experiments settings: when gen-
erating more trajectories, Soft-SPIBB is less constrained and can favor rare state-action
pairs with high estimated values, but since we use an optimal baseline, actions that are
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(a) Mean performance (from left to right: ε = 0.05, 2, 5)
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(b) Worst-centile performance (from left to right: ε = 0.05, 2, 5)

Figure 1: Soft-SPIBB benchmark: mean and worst-centile performances

rarely sampled actually yield bad returns. In that sense, Soft-SPIBB-max-Q-λe and Soft-
SPIBB-sort-Q-λe naturally perform better than their respective non-regularized versions.
In particular, Soft-SPIBB-sort-Q-λe is only less than 1 point below Πb-SPIBB for a small
range of dataset sizes, and performs better on the rest. We expect our non-regularized
Soft-SPIBB methods to perform better than SPIBB in situations where the optimal actions
are not necessarily predominantly selected by the baseline policy.

Finally, figures for ε = 5 show that the choice of ε is key to ensuring safety: Soft-SPIBB
fails at being safe because its constraint is too easily satisfied. Soft-SPIBB-max-Q has the
same behavior as basic RL, which makes sense since the former is reduced to the latter when
its constraint is removed. Nevertheless, in the worst-centile scenario, Soft-SPIBB-sort-Q-λe
is at most only less than 10 points below the baseline and gives the best performance for
large datasets, followed by Soft-SPIBB-max-Q-λe.

5. Conclusion

In this paper, we tackle the fundamental problem of learning safe policies given a batch of
data. We propose a novel model-based approach for safe policy improvement, Soft-SPIBB,
based on a reformulation of the SPIBB objective. Our methodology is more flexible as it
allows slight policy changes for uncertain state-action pairs. We derive two computationally-
efficient algorithms that return sub-optimal target policies and two variants, and empirically
evaluate their mean and worst-centile performances on the gridworld task. Our Soft-SPIBB
algorithms remain safe with reasonable ε values and show significant advantages: they are
less conservative and improve faster than Πb-SPIBB, and they perform better than basic
RL in most settings.
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Appendix A. Soft-SPIBB-max-Q Algorithm

Algorithm 1: Soft-SPIBB-max-Q

Input: Baseline policy πb
Input: Current state x and action set A
Input: Errors e′δ(x, a) for each a ∈ A
Input: MDP model precision level ε

Input: Last iteration value function Q
(i)

M̂

Result: Next iteration policy π(i+1)

Initialize π(i+1)(·|x) = 0
a∗ = argmax

a∈A
Q̂(i)(x, a)

E = (1− πb(a∗|x))e′δ(x, a
∗) +

∑
a6=a∗ πb(a|x)e′δ(x, a)

if E ≤ 2ε then

π(i+1)(a∗|x) = 1
else

for a 6= a∗ do

π(i+1)(a|x) = (1− 2ε
E )πb(a|x)

end

π(i+1)(a∗|x) = πb(a
∗|x) + 2ε

E (1− πb(a∗|x))

end

if
∑
a∈A

π(i+1)(a|x)Q
(i)

M̂
(x, a) ≤

∑
a∈A

π(i)(a|x)Q
(i)

M̂
(x, a) then

π(i+1)(·|x) = π(i)(·|x)
end

return π(i+1)

In practice, some state-action pairs might have never been sampled in the dataset, and
therefore have infinite transition errors. To cancel these infinite terms in the constraint in
(3), we assign the baseline probability to state-action pairs with infinite errors and apply
the same greedy procedure on the rest.
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Appendix B. Soft-SPIBB-sort-Q Algorithm

Algorithm 2: Soft-SPIBB-sort-Q

Data: Baseline policy πb
Data: Last iteration value function Q

(i)

M̂
Data: Current state x and action set A
Data: Errors e′δ(x, a) for each a ∈ A
Data: MDP model precision level ε
Result: Next iteration policy π(i+1)

Initialize π(i+1)(·|x) = πb(·|x) and E = 2ε

Define A− as A sorted in increasing order of Q
(i)

M̂
(x, ·)

for a− ∈ A− do

m− = min

(
π(i+1)(a−|x),

E

2e′δ(x, a
−)

)

a+ = argmax
a∈A

Q
(i)

M̂
(x, a)−Q(i)

M̂
(x, a−)

e′δ(x, ·)

m+ = min

(
m−,

E

2e′δ(x, a
+)

)
if m+ > 0 then

π(i+1)(a+|x) = π(i+1)(a+|x) +m+

π(i+1)(a−|x) = π(i+1)(a−|x)−m+

m− = m− −m+

E = E −m+ (e′δ(x, a
+) + e′δ(x, a

−))

end

end

if
∑
a∈A

π(i+1)(a|x)Q
(i)

M̂
(x, a) ≤

∑
a∈A

π(i)(a|x)Q
(i)

M̂
(x, a) then

π(i+1)(·|x) = π(i)(·|x)
end

return π(i+1)
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