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Abstract

In this paper, we consider the Batch Reinforcement Learning task and adopt the safe policy im-
provement (SPI) approach: we compute a target policy guaranteed to perform at least as well as a
given baseline policy, approximately and with high probability. Our SPI strategy, inspired by the
knows-what-it-knows paradigm, consists in bootstrapping the target with the baseline when the tar-
get does not know. We develop a policy-based computationally efficient bootstrapping algorithm,
accompanied by theoretical SPI bounds for the tabular case. We empirically show the limits of
the existing algorithms on a small stochastic gridworld problem, and then demonstrate that our
algorithm not only improve the worst-case scenario but also the mean performance.

1. Introduction

Reinforcement Learning (RL, Sutton and Barto (1998)) consists in discovering through trial-and-
error in an unknown uncertain environment, which action is the most valuable in a particular sit-
uation. This optimism in the face of uncertainty (OFU, Szita and Lőrincz (2008)), or at the very
least, this recklessness in an online learning setting: algorithms based on OFU, such as R-MAX or
UCRL, are provably efficient. Indeed, a good outcome brings a policy improvement, and even an
error leads to learning not to do it again at a lesser cost (Brafman and Tennenholtz, 2002; Auer and
Ortner, 2007). However, most real-world algorithms are to be widely deployed on independent de-
vices/systems, and as such their policies cannot be updated as often as online learning would require.
Therefore, the same mistake may be repeated during a time long enough to lose the user’s trust. In
this offline setting, batch RL algorithms are one approach that has been recommended (Lange et al.,
2012). But, the OFU paradigm shows its limits when the policy updates are rare, because the
commitment on the optimism is too strong and the error impact may be severe. In this paper, we
endeavour to build batch algorithms that are safe in this regard.

The concept of safety in RL has been defined in several contexts (Garcıa and Fernández, 2015).
Two notions of uncertainty, the internal and the parametric, are defined in (Ghavamzadeh et al.,
2015): internal uncertainty reflects the uncertainty of the return due to stochastic transitions and
rewards, for a single known MDP, while parametric uncertainty reflects the uncertainty about the
unknown MDP parameters: the transition and reward distributions. In short, internal safety guar-
antees a certain level of return for each individual trajectory, which is critical for potential harmful
behaviour or catastrophe avoidance scenarios.

In this paper, we focus more specifically on parametric safety: guarantee of a given expected
return for the trained policy in the batch RL setting (Thomas et al., 2015; Petrik et al., 2016). More
specifically, we aim to train a policy, called target, which approximately outperforms the behavioral
policy, called baseline, with high confidence. The goal is therefore to improve the baseline, even in
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the unfavorable scenarios. As such, this family of algorithms can be seen as pessimistic in the face
of uncertainty, the flip side of OFU.

Our contributions are summarized as follows. Firstly, we identify a small batch RL task where
existing algorithms fail to be safe (Section 2). We analyze the reasons for this failure. Secondly,
we present a novel methodology for Safe Policy Improvement (SPI) called SPI with Baseline Boot-
strapping (SPIBB). It consists in bootstrapping the trained policy with the baseline in the state-
action pair transitions that were not probed enough in the dataset (Section 3). Thirdly, we develop
a novel provably-safe and computationally efficient algorithm, and two algorithm variants (Section
4). Fourthly, we empirically analyze the safety and performances of our algorithms on the gridworld
task. The results show that our algorithms significantly outperform the competitors, both in mean
and the worst-percentile performance (Section 5). Finally, Section 6 concludes the paper.

2. Illustrative scenario: Gridworld

The stochastic gridworld task is motivated by the fact that existing batch RL algorithms already fail
to be safe in this simple environment. This task is also small enough to empirically assess the worst-
percentile performance: the mean performance over the X% worst runs. The task is illustrated on
Figure 1a and we refer the interested reader to Appendix A for the full experimental setting. We
introduce the MDP framework and our notations in Appendix B.

Transition distribution imbalance: All the state-of-the-art algorithms for batch RL assume that
every state-action has been experienced a certain amount of times (Delage and Mannor, 2010; Petrik
et al., 2016). In this paragraph, we aim to empirically demonstrate that this assumption is gener-
ally transgressed even in our small gridworld domain. To do so, we collect 12 million trajectories
with the baseline. The map of the state-action pairs count log10 logarithm (see Figure 1b) shows
how unbalanced they are: some pairs are experienced in each trajectory, some once every million
trajectories, and some are never seen. Moreover, the actions that are rarely chosen are likely to be
the dangerous ones, and for those ones, a bad model might lead to a catastrophic policy. Figure 1c
displays the expected number of transitions that are seen exactly once in a dataset as a function of its
size (it is similar to a multimodal Poisson point process). This curve is computed analytically from
the state-action counts in the 12 million trajectory dataset. It decreases slowly as more trajectories
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(a) Stochastic gridworld domain
and its optimal trajectory.
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(b) log10 state-action counts af-
ter 1.2× 107 trajectories.

(c) Expectation of the number of (x, a) pairs
counting a unique transition.

Figure 1: Gridworld domain, state-action counts and unique transitions count expectation.
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are collected. But, if we look more specifically at dangerous transitions, i.e. the ones that direct the
agent to a wall, we observe a peak around 1,000 trajectories.
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Figure 2: Existing algorithms benchmark: basic
RL, Robust MDP, and Reward Adjusted MDP are
compared to our Π≤b-SPIBB on mean and worst-
decile performances.

Failure of existing algorithms: In Figure 2,
we see that, surprisingly, the Basic RL policies
trained with 10 trajectories yield better returns
than the ones trained with 1,000 trajectories on
average. We interpret it as the consequence of
the rare pair count effect developed in the previ-
ous paragraph, that create situations where the
basic RL trains catastrophic policies. We con-
jecture that this issue is faced at different scales
in most practical applications. Neither Robust
MDP nor Reward Adjusted MDP Petrik et al.
(2016) seem to improve the safety when the
safety test is omitted. We did so in our curves
to make a relevant comparison: this test al-
ways fails because of its wide confidence inter-
val. Reward Adjusted MDP is overwhelmed by
the penalty from performing actions that were
rarely taken in the dataset, and ignores the environment rewards. As a result, it converges to remain-
ing in the safe zone in the middle of the grid where no positive reward may be received, hence it is
not visible on Figure 2.

We solve this issue by allowing to optimize only on the state-action pairs that have been suf-
ficiently sampled in the dataset to infer tangible knowledge. We propose a provably-safe way of
bootstrapping the uncertain state-action pairs with low variance estimators obtained from the base-
line. The SPIBB algorithms are described and analyzed in Section 4. Their comparative empirical
results are lengthily discussed in Section 5. But first, Section 3 introduces the SPIBB methodology.

3. Safe Policy Improvement with Baseline Bootstrapping

Percentile criterion and Robust MDPs: We adapt here the percentile criterion Delage and Man-
nor (2010) to the objective of safe policy improvement over the baseline policy πb:

πC = argmax
π∈Π

E [ρ(π,M) |M ∼ PMDP(·|D)] , (1)

such that P (ρ(π,M) ≥ ρ(πb,M)− ζ |M ∼ PMDP(·|D)) ≥ 1− δ, (2)

where PMDP(·|D) is the posterior probability of the MDP parameters, 1 − δ and ζ are the high
probability and error meta-parameters. Petrik et al. (2016) use Robust MDP (Iyengar, 2005; Nilim
and El Ghaoui, 2005) to bound from below the constraint (2) by considering Ξ = Ξ(M̂, e) as a set
of admissible MDPs:

Ξ(M̂, e) =

{
M = 〈X ,A, R, P, γ〉 s.t.

||P (·|x, a)− P̂ (·|x, a)||1 ≤ e(x, a),

|R(x, a)− R̂(x, a)| ≤ e(x, a)Rmax
∀(x, a) ∈ X ×A

}
where M̂ = 〈X ,A, P̂ , R̂, γ〉 is the MDP parameters estimator, and e : X × A → R is an error
function depending on the dataset D and the high probability meta-parameter 1 − δ. Instead of
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the intractable expectation in Equation (1), Robust MDP classically consider optimizing the policy
performance ρ(π,M) of the worst-case scenario in Ξ. Thus, Petrik et al. (2016) contemplate the
policy improvement worst-case scenario: πS = argmaxπ∈Π minM∈Ξ (ρ(π,M)− ρ(πb,M)). Un-
fortunately, they prove that this optimization is an NP-hard problem. They propose an algorithm
approximating the solution: Approximate Robust Baseline Regret Minimization (ARBRM). There
are three problems with ARBRM. First, ARBRM assumes that there is no error in the transition
probabilities of the baseline, which is a hazardous assumption. Second, considering its high com-
plexity (polynomial time), it is difficult to empirically assess its percentile criterion safety even in
simple tasks. Third, the Robust MDP solver uses a conservative worst-case safety test.

SPIBB methodology: As evoked earlier, we endeavour to further reformulate the percentile crite-
rion in order to be able to search for an efficient and provably-safe policy within a tractable amount
of computer time. Our new criterion consists in optimizing the policy with respect to its perfor-
mance in the MDP estimate M̂ , while being guaranteed to be ζ-approximately at least as good as
πb in the admissible MDP set Ξ. More formally, we write it as follows:

max
π∈Π

ρ(π, M̂), such that ∀M ∈ Ξ, ρ(π,M) ≥ ρ(πb,M)− ζ (3)

From Theorem 8 of Petrik et al. (2016), it is immediate to prove that, if all state-action pair
counts satisfy ND(x, a) ≥ 8V 2

max
ζ2(1−γ)2

log 2|X ||A|2|X|
δ , and if M̂ is the Maximum Likelihood Estima-

tion (MLE) MDP, then π� = argmaxπ∈Π ρ(π, M̂) implies that ρ(π�,M) ≥ ρ(π∗,M) − ζ ≥
ρ(πb,M)− ζ.

In this paper, we extend this result by allowing this constraint to be only partially satisfied in
a subset of X × A. Its complementary subset, the set of uncertain state-action pairs, is called
the bootstrapped set and is denoted by B in the following. B is dependent on the dataset D and
on a hyper-parameter: minimal count N∧. For ease of notation those dependencies are omitted.
Algorithm 1 in Appendix C formalizes the construction of B.

4. Policy-based SPIBB

We adopt a policy bootstrapping. More precisely, when a state-action pair (x, a) is rarely seen in the
dataset, i.e. (x, a) ∈ B, instead of relying on a noisy value estimate, we propose to rely on the base-
line policy by copying the probability to take this action in this state: π(a|x) = πb(a|x) if (x, a) ∈
B. Algorithm 2 in Appendix C, referred as Πb-SPIBB, provides the pseudo-code of the baseline
bootstrapping. It consists in constructing the set of allowed policies Πb and then searching the Πb-
optimal policy π�pol in the MDP model M̂ estimated from dataset D. In practice, the optimisation
process may be performed by policy iteration (Howard, 1966; Puterman and Brumelle, 1979): the
current policy π(i) is evaluated with Q(i), and then the next iteration policy π(i+1) is made greedy
with respect to Q(i) under the constraint of belonging to Πb.

Theorem 1 states that Πb-SPIBB converges to a Πb-optimal policy π�pol. Below, Theorem 2
states that π�pol safely improves the baseline in the true environment.

Theorem 1 (Convergence) Πb-SPIBB converges to a policy π�pol that is Πb-optimal in the MLE

MDP M̂ .
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Theorem 2 (SPI) Let Πb be the set of policies under the constraint of following πb when (x, a) ∈
B. Then, π�pol is at least a ζ-approximate safe policy improvement over the baseline πb with high
probability 1− δ, with:

ζ =
4Vmax

1− γ

√
2

N∧
log

2|X ||A|2|X |
δ

− ρ(π�pol, M̂) + ρ(πb, M̂) (4)

Πb-SPIBB has a tendency to reproduce the rare actions from the baseline. Even though this
is what allows us to guarantee a performance almost as good as the baseline, it may prove to be
problematic when the baseline is already near optimal for two reasons: first, the low visited state-
action pairs are generally the actions for which the behavioral policy probability is lower, meaning
that these actions are more likely to be bad; second, the baseline exploratory strategies fall into this
category, and copying the baseline is reproducing these strategies.

Another way to look at the problem is therefore to consider that rare actions must be avoided,
because they are risky, and therefore to force the policy to assign a probability of 0 to perform this
action1. Algorithm 2 remains unchanged with the policy search space Π0 instead of Πb:

Π0 = {π ∈ Π |π(a|x) = 0 if (x, a) ∈ B} (5)

Theorem 1 applies to this variant, referred as Π0-SPIBB, but the empirical analysis of Section 5
reports that it sometimes proves to be unsafe. We believe that a better policy-improvement SPIBB
lies in-between: the space of policies to search in should be constrained not to give more weight than
πb to actions that were not tried out enough to significantly assess their performance, but still leave
the possibility to completely cut off bad performing actions even though this evaluation is uncertain.
The resulting algorithm is referred as Π≤b-SPIBB. Again, Theorem 1 applies to Π≤b-SPIBB and
Algorithm 2 is reused by replacing the policy search space Πb with Π≤b defined as follows:

Π≤b = {π ∈ Π | 0 ≤ π(a|x) ≤ πb(a|x) if (x, a) ∈ B} (6)

5. SPIBB empirical evaluation and benchmark

The SPIBB algorithms are evaluated and compared on the simple gridworld task illustrated on
Figure 1a. We repeated 25000+ runs for each 5 SPIBB algorithms, each 11 dataset sizes2, and each
8 N∧ values logarithmically ranging from 5 to 10003. Another baseline is used to generate the
dataset and to bootstrap on. It differs in that it favours walking along the walls, although it should
avoid it to prevent bad stochastic transitions. This baseline was constructed in order to demonstrate
the jeopardy of algorithm Π0-SPIBB when the optimal policy is different from the action with the
highest likelihood in the baseline.

The safety is strictly assessed by a worst-centile measure: average performance of the 1% worst
runs. The basic RL worst-centile curve is too low to appear. The main lessons are that the safety
of improvement over the baseline is not much impacted by the choice of N∧, but that a higher N∧
implies the SPIBB algorithms to be more conservative and to bootstrap more often on the baseline.

1. If, in a given state x, all action are boostrapped, then π�pol(x, ·) is set to πb(x, ·).
2. Our SPIBB algorithms are so efficient and safe that we expand the dataset size range to [10,20000].
3. Since safety bounds can be loose, we use N∧ directly as a hyper-parameter instead of calculating it from ζ and δ.
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(a) Mean performance. (b) Worst-centile performance

Figure 3: SPIBB benchmark (N∧ = 5): mean and worst-centile performance

Even though the theory would advise to use higher values, our best empirical results was obtained
with N∧ = 5. Due to space limitations, we only illustrate on figures the N∧ = 5 results.

Πb-SPIBB and Π≤b-SPIBB get a worst-centile scenario only 5 points below the baseline, which
is explained by the variance in the evaluation, and is not a consequence of a policy worse than the
baseline. Π0-SPIBB lacks safety with very small datasets, because it tends to completely abandon
actions that are not sampled enough in the dataset, regardless of their performance. Results with
higher N∧ values show that there is a dataset size for which Π0-SPIBB tends to cut the optimal
actions (of not walking along the wall), which causes a strong performance drop, both in worst-
centile scenario and in mean performance (see Figure 3a). Πb-SPIBB is more conservative and fails
to improve as fast as the two other policy-based SPIBB algorithms, but it does it safely. Π≤b-SPIBB
is the best of both worlds: safe although still capable of cutting bad actions even with only a small
number of samples. However, for multi-batch settings, it is better to keep on trying out the actions
that were not sufficiently explored yet, and Πb-SPIBB might be the best algorithm in this setting.

6. Conclusion and future work

In this paper, we tackle the problem of Batch Reinforcement Learning and its safety. We reformulate
the percentile criterion without compromising its safety. We lose optimality but keep a PAC-style
guarantee of policy improvement. The gain is that it allows to implement an algorithm Πb-SPIBB
that runs as fast as a basic model-based RL algorithm, while generating a provably safe policy
improvement over a known baseline πb. The empirical analysis shows that, even on a very simple
domain, the basic RL algorithm fails to be safe, and the state-of-the-art safe batch RL algorithms
almost never accept a policy change. And they do no better than the basic RL algorithm when the
policy improvement safety test is omitted. The SPIBB algorithms show significantly better results:
their worst-centile performance even surpassing the basic RL mean performance.

Future work includes developing model-free versions of our algorithms in order to ease their use
in continuous state MDPs and complex real-world applications, with state representation approxi-
mation, using density networks (Veness et al., 2012; Van Den Oord et al., 2016) to compute pseudo-
counts (Bellemare et al., 2016), in a similar way to that of optimism-motivated online RL (Osband
et al., 2016; Laroche and Barlier, 2017; Ostrovski et al., 2017).
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Appendix A. Stochastic gridworld task and experimental setting

Our case study is a straightforward discrete, stochastic 5 × 5 gridworld (see Figure 1a). We use
four actions: up, down, left and right. The transition function is stochastic and the actions move
the agent in the specified direction with 75% chance, in the opposite direction with 5% chance and
sideway with 10% chance each. The initial and final states are respectively the bottom left and top
right corners. The reward is −10 when hitting a wall (in which case the agent does not move) and
+100 if the final state is reached. Each run consists in generating a dataset, training policies with the
algorithms, and evaluating the trained policies. The results are presented in two forms: the mean
performance on all the runs and the worst-decile performance: average performance of the 10%
worst runs. Each point is the result of 25,000+ independent runs.

Basic RL stands for computing the Maximum Likelihood Estimation MDP of the environment,
and solving it with dynamic programming. In order to cover the state-action pairs absent from
the dataset, several Q initializations were investigated: optimistic (Vmax), null (0), and pessimistic
(−Vmax). The first yielded awful performances, and the two last yielded the same performances
(indeed the Q-function is positive everywhere in our task). All the presented results are obtained
with the null initialization. The baseline is obtained with a softmax exploration around the optimal
Q-function. Two safe batch RL algorithms are added to the benchmark: Robust MDP and Reward
Adjusted MDP (Petrik et al., 2016).

Appendix B. The MDP framework

Markov Decision Processes (MDPs, Bellman (1957)) are a widely used framework to address the
problem of optimizing a sequential decision making. In our work, we assume that the true envi-
ronment is modelled as an unknown MDP M∗ = 〈X ,A, R∗, P ∗, γ〉, where X is the state space,
A is the action space, R∗(x, a) ∈ [−Rmax, Rmax] is the true bounded stochastic reward function,
P ∗(·|x, a) is the true transition probability, and γ ∈ [0, 1[ is the discount factor. Without loss of gen-
erality, we assume that the process deterministically begins in state x0, the stochastic initialization
being modelled by P ∗(·|x0, a0), and leading the agent to state x1. The agent then makes a decision
about which action a1 to select. This action leads to a new state that depends on the transition
probability and the agent receives a reward R∗(x1, a1) reflecting the quality of the decision. This
process is then repeated until the end of the episode. We denote by π the policy which corresponds
to the decision making mechanism that assigns actions to states. Π = {π : X → ∆A} denotes the
set of stochastic policies, with ∆A the set of probability distributions over the set of actions A.

The state value function V π
M (x) (resp. state-action value function QπM (x, a)) is the expectation

of the discounted sum of rewards when following π ∈ Π and starting from state x ∈ X (resp.
performing action a ∈ A in state x ∈ X ) in the MDP M = 〈X ,A, R, P, γ〉. The goal of a
reinforcement learning algorithm is to discover the unique optimal state value function V ∗M (resp.
action-state value function Q∗M ). We define the performance of a policy by its expected value
ρ(π,M) = V π

M (x0). Given a policy subset Π′ ⊆ Π, a policy π′ is said to be Π′-optimal for an MDP
M when it maximises its performance: ρ(π′,M) = maxπ∈Π′ ρ(π,M). Later, we also make use of
the notation Vmax as a known upper bound of the return absolute value: Vmax ≤ Rmax

1−γ . Given a
dataset of transitions D, we denote the state-action pair counts by ND(x, a).
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Appendix C. Algorithms

Algorithm 1: Construction of B
Input: Dataset D
Input: Parameter N∧

Initialize B: B = ∅.
for (x, a) ∈ X ×A do

if ND(x, a) < N∧ then
B = B ∪ {(x, a)}.

end
end
return B

Algorithm 2: Πb-SPIBB algorithm
Input: Dataset D, bootstrapped set B
Input: Baseline policy πb

Compute M̂ = 〈X ,A, P̂ , R̂, γ〉.
Πb = {π ∈ Π |π(a|x) = πb(a|x) if (x, a) ∈ B}
return π�pol = argmax

π∈Πb

ρ(π, M̂)
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Appendix D. Proofs for Πb-SPIBB (Section 4)

Proposition 1 Consider an environment modelled with a semi-MDP Parr and Russell (1998); Sut-
ton et al. (1999) M̈ = 〈X ,ΩA, P̈ ∗, R̈∗,Γ∗〉, where Γ∗ is the discount rate inferior or equal to γ

that varies with the state action transitions and the empirical semi-MDP ̂̈M = 〈X ,ΩA, ̂̈P , ̂̈R, Γ̂〉
estimated from a dataset D. If in every state x where option oa may be initiated: x ∈ Ia, we have:√

2

ND(x, a)
log

2|X ||A|2|X |
δ

≤ ε, (7)

then, with probability at least 1− δ:

∀a ∈ A,∀x ∈ Ia,
{
‖Γ∗P̈ ∗(x, oa)− Γ̂ ̂̈P (x, oa)‖1 ≤ ε
|R̈∗(x, oa)− ̂̈R(x, oa)| ≤ εR̈max

(8)

Proof The proof is similar to that of Proposition 9 of Petrik et al. (2016).

D.1 Q-function error bounds with Πb-SPIBB

Lemma 1 (Q-function error bounds with Πb-SPIBB) Consider two semi-MDPsM1 = 〈X ,ΩA, P1, R1,Γ1〉
and M2 = 〈X ,ΩA, P2, R2,Γ2〉. Consider a policy π. Also, consider Q1 and Q2 be the state-action
value function of the policy π in M1 and M2, respectively. If:

∀a ∈ A, ∀x ∈ Ia,
{
|R11x,oa −R21x,oa | ≤ εRmax
||(Γ1 ◦ P1)1x,oa − (Γ2 ◦ P2)1x,oa ||1 ≤ ε,

(9)

then, we have:

∀a ∈ A, ∀x ∈ Ia, |Q11x,oa −Q21x,oa | ≤
2εVmax

1− γ , (10)

where Vmax is the known maximum of the value function.

Proof We adopt the matrix notations. The difference between the two state-option value functions
can be written:

Q1 −Q2 = R1 +Q1π(Γ1 ◦ P1)−R2 −Q2π(Γ2 ◦ P2) (11)

= R1 +Q1π(Γ1 ◦ P1)−R2 −Q2π(Γ2 ◦ P2) +Q2π(Γ1 ◦ P1)−Q2π(Γ1 ◦ P1) (12)

= R1 −R2 + (Q1 −Q2)π(Γ1 ◦ P1) +Q2π((Γ1 ◦ P1)− (Γ2 ◦ P2)) (13)

= [R1 −R2 +Q2π((Γ1 ◦ P1)− (Γ2 ◦ P2))] (I− π(Γ1 ◦ P1))−1. (14)

Now using the Holder’s inequality and the second assumption, we have:

|Q2π((Γ1 ◦ P1)− (Γ2 ◦ P2))1x,oa | ≤ ‖Q2‖∞‖π‖∞‖(Γ1 ◦ P1)1x,oa − (Γ2 ◦ P2)1x,oa‖1 ≤ εVmax.
(15)
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Inserting 15 into Equation 14 and using the first assumption, we obtain:

|Q11x,oa −Q21x,oa | ≤ [εRmax + εVmax] ‖(I− π(Γ1 ◦ P1))−11x,oa‖1 (16)

≤ 2εVmax

1− γ , (17)

which proves the lemma. There is a factor 2 that might require some discussion. It comes from
the fact that we do not control that the maximum Rmax might be as big as Vmax in the semi-MDP
setting and we do not control the γ factor in front of the second term. As a consequence, we surmise
that a tighter bound down to εVmax

1−γ holds, but this still has to be proven.

D.2 Convergence and safe policy improvement of Πb-SPIBB

Lemma 2 (Safe policy improvement of π�pol over any policy π ∈ Πb) Let Πb be the set of poli-
cies under the constraint of following πb when (x, a) ∈ B. Let π�pol be a Πb-optimal policy of the

reward maximization problem of an estimated MDP M̂ . Then, for any policy π ∈ Πb, the difference
of performance between π�pol and π is bounded as follows with high probability 1 − δ in the true
MDP M∗:

ρ(π�pol,M
∗)− ρ(π,M∗) ≥ ρ(π�pol, M̂)− ρ(π, M̂)− 4εVmax

1− γ . (18)

Proof We transform the true MDP M∗ and the MDP estimate M̂ , to their bootstrapped semi-MDP

counterparts M̈∗ and the MDP estimate ̂̈M . In these semi-MDPs, the actions A are replaced by
options ΩA = {oa}a∈A constructed as follows:

oa = 〈Ia, a:πb, β〉 =


Ia = {x ∈ X , such that (x, a) /∈ B}
a:π̃b = perform a at initialization, then follow π̃b
β(x) = ‖π̇b(x, ·)‖1

(19)

where πb has been decomposed as the aggregation of two partial policies as follows: any policy
π may be decomposed as the aggregation of two partial policies: π = π̇ + π̃, where π̇ are the
non-boostrapped actions probabilities, and π̃ are the bootstrapped actions probabilities:

∀a ∈ A,
{
π̇(x, a) = π(x, a) if (x, a) /∈ B
π̇(x, a) = 0 if (x, a) ∈ B

(20)

∀a ∈ A,
{
π̃(x, a) = π(x, a) if (x, a) ∈ B
π̃(x, a) = 0 if (x, a) /∈ B

(21)

Let Π̈ denote the set of policies over the bootstrapped semi MDPs.
Ia is the initialization function: it determines the set of states where the option is available. a:πb

is the option policy being followed during the length of the option. Finally, β(x) is the termination
function defining the probability of the option to terminate in each state4. Please, notice that some

4. Notice that all options have the same termination function.
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states might have no available options, but this is okay since every option has a termination function
equal to 0 in those states, meaning that they are unreachable. This to avoid being in this situation at
the beginning of the trajectory, we use the notion of starting option: a trajectory starts with a void
option o∅ = 〈{x0} , πb, β〉.

By construction x ∈ Ia if and only if (x, a) /∈ B, i.e. if and only if the condition on the state-
action counts of Proposition 1 is fulfilled5. Also, any policy π ∈ Πb is implemented by a policy
π̈ ∈ Π̈ in a bootstrapped semi-MDP. Inversely, any policy π̈ ∈ Π̈ admits a policy π ∈ Πb in the
original MDP.

Note also, that by construction, the transition and reward functions are only defined for (x, oa)
pairs such that x ∈ Ia. By convention, we set them to 0 for the other pairs. Their corresponding
Q-functions are therefore set to 0 as well.

This means that Lemma 1 may be applied with π = π�pol and M1 = M̈∗ and M2 = ̂̈M . We
have:

|ρ(π�pol,M
∗)− ρ(π�pol, M̂)| = |ρ(π�pol, M̈

∗)− ρ(π�pol,
̂̈M)| (22)

= |V π�pol

M̈∗
(x0)− V π�pol̂̈M (x0)| (23)

= |Qπ
�
pol

M̈∗
(x0, o∅)−Q

π�pol̂̈M (x0, o∅)| (24)

≤ 2εVmax

1− γ (25)

Analogously to 25, for any π ∈ Πb, we also have:

|ρ(π,M∗)− ρ(π, M̂)| ≤ 2εVmax

1− γ (26)

Thus, we may write:

ρ(π�pol,M
∗)− ρ(π,M∗) ≥ ρ(π�pol, M̂)− ρ(π, M̂)− 4εVmax

1− γ , (27)

where the inequality is directly obtained from equations 25 and 26.

Theorem 1 (Convergence) Πb-SPIBB converges to a policy π�pol that is Πb-optimal in the MLE

MDP M̂ .

Proof We use the same transformation of M̂ as in Lemma 2. Then, the problem is cast without any
constraint in a well defined semi-MDP, and Policy Iteration is known to converge in semi-MDPs to
the policy optimizing the value function Gosavi (2004).

5. Also, note that there is the requirement here that the trajectories are generated under policy πb, so that the options are
consistent with the dataset.
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Theorem 2 (SPI) Let Πb be the set of policies under the constraint of following πb when (x, a) ∈
B. Then, π�pol is at least a ζ-approximate safe policy improvement over the baseline πb with high
probability 1− δ, with:

ζ =
4Vmax

1− γ

√
2

N∧
log

2|X ||A|2|X |
δ

− ρ(π�pol, M̂) + ρ(πb, M̂) (28)

Proof It is direct to observe that πb ∈ Πb, and therefore that Lemma 2 can be applied to πb. We
infer that, with high probability 1− δ:

ρ(π�pol,M
∗)− ρ(πb,M

∗) ≥ ρ(π�pol, M̂)− ρ(πb, M̂)− 4εVmax

1− γ . (29)

with:

ε =

√
2

N∧
log

2|X ||A|2|X |
δ

(30)

Therefore, we obtain:

ζ =
4εVmax

1− γ −
(
ρ(π�pol, M̂)− ρ(πb, M̂)

)
(31)

=
4Vmax

1− γ

√
2

N∧
log
|X ||A|2|X |

δ
− ρ(π�pol, M̂) + ρ(πb, M̂) (32)

Quod erat demonstrandum.
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