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Abstract

We propose a recurrent RL agent with an episodic exploration mechanism that helps
discovering good policies in text-based game environments. We show promising results on a
set of generated text-based games of varying difficulty where the goal is to collect a coin
located at the end of a chain of rooms. In contrast to previous text-based RL approaches, we
observe that our agent learns policies that generalize to unseen games of greater difficulty.
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1. Introduction

Text-based games like Zork (Infocom, 1980) are complex, interactive simulations. They use
natural language to describe the state of the world, to accept actions from the player, and
to report subsequent changes in the environment. The player works toward goals which are
seldom specified explicitly and must be discovered through exploration. The observation
and action spaces in text games are both combinatorial and compositional, and players must
contend with partial observability, since descriptive text does not communicate complete,
unambiguous information about the underlying game state. Figure 1 depicts Zork’s opening
scene along with two player commands and the corresponding system responses.

In this paper, we study several methods of exploration in text-based games. Our basic
task is a deterministic text-based version of the chain experiment (Osband et al., 2016;
Plappert et al., 2017) with distractor nodes that are off-chain: the agent must navigate a
path composed of discrete locations (rooms) to the goal, ideally without revisiting dead
ends. We propose a DQN-based recurrent model for solving text-based games, where the
recurrence gives the model the capacity to condition its policy on historical state information.
To encourage exploration, we extend count-based exploration approaches (Ostrovski et al.,
2017; Tang et al., 2017), which assign an intrinsic reward derived from the count of state
visitations during learning, across episodes. Specifically, we propose an episodic count-based
exploration scheme, where state counts are reset at the beginning of each episode. This
reward plays the role of an episodic memory (Gershman and Daw, 2017) that pushes the
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Figure 1: Intro to Zork

agent to visit states not previously encountered within an episode. Although the recurrent
policy architecture has the capacity to solve the task by remembering and avoiding previously
visited locations, we hypothesize that exploration rewards will help the agent learn to utilize
its memory.

We generate a set of games of varying difficulty (measured with respect to the path length
and the number of off-chain rooms) with a text-based game generator (Côté et al., 2018).
We observe that, in contrast to a baseline model and standard count-based exploration
methods, the recurrent model with episodic bonus learns policies that not only complete
multiple training games at same time successfully but also generalize to unseen games of
greater difficulty.

2. Text-based Games as POMDPs

Text-based games are sequential decision-making problems that can be described naturally
by the Reinforcement Learning (RL) setting. Fundamentally, text-based games are par-
tially observable Markov decision processes (POMDP) (Kaelbling et al., 1998) where the
environment state is never observed directly. To act optimally, an agent must keep track
of all observations. Formally, a text-based game is a discrete-time POMDP defined by
(S, T,A,Ω, O,R, γ), where γ ∈ [0, 1] is the discount factor.

Environment States (S): The environment state at turn t in the game is st ∈ S. It
contains the complete internal information of the game, much of which is hidden from the
agent. When an agent issues a command ct (defined next), the environment transitions to
state st+1 with probability T (st+1|st, ct).

Actions (A): At each turn t, the agent issues a text command ct. The interpreter can
accept any sequence of characters but will only recognize a tiny subset thereof. Furthermore,
only a fraction of recognized commands will actually change the state of the world. The
resulting action space is enormous and intractable for existing RL algorithms. In this work,
we make the following two simplifying assumptions. (1) Word-level Each command is a
two-word sequence where the words are taken from a fixed vocabulary V . (2) Command
syntax Each command is a (verb, object) pair (direction words are considered objects).
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Figure 2: LSTM-DRQN processes textual observations word-by-word to generate a fixed-
length vector representation. This representation is used by the recurrent policy
to estimate Q-values for all verbs Q(s, v) and objects Q(s, o).

Observations (Ω): The text information perceived by the agent at a given turn t in
the game is the agent’s observation, ot ∈ Ω, which depends on the environment state and
the previous command with probability O(ot|st, ct−1). Thus, the function O selects from
the environment state what information to show to the agent given the last command.

Reward Function (R): Based on its actions, the agent receives reward signals rt =
R(st, at). The goal is to maximize the expected discounted sum of rewards E

[∑
t γ

trt
]
.

3. Method

3.1 Model Architecture

In this work, we adopt the LSTM-DQN (Narasimhan et al., 2015) model as baseline. It has
two modules: a representation generator ΦR, and an action scorer ΦA. ΦR takes observation
strings o as input, after a stacked embedding layer and LSTM (Hochreiter and Schmidhuber,
1997) encoder, a mean-pooling layer produces a vector representation of the observation.
This feeds into ΦA, in which two MLPs, sharing a lower layer, predict the Q-values over all
verbs wv and object words wo independently. The average of the two resulting scores gives
the Q-values for the composed actions. The LSTM-DQN does not condition on previous
actions or observations, so it cannot memorize what happened previously. We concatenate
the previous command ct−1 to the current observation ot to lessen this limitation.

To further enhance the agent’s capacity to remember previous states, we replace the
shared MLP in ΦA by an LSTM cell. This model is inspired by Hausknecht and Stone
(2015); Lample and Chaplot (2016) and we call it LSTM-DRQN. The LSTM cell in ΦA

takes the representation generated by ΦR together with history information ht−1 from the
previous game step as input. It generates the state information at the current game step,
which is then fed into the two MLPs as well as passed forward to next game step. Figure 2
shows the LSTM-DRQN architecture.

3.2 Discovery Bonus

To promote exploration we use an intrinsic reward by counting game state visits (Kolter
and Ng, 2009; Tang et al., 2017; Martin et al., 2017; Ostrovski et al., 2017). We investigate
two approaches to counting rewards. The first is inspired by Kolter and Ng (2009), where
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we define the cumulative counting bonus as r+(ot) = β · n(ot)
−1/3, where n(ot) is the

number of times the agent has observed ot since the beginning of training (across episodes),
and β is the bonus coefficient. During training, as the agent observes new game states more
and more, the cumulative counting bonus gradually converges to 0.

The second approach is the episodic discovery bonus, which encourages the agent to
discover unseen game states by assigning a positive reward whenever it sees a new state. It

is defined as: r++(ot) =

{
β if n(ot) = 1

0.0 otherwise
, where n(·) is reset to zero at the beginning of each

episode. Taking inspiration from Gershman and Daw (2017), we hope this behavior pushes
the agent to visit states not previously encountered in the current episode and teaches the
agent how to use its memory for this purpose so it may generalize to unseen environments.

4. Related Work

RL Applied to Text-based Games: Narasimhan et al. (2015) test their LSTM-DQN
in two text-based environments: Home World and Fantasy World. They report the quest
completion ratio over multiple runs but not how many steps it takes to complete them. He
et al. (2015) introduce the Deep Reinforcement Relevance Network (DRRN) for tackling
choice-based (as opposed to parser-based) text games, evaluating the DRRN on one deter-
ministic game and one larger-scale stochastic game. The DRRN model converges on both
games; however, this model must know in advance the valid commands at each state. Fulda
et al. (2017) propose a method to reduce the action space for parser-based games by training
word embeddings to be aware of verb-noun affordances. One drawback of this approach is it
requires pre-trained embeddings.

Count-based Exploration: The exploration-exploitation trade-off has been studied
extensively in RL literature, algorithms have been proposed to act near-optimally on MDPs
that requires only polynomial amount of resources Kearns and Singh (2002); Brafman and
Tennenholtz (2003).

The Model Based Interval Estimation-Exploration Bonus (MBIE-EB) Strehl and Littman
(2008) derives an intrinsic reward by counting state-action pairs with a table n(s, a). Their
exploration bonus has the form β/

√
n(s, a) to encourage exploring less-visited pairs. In

this work, we use n(s) rather than n(s, a), since the majority of actions leave the agent in
the same state (i.e., unrecognized commands). Using the latter would reward the agent for
trying invalid commands, which is not sensible in our setting.

Tang et al. (2017) propose a hashing function for count-based exploration in order
to discretize high-dimensional, continuous state spaces. Their exploration bonus r+ =
β/
√
n(φ(s)), where φ(·) is a hashing function that can either be static or learned. This is

similar to the cumulative counting bonus defined above.

Deep Recurrent Q-Learning: Hausknecht and Stone (2015) propose the Deep Recur-
rent Q-Networks (DRQN), adding a recurrent neural network (such as an LSTM (Hochreiter
and Schmidhuber, 1997)) on top of the standard DQN model. DRQN estimates Q(ot, ht−1, at)
instead of Q(ot, at), so it has the capacity to memorize the state history. Lample and Chaplot
(2016) use a model built on the DRQN architecture to learn to play FPS games.
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Figure 3: Model performance on single games (top row) and multiple games (bottom row).

A major difference between the work presented in this paper and the related work is
that we test on unseen games and train on a set of similar (but not identical) games rather
than training and testing on the same game.

5. Experiments

5.1 Coin Collector Game Setup

To evaluate the two models described above and the proposed discovery bonus, we designed
a set of simple text-based games inspired by the chain experiment (Osband et al., 2016;
Plappert et al., 2017). Each game contains a given number of rooms that are randomly
connected to each other to form a chain (see figures in Appendix C). The goal is to find and
collect a “coin” placed in one of the rooms. The player’s initial position is at one end of the
chain and the coin is at the other. These games have deterministic state transitions, and in
this work there is no stochasticity in observations (i.e., given the same state, the observation
text is always the same).

Games stop after a set number of steps or after the player has collected the coin. The
game interpreter understands only five commands (go north, go east, go south, go west

and take coin), while the action space is twice as large: {go, take} × {north, south, east,
west, coin}. See Figure 11, Appendix C for an example of what the agent observes in-game.

Our games have 3 modes: easy (mode 0), there are no distractor rooms (dead ends)
along the path; medium (mode 1), each room along the optimal trajectory has one distractor
room randomly connected to it; hard (mode 2), each room on the path has two distractor
rooms, i.e., within a room on the optimal trajectory, all 4 directions lead to a connected
room. We use difficulty levels to indicate the optimal trajectory’s length of a game.

To solve easy games, the agent must learn to recall its previous directional action and
to issue the command that does not reverse it (e.g., if the agent entered the current room
by going east, do not now go west). Conversely, to solve medium and hard games, the
agent must reverse its previous action when it enters distractor rooms to return to the chain,
and also recall farther into the past to track which exits it has already passed through.
Alternatively, since there are no cycles, it can learn a less memory intensive “wall-following”
strategy by, e.g., taking exits in a clockwise order from where it enters a room.
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Figure 4: Zero-shot evaluation: Average rewards of DQN++ (left) and DRQN++ (right) as
a function of the number of games in the training set.

We refer to models with the cumulative counting bonus as model+, and models with
episodic discovery bonus as model++, where model ∈ {DQN,DRQN}1 (implementation
details in Appendix A). In this section we cover part of the experiment results, the full
extent of our experiment results are provided in Appendix B.

5.2 Solving Training Games

We first investigate whether the variant models can learn to solve single games with different
difficulty modes (easy, medium, hard) and levels {L5, L10, L15, L20, L25, L30}2. As shown
in Figure 3 (top row), when the games are simple, vanilla DQN and DRQN already fail to
learn. Adding the cumulative bonus helps somewhat and models perform similarly with and
without recurrence. When the games become harder, the cumulative bonus helps less, while
episodic bonus remains very helpful and recurrence in the model becomes very helpful.

Next, we are interested to see whether models can learn to solve a distribution of games.
Note that each game has its own counting memory, i.e., the states visited in one game
do not affect the counters for other games. Here, we fix the game difficulty level to 10,
and randomly generate training sets that contain {2, 5, 10, 30, 50, 100} games in each mode.
As shown in Figure 3 (bottom row), when the game mode becomes harder, the episodic
bonus has an advantage over the cumulative bonus, and recurrence becomes more crucial for
memorizing the game distribution. It is also clear that the episodic bonus and recurrence
help significantly when more training games are provided.

5.3 Zero-shot Evaluation

Finally, we want to see if a pre-trained model can generalize to unseen games. The generated
training set contains {1, 2, 5, 10, 30, 50, 100, 500} L10 games for each mode. Then, for each
corresponding mode the test set contains 10 unseen {L5, L10, L15, L20, L30} games. There is
no overlap between training and test games in either text descriptions or optimal trajectories.
At test time, the counting modules are disabled, the agent is not updated, and its generates
verb and noun actions based on the argmax of their Q-values.

As shown in Figure 4, when the game mode is easy, both models with and without
recurrence can generalize well on unseen games by training on a large training set. It is
worth noting that by training on 500 L10 easy games, both models can almost perfectly

1. Since all models use the LSTM representation generator, we omit “LSTM” for abbreviation.
2. We use Lk to indicate level k game.
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Figure 5: Average rewards and steps used corresponding to best validation performance in
hard games.

solve level 30 unseen easy games. We also observe that models with recurrence are able to
generalize better when trained on fewer games.

When testing on hard mode games, we observe that both models suffer from overfitting
(after a certain number of episodes, average test reward starts to decrease while training
reward increases). Therefore, we further generated a validation set that contains 10 L10 hard
games, and report test results corresponding to best validation performance. In addition,
we investigated what happens when concatenating the previous 4 steps’ history observation
into the input. In Figure 5, we add H to model names to indicate this variant.

As shown in Figure 5, all models can memorize the 500 training games, while DQN++
and DRQN++H are able to generalize better on unseen games. In particular, the former
performs near perfectly on test games. To investigate this, we looked into all the bi-grams of
generated commands (i.e., two commands from adjacent game steps) from DQN++ model.
Surprisingly, except for moving back from dead end rooms, the agent always explores exits
in anti-clockwise order. This means the agent has learned a general strategy that does
not require history information beyond the previous command. This strategy generalizes
perfectly to all possible hard games because there are no cycles in the maps.

6. Final Remarks

We propose an RL model with a recurrent component, together with an episodic count-based
exploration scheme that promotes the agent’s discovery of the game environment. We show
promising results on a set of generated text-based games of varying difficulty. In contrast to
baselines, our approach learns policies that generalize to unseen games of greater difficulty.

In future work, we plan to experiment on games with more complex topology, such as
cycles (where the “wall-following” strategy will not work). We would like to explore games
that require multi-word commands (e.g., unlock red door with red key), necessitating a
model that generates sequences of words. Other interesting directions include agents that
learn to map or to deal with stochastic transitions in text-based games.
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Appendix A. Implementation Details

Implementation details of our neural baseline agent are as follows3. In all experiments, the
word embeddings are initialized with 20-dimensional random matrices; the number of hidden
units of the encoder LSTM is 100. In the non-recurrent action scorer we use a 1-layer MLP
which has 64 hidden units, with ReLU as non-linear activation function, in the recurrent
action scorer, we use an LSTM cell which hidden size is 64.

In replay memory, we used a memory with capacity of 500000, a mini-batch gradient
update is performed every 4 steps in the gameplay, the mini-batch size is 32. We apply
prioritized sampling in all experiments, in which, we used ρ = 0.25. In LSTM-DQN and
LSTM-DRQN model, we used discount factor γ = 0.9, in all models with discovery bonus,
we used γ = 0.5.

When updating models with recurrent components, we follow the update strategy in
Lample and Chaplot (2016), i.e., we randomly sample sequences of length 8 from the replay
memory, zero initialize hidden state and cell state, use the first 4 states to bootstrap a
reliable hidden state and cell state, and then update on rest of the sequence.

We anneal the ε for ε-greedy from 1 to 0.2 over 1000 epochs, it remains at 0.2 afterwards.
In both cumulative and episodic discovery bonus, we use coefficient β of 1.0.

When zero-shot evaluating hard games, we use max train step = 100, in all other
experiments we use max train step = 50; during test, we always use max test step = 200.

We use adam (Kingma and Ba, 2014) as the step rule for optimization. The learning
rate is 1e−3. The model is implemented using PyTorch (Paszke et al., 2017).

All games are generated using TextWorld framework (Côté et al., 2018), we used the
house grammar.

3. A PyTorch implementation of the proposed method can be found at https://github.com/

xingdi-eric-yuan/TextWorld-Coin-Collector
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Appendix B. More Results

Figure 6: Model performance on single games.
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Figure 7: Model performance on multiple games.
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Figure 8: Model performance on unseen easy test games when pre-trained on easy games.
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Figure 9: Model performance on unseen medium test games when pre-trained on medium
games.
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Appendix C. Text-based Chain Experiment

(a) Level 10, easy (b) Level 10, medium

(c) Level 10, hard

Figure 10: Examples of the games used in the experiments
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X. Yuan, M. Côté, A. Sordoni, R. Laroche, R. Tachet des Combes, M. Hausknecht, A. Trischler

Figure 11: Text the agent gets to observe for one of the level 10 easy games.
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