
Uni-Detect: A Unified Approach to
Automated Error Detection in Tables

Pei Wang∗
Simon Fraser University

peiw@sfu.ca

Yeye He
Microsoft Research

yeyehe@microsoft.com

ABSTRACT

Data errors are ubiquitous in tables. Extensive research in
this area has resulted in a rich variety of techniques, each
often targeting a specific type of errors, e.g., numeric out-
liers, constraint violations, etc. While these diverse tech-
niques clearly improve data quality, it places a significant
burden on humans to configure these techniques with suit-
able rules and parameters for each data set. For example, an
expert is expected to define suitable functional-dependencies
between column pairs, or tune appropriate thresholds for
outlier-detection algorithms, all of which are specific to one
individual data set. As a result, users today often hire experts
to cleanse only their high-value data sets.

We propose UniDetect, a unified framework to automat-
ically detect diverse types of errors. Our approach employs
a novel “what-if” analysis that performs local data pertur-
bations to reason about data abnormality, leveraging clas-
sical hypothesis-tests on a large corpus of tables. We test
UniDetect on a wide variety of tables including Wikipedia
tables, and make surprising discoveries of thousands of FD
violations, numeric outliers, spelling mistakes, etc., with bet-
ter accuracy than existing algorithms specifically designed
for each type of errors. For example, for spelling mistakes,
UniDetect outperforms the state-of-the-art spell-checker
from a commercial search engine.

ACM Reference Format:

Pei Wang and Yeye He. 2019. Uni-Detect: A Unified Approach to
Automated Error Detection in Tables. In 2019 International Confer-
ence on Management of Data (SIGMOD ’19), June 30-July 5, 2019,

∗Work done at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00
https://doi.org/10.1145/3299869.3319855

Type of error Sample methods

Numeric outliers
Median-absolute-deviation [48],
Distance-based outliers [57],

Density-based outlier factor [24], . . .

Spelling mistakes
Fuzzy group-by [8, 9],
Spell-checkers [1, 6],

Knowledge-based [35], . . .

Uniqueness constraint Unique-row ratio [37],
Unique-value ratio [48], . . .

FD constraint
Unique-projection ratio [53],
Conforming-row ratio [56],

Conforming-pair ratio [56], . . .
Table 1: Existing methods for common errors

Amsterdam, Netherlands. ACM, New York, NY, USA, 18 pages. https:
//doi.org/10.1145/3299869.3319855

1 INTRODUCTION

Data errors in tables are extremely common. Studies suggest
that 24% of professionally-produced spreadsheets (by firms
like KPMG) have errors [39, 70], and approximately 20%
of spreadsheets accompanying scientific publications have
quality issues [64]. It is estimated that between 1% to 5%
of data cells have errors [70, 74]. Such data errors can have
grave financial and societal consequences, as evidenced by
the ever-growing list of “horror-stories” [12].

Consulting approach to error-detection. The impor-
tance of data quality and the prevalence of data errors has
inspired a long and fruitful line of research. The general
focus in the literature so far has been on the “consulting”
scenario, where companies use in-house experts or outside
consultants, to clean data sets that are of high business val-
ues. These experts can often leverage tools and algorithms
developed from the research community to detect different
types of quality issues, such as violations of Uniqueness or
Functional Dependency (FD) constraints, numeric outliers,
spelling mistakes, etc. Sample techniques to detect these
quality issues are shown in Table 1.

Automated error-detection as software features.While
the consulting approach to error-detection is successful and
often a must-have for high-value data sets, the need of expert
also makes the process expensive which limits adoption. For
the purpose of error-detection, for instance, for each data
set, human experts are expected to inspect and define what
rules (e.g., Uniqueness or FD constraints) should hold, and

https://doi.org/10.1145/3299869.3319855
https://doi.org/10.1145/3299869.3319855
https://doi.org/10.1145/3299869.3319855

what parameters (e.g., z-scores in numeric outliers) should
be used, etc.
While the consulting approach is suitable for high-value

data sets, we observe that there is also a long tail of use
cases and a plethora of less valuable data sets, where hiring
data quality experts for per-table customization is not fea-
sible – e.g., think of a mom-and-pop shop that uses Excel
spreadsheets to keep track of their sales figures and sup-
plier information. There are in fact millions of spreadsheet
users who cannot directly benefit from the availability of
data quality experts.
We argue that a software approach to error-detection

would complement the consulting approach, and benefits
an entirely different segment of the market. Specifically, we
envision an automated error-detection feature that can be
embedded in software like Excel, Google Sheets, Tableau, etc.
This error-detection feature would scan user data in the back-
ground, and flag likely data errors for users to inspect/verify.
Such a feature would clearly benefit a broad audience of
less-technical users – detecting a missing decimal-point in
spreadsheets from a mom-and-pop shop may not be as glam-
orous as multi-million dollar consulting projects, but is still
immensely beneficial given the size of the audience this ap-
proach can potentially reach.

We would like to note that the software approach to error-
detection is similar in spirit to a trend in the industry called
“self-service data preparation” [11], which is an area that the
research community also actively contributes to (examples in-
clude Transform-data-by-example [44, 45, 80], Auto-Join [46,
86], Auto-Split [31, 59], Auto-Type [83], Auto-EM [84], among
many other things).

Error-detection: the “APR” desiderata. We postulate
that for error-detection, there are three desiderata: automation,
high-precision, and high-recall (collectively referred to as
APR). We further speculate that with today’s technologies,
it may be possible to get any two of APR at the same time,
but not all three simultaneously – we call this an “APR-
conjecture” that is analogous to the CAP-theorem [25].
In the consulting-based approach, the focus has mostly

been on high-precision and high-recall. In a software setting,
we introduce the new dimension of automation, and argue
that the focus should be on automation and high-precision:
(1) Automation is a must, because less-technical users typi-
cally do not understand things like constraints or z-scores,
they would not be able to program rules or set parameters
appropriately for their data sets. Error-detection needs to
work out-of-box for any input data sets.
(2) High-precision is also a must. Since users need to inspect
errors detected by the system, the vast majority of detec-
tion has to be correct, or otherwise a supposedly-intelligent
feature will quickly become a nuisance. Note that this is

Figure 1: A list of 9 built-in “error-checking rules”

used in Excel 2016. Examples include “year repre-

sented as 2-digits”, “Formula inconsistent with other

formulas in the region”, etc.

particularly challenging given the diverse variety of possible
input data.
(3) Recall. Given our APR-conjecture above, we argue that it
would be difficult to achieve high-recall, on top of automa-
tion and high-precision (or the consulting business would
not need to exist). In practice, having any recall for “free”
(automated, with no false-positives) is better than no recall
at all, as evidenced by features in existing commercial sys-
tems that employ a small number of high-precision rules to
detect few errors. Microsoft Excel [3] for example, employs
9 simple but high-precision rules to find errors (shown in
Figure 1). We will review related error-detection features in
existing commercial systems (Trifacta, OpenRefine, etc.) in
Appendix B.

Detect common classes of errors. Given this software
setting and the new requirements, we looked at ways to adapt
existing methods (currently designed for human experts in
consulting scenarios), to automatically detect four common
types of errors: numeric-outilers, misspellings, uniqueness
and FD constraints.
In order to ensure robustness of algorithms at handling

diverse real data, we extracted millions of real tables from
the Web and Enterprise spreadsheets, and use them as test
cases1. We find that existing methods produce many false
positives resulting in a low precision, when tested against
the large variety of real tables in the wild.

We will review each of these types of errors in turn.
Uniqueness constraint violations. Certain columns are

semantically required to be unique (e.g., an ID column),
where duplicate values can be flagged as errors. While such
constraints are straightforward to enforce once defined by
human experts, detecting violations automatically turns out
to be non-trivial.
To detect violations of uniqueness, the conventional wis-

dom in the literature [37, 48] is to flag columns that are
almost unique (e.g., 99% unique). While such a method ap-
pears intuitive, to our surprise, it produces a large number
of false-positives when tested on real tables “in the wild” –
our experiments (in Section 4) show that around half of real

1We are going through an internal release process for the labeled data. Once
approved it will be available at https://github.com/peiwangdb/Uni-detect.

https://github.com/peiwangdb/Uni-detect

(a) False-positive uniqueness error (b) False-positive uniqueness error (c) False-positive FD error (d) False-pos FD error

(e) False-positive outlier (f) False-positive outlier (g) False-pos spelling-error (h) False-pos spelling-error
Figure 2: Sample cells that are incorrectly detected as errors (in dashed rectangles), when applying existing algo-

rithms to real Wikipedia tables. False positives like these lead to low precision.

(a) False-positive: (incorrectly
changed to “GMAIL”)

(b) False-positive: (changed to
“Trulia”, a popular site)

(c) False-positive: (changed to “Kings-
man”, a popular movie)

(d) False-positive error:
(changed to “FEDEX”)

Figure 3: Sample cells incorrectly detected as spelling errors, using Speller from a commercial search engine.

tables from Wikipedia and Web that are over 99% unique
are in fact not violations of uniqueness constraints (which
amounts to a precision of less than 50%). Figure 2(a) and 2(b),
show two such examples. Both tables have hundreds of rows
(omitted for space reasons), with only a pair of duplicate
values each (marked in dashed rectangles). The percentage
of unique values are thus over 99%, which would be pre-
dicted as violations using techniques like [37, 48]. Both of
these predictions however, are incorrect, as the first table
lists all Titanic passengers, where two happen to have the
same name; while the second has a list of books, where two
happen to have the same publication date. Cases like these
are surprisingly common given the sheer number of real
tables in the wild – one can imagine that from a large list
of people names, a small fraction will inevitably be identi-
cal by chance for instance. Detecting errors using assumed
uniqueness constraints in such cases is clearly problematic.

Functional-dependency (FD) violations. Functional de-
pendencies are defined over two groups of columns, the
left-hand-side (lhs) and right-hand-side (rhs), where values
in lhs should uniquely determine the rhs. While there is
a large literature on detecting approximate FD efficiently
(e.g., [51, 56]), in terms of inferring what approximate FD are
likely to hold, existing methods in the literature [41, 54, 56]

leverage a similar heuristic that FD candidates that almost
hold (e.g., for 99% rows) are likely true FDs.
When testing these methods on a large variety of real

tables, we again findmany false-positive detection (Section 4).
Figure 2(c) and 2(d) show two example tables (with hundreds
of rows). It is detected that in the first case, because the
“population” column almost uniquely determines “statistical
area” (for over 99% rows, except the two rows marked that
happen to have the same population), this is a likely FD-
violation. Similarly in the second case, the “city” column
almost uniquely determines “country” (except the two values
marked) and is predicted as a violation. Both of these cases
are clearly false-positives.

Numeric outliers. Numeric outliers are values that devi-
ate significantly from the underlying distribution (e.g., values
that are orders of magnitude larger than the rest) [48, 52]. Ex-
isting approaches identify numeric outliers as ones that are k
(e.g., 3) Standard Deviations (SD) away from the mean [52], or
in the case of robust statistics, k Median-Absolute-Deviation
(MAD) from themedian [48]. Recent work on declarative data
quality [78] expose k as a parameter for expert users (e.g.,
developers) to specify. In general, the conventional wisdom
is that a larger k indicates a higher likelihood of outliers [48].

While seemingly intuitive, this again leads to frequent
false-positives. Figure 2(e) and 2(f) show two examples that
are incorrectly identified as outliers. Figure 2(e) lists 44 candi-
dates of an election, most of whom receive less than 1% votes.
As such the top candidate seems like a numeric outlier as
measured by SD or MAD, which however is a false-positive.
Similarly Figure 2(f) lists recently discovered planets. Since
most (omitted) have small axis values (below 1), the first
value is again incorrectly detected as an outlier.

Spelling mistakes. Spelling mistakes (e.g., “Mississippi”
and “Missisipi”) can lead to issues in downstream results
(e.g., a group-by query that produces two groups represent-
ing “Mississippi”). Existing commercial systems such as Pax-
ata [9] and OpenRefine [8] employ a feature known as fuzzy-
group-by (shown in Appendix B), which clusters together
values in the same column that are syntactically similar (e.g.,
of Edit-distance 1). Users are expected to select an appro-
priate fingerprint method for clustering, and then inspect
similar values grouped in the same clusters, to tell what are
true spelling errors, and what are false-positives (e.g., “H2O”
and “H2O2” in Figure 2(g) may be clustered together, so are
“Super Bowl XXI” and “Super Bowl XXII” in Figure 2(h)).

For fully-automatic detection of spelling mistakes, one
may expect that state-of-the-art Spell-Checkers from com-
mercial search engines (Google [6], or Bing [1]) to perform
well. We programmatically invoke Spell-Checker from a com-
mercial search engine to check real Wikipedia tables, which
however also produces a large number of false-positives. Fig-
ure 3 shows four such examples – a company named “GAIL”
is incorrectly changed to “GMAIL”, and a city called “Tu-
lia” gets changed incorrectly to “Trulia” (a popular website),
etc. In retrospect the poor performance of Speller on tables
actually makes sense – values in table cells are often idiosyn-
cratic (e.g., abbreviations, codes, or just employee alias like
“JenniferA”), which can all cause troubles for Spellers.

Our approach. In light of the difficulty of automated
error-detection, we in this work propose a new and uni-
fied approach called UniDetect, which produces promising
results when tested for these four types of common errors.

In a nutshell, UniDetect employs principled reasoning of
errors using hypothesis-tests, which are based on analysis of
large corpus of background tables. Specifically, we propose
a perturbation-based framework with a “what-if” analysis,
using over 100M (mostly clean [50]) tables crawled from
the Web, henceforth collectively referred to as T. Intuitively,
given a new data set D, we hypothetically “perturb” D by
removing a sufficiently small subsetO ⊂ D, for all possibleO .
We then compare the likelihood that D, and the “perturbed”
DP
O = D \ O , are drawn from T, denoted as P(D |T) and

P(DP
O |T), respectively. In most cases, because O is small rel-

ative to D, P(D |T) and P(DP
O |T) should not be substantially

different. However, if we observe P(DP
O |T) to be significantly

larger than P(D |T), then we can hypothesize (and test) that
O is actually an abnormal subset in D, for removing only
a small O (surprisingly) makes D statistically more likely.
Samples of real errors discovered from Wikipedia tables can
be seen in Figure 4.
We show that predictions using the data-driven method

correspond well with the human intuition. For instance, in
Figure 4(a), UniDetect can intuitively reason that the val-
ues involved look like unique code-values (ICAO airport
codes), and are thus likely violation of uniqueness. (In com-
parison, the false-positives in Figure 2(a) and 2(b) are com-
mon names/dates that are more likely to have duplicates
by chance). In Figure 4(e), UniDetect reasons that “8.716”
(which incorrectly uses a “.” in place of “,”) is likely a true
outlier, because removing this single row would make the
column a lot more “similar” to tables in T (which is not the
case for Figure 2(e) and 2(f), as they would require removing
multiple rows). Finally, in Figure 4(g), UniDetect detects
“Kevin Doeling” and “Kevin Dowling” as likely spelling er-
rors, because they have a very small edit distance (1), relative
to other value-pairs in the same column. (In comparison, in
Figure 2(g) and 2(h), there are many pairs with small edit
distances, making us less confident that the two cases are
spelling errors). We show that with suitable featurization,
such intuitions can be “learned” from the corpus T without
explicit human labels.
While we demonstrate the generality of UniDetect in

four types of common errors, we recognize that this will
likely work for data quality constructs with simple struc-
tures that are easy to learn on T. For instance it is unlikely
to extend to complex constructs such as CFD [23, 71] and
general DC [32], as these often encode very specific con-
straints that only hold on select data, which would require
human expertise and understanding of data semantics to be
programmed appropriately, and are difficult to be learned
from T in a general fashion.

2 THE UNI-DETECT APPROACH

In this section, we will first give a general problem statement
before describing the proposed approach UniDetect.

2.1 Problem Statement

One possible approach to automatic error detection is to
use the classical supervised machine learning (ML). This,
however, would require humans to label a large number of
tables cell-by-cell, before supervised ML can be trained.

Though we have witnessed recent successes of supervised
ML in fields such as image classification and NLP, in part
because of large labeling efforts such as ImageNet [58] and
SQuAD [75], so far large-scale labeling of tables for super-
vised ML has not taken off.

(a) Uniqueness error (b) Uniqueness error (c) FD error (d) FD error

(e) Outlier error (“8.716”
uses “.” in place of “,”)

(f) Outlier error (g) Spelling error (h) Spelling error

Figure 4: True-positive errors inWikipedia tables. Tens of thousands of real errors are detected using UniDetect.

One possible reason is that labeling tables is still prohibi-
tively expensive, because error rate at the cell-level is low.
Furthermore, such labeling of tables often require domain-
specific understanding of the data (whereas labeling common
objects from images is a lot more straightforward). Finally,
tables of different characteristics (e.g., in languages other
than English, in proprietary enterprise domains, etc.) would
typically require additional labeling, making supervised ML
for error-detection exceedingly expensive.
These observations motivate us to study error-detection

in an unsupervised setting, without using human labels. The
high-level problem can be stated as follows.

Definition 1. Unsupervised Error-Detection in Ta-

bles. Given target tablesD = {D j }, and classes of data errors
E = {Ei }. Let E(D) =

⋃
i, j Ei (D j) be errors in D of type E.

Automatically detect errors in E(D) with high precision.

For the purpose of this work, we instantiate E as four
common classes of errors: {Uniqueness, FD, numeric-outliers,
spelling-errors}. As we illustrated earlier, existing methods
in the literature typically focus on one class of errors at
a time, and can often produce many false-positives when
tested on real tables in the wild.
The problem in Definition 1 is general; in this work we

propose one possible approach named as UniDetect.

2.2 UniDetect: A Data-driven Approach

In order to enable automatic and unsupervised detection of
data errors, in this work we propose a data-driven approach
that leverages a large corpus of (mostly clean [50]) tables T.
Specifically, we use a large corpus of over 100M web tables
extracted from a commercial search engine. Intuitively, this
allows us to “learn” statistically what clean tables should
look like.

There are two key aspects in our approach: hypothesis-
tests using perturbation; and featurization by data-subsetting.
We describe the two in turn below.

2.2.1 Hypothesis Tests: Surprisingness from Perturbation.

Wepropose a unified framework that leveragesT to reason
about errors in D, based on the idea of perturbing D with
small changes.

Definition 2. An ϵ-perturbation of a table D, is generated
by removing a small subset of rows O ⊂ D of size up to ϵ
(|O | ≤ ϵ). The perturbed version of D is denoted by DP

O =

D \O .
The set of all such perturbations up to size ϵ can be denoted

as P(D, ϵ) = {DP
O |∀O ∈ D, |O | ≤ ϵ}.

In UniDetect, the amount of perturbation ϵ can be pa-
rameterized as up to ϵ number of rows, or ϵ fraction of rows
in D (e.g., 1 row or 1% of the rows). Note that we introduce
this hypothetical perturbation O in D, in order to reason
whether O may be anomalous relative to D.

We note that using perturbation for error-detection draws
an interesting parallel to the well-known Differential-Privacy
(DP) [66], which uses perturbation to reason about data pri-
vacy (privacy can be assured if no query results change sig-
nificantly before and after perturbing a small fraction of
data).

In UniDetect, we detect errors based on hypothesis tests.
Specifically, we propose two competing hypotheses.
• H0 (Null-hypothesis): D is “normal” (no errors), defined
as statistically “like” tables we draw from T;
• H1 (Alternative-hypothesis): D is not “normal” due to
an abnormal subset O ∈ D; however after removing O , the
remaining DP

O becomes “normal” and statistically “like” tables
we draw from T.

Note that as in statistical hypothesis testing, our default
position is to assume D has no error, which is more likely to
be true and thus used as the null hypothesis. Unless we have
overwhelming evidence in T to reject the null hypothesis,
we assume D to be clean and would not detect it as errors.

With these hypotheses formulated, we can test whether
to reject the null-hypothesis H0 using hypothesis tests [61].
In this work, we use a particular form of hypothesis tests
called the likelihood-ratio (LR) test [27]2.

Definition 3. In the likelihood-ratio (LR) test [27], we esti-
mate the likelihood of two hypotheses based on observed ev-
idence, denoted as P(H0 |evidence) and P(H1 |evidence). The
likelihood ratio is simply:

LR =
P(H0 |evidence)
P(H1 |evidence)

Given a fixed significance level α , we can reject the null-
hypothesis H0, if LR < α .

In our setup, we use the table in questionD, and the corpus
T as the “evidence” for reasoning. We rewrite LR as:

LR =
P(H0 |D,T)
P(H1 |D,T)

=
P(D |H0,T)
P(D |H1,T)

P(H0 |T)
P(H1 |T)

∝
P(D |H0,T)
P(D |H1,T)

(1)

Note that the first derivation follows the Bayes Rule [60]
and the Chain Rule, while the last step comes from the fact
that P (H0 |T)

P (H1 |T)
is a fixed constant relating only to the prior

probability of having errors in the corpus.
Given Equation (16), we can estimate the target likelihood

ratio LR from P (D |H0,T)
P (D |H1,T)

. Specifically, since H0 states that D
is “like” tables drawn from T, we can estimate P(D |H0,T) as
the likelihood of drawing tables “like” D from T, for some
definition of “likeness”, denoted as P(D |T). On the other hand,
H1 states that after removing some subset O , DP

O = D \O is
“like” tables drawn from T, so we can estimate P(D |H1,T) as
P(DP

O |T). With these, we can rewrite Equation (16) as:

LR =
P(H0 |D,T)
P(H1 |D,T)

=
P(D |T)
P(DP

O |T)
P(H0 |T)
P(H1 |T)

∝
P(D |T)
P(DP

O |T)
(2)

Recall that in LR test, if LR ≤ α for some predetermined
significance level α , then we could reject the null hypothesis
H0. We would effectively try to minimizie LR over all possible
O ∈ D, and would predict the minimizer O∗ as the anomaly.

O∗ = argmin
O ∈D, |O | ≤ϵ

P(D |T)
P(DP

O |T)
(3)

The reasoning here is quite intuitive. When we hypotheti-
cally perturb D by removing a small subsetO , if P(DP

O |T) ≫
P(D |T), or the likelihood of seeing the resulting DP

O in T is
substantially larger than that of D, then this is surprising,
because a small change in D should generally not make DP

O
very different or substantially more likely in T. This would
only happen if O is an abnormality that does not initially
2 The Neyman-Pearson lemma [69] shows that the LR test can in some cases
be most statistically efficient among all tests at the same significance level.

belong to D, whose removal makes the remaining DP
O statis-

tically more consistent with the corpus T. Intuitively, P (D |T)
P (DP

O |T)
quantifies the “surprisingness” that a small change O leads
to – the more surprising it is, the more likely O is abnormal
and erroneous.
Note that P(D |T) and P(DP

O |T) cannot be evaluated di-
rectly, as we are unlikely to draw tables identical to D or
DP
O from T. Instead, we will introduce metric functions m,

which formalizes the aforementioned notion of “likeness”,
by mapping tables D andT ∈ T to numeric quantities so that
P(D |T) and P(DP

O |T) can be estimated directly.
We describe a concrete example below to explain the idea.

Example 1. [Spelling errors.] We explain the intuition
of using perturbation to detect spelling errors.

Existing algorithms (such as the Fuzzy Clustering features
in OpenRefine [8] and Paxata [9]) detect spelling errors by
finding pairs of values in the same column that are of low dis-
tance (e.g., edit-distance = 1). This would detect true spelling
errors, such as (“Kevin Doeling” and “Kevin Dowling”) in
Figure 4(g). Unfortunately however, it also produces a large
number of false-positive, such as the value pairs (“Bromine”
and “Bromide”) and (“H2O” and “H2O2”) in Figure 2(g), and
(“Super Bowl XXI” and “Super Bowl XXII”) in Figure 2(h).

Our perturbation-based reasoning can improve a simple
edit-distance-based approach. Supposewe use ϵ-perturbation
with ϵ = 1, which removes at most one row. For a column
C , letMPD(C) be its minimum pair-wise edit-distance (MPD)
defined as:

MPD(C) = min
u ∈C,v ∈C,u,v

Edit(u,v)

As we will see, this is our metric-function to map C ∈ T to
numeric quantities.
Observe that in Figure 2(h), removing any row in the

suspected pair (“Super Bowl XXI” and “Super Bowl XXII”)
will not change theMPD of the column, because there are
many more pairs also with an edit distance of 1. Similarly,
in Figure 2(g), when we remove one value in (“H2O” and
“H2O2”), theMPD stays at 1. When we remove one value in
(“Bromine” and “Bromide”), theMPD grows from 1 to 2 (the
distance between “Sulfur dioxide” and “Sulfur trioxide”).
In general, we observe that for certain types of data (e.g.,

chemical formula, names with roman numerals, etc.), the
values are inherently of small distances. Because of this, in-
tuitively it is “normal” to expect that for such columns with
smallMPD, removing one row would not increase theMPD
much. What would be “surprising” is the case in Figure 4(g),
where initiallyMPD is 1, but when we remove one value in
(“Kevin Doeling” and “Kevin Dowling”),MPD grows signif-
icantly to 9 (between “Alan Myerson” and “Rob Morrow”).
Intuitively, (“Kevin Doeling” and “Kevin Dowling”) is the
only pair with small distance in the column, indicating that

one of the values may be misspelled and does not “belong”
to the column. We test this hypothesis using data in T.
As discussed, we need to estimate P(D |T) and P(DP

O |T),
yet we are unlikely to observe tables identical to D and DP

O
in T. In this case we use the functionMPD(D) to “describe”
D using a number in order to produce the estimate.
Let D be the column with (“Super Bowl XXI” and “Su-

per Bowl XXII”) in Figure 2(h). UsingMPD, D is described
as MPD(D) = 1, and MPD(DP

O) = 1. Given over 100M ta-
bles and 600M table columns from T, we find a total of 2M
columns with such properties. Similarly P(DP

O |T) can be es-
timated as the fraction of columns whoseMPD is 1, and we
find 5M such columns out of 600M. Overall, we compute
P (D |T)
P (DP

O |T)
to be | {D |D∈T,MPD(D)=1,MPD(DP

O)=1} |
| {D |D∈T,MPD(D)=1} | = 2

5 . The com-
putation is identical for the second column in Figure 2(g).
For the first column in Figure 2(g), we can compute sim-

ilarly as P (D |T)
P (DP

O |T)
=

| {D |D∈T,MPD(D)=1,MPD(DP
O)=2} |

| {D |D∈T,MPD(D)=2} | . Suppose
we have 3M and 10M such columns, respectively, the ratio is
3
10 .
Finally, for the case in Figure 4(g), we would compute the

ratio as | {D |D∈T,MPD(D)=1,MPD(DP
O)=9} |

| {D |D∈T,MPD(D)=9} | . It is very uncommon
to find D ∈ T whose MPD(D) = 1 but MPD(DP

O) = 9, and
we find a total of 1K such columns in T. In comparison there
are 50M columns withMPD(D) = 9. We compute the ratio
as 1

50000 , a very small and surprising value. It can be roughly
interpreted as removing “Kevin Doeling” makes the column
50000 times more likely in T from anMPD perspective, com-
pared to the original data (where the smallest pair-wise dis-
tance is 1 and second smallest is 9). Based on this we can
predict (“Kevin Doeling”, “Kevin Dowling”) as a likely error.
� Note that this approach outperforms a direct application

of Fuzzy-Clustering [8] (which blindly picks value pairs with
small edit-distances), and the state-of-the-art Speller from
a commercial search engine. A formal treatment of spelling
errors can be found in Section 3.2.
As we will see, the use of P (D |T)

P (DP
O |T)

applies to other types
of errors.
2.2.2 Featurization by Subsetting.

The perturbation-based approach introduces a small change
to a test data set D, and reasons about the surprisingness of
the resulting DP

O using a large corpus T.
While T is large which is clearly beneficial for a data-

driven method, we find that using the statistics derived from
all of T can be sub-optimal. It is often better to identify tables
in T that are most relevant or “similar” to the test dataD, and
only use statitistics derived from this subset. Intuitively, T is
already big enough so that sparsity is not an issue. Instead,
we want to select a subset of Tmost relevant to D for a more
accurate analysis.

Figure 5: A cube diagram showing possible dimen-

sions for subsetting/featurization of data columns.

Figure 6: Real uniqueness violations fromWeb tables

For example, for table columns, we could differentiate
them based on data types (e.g., string vs. integer vs. floating-
point numbers vs. mixed-alphanumeric, etc.). When we rea-
son about test data D, it would be a good idea to only use
data in T that are of matching type. For example, if D is a
string column, then statistics derived from floating-point-
number columns in T may not be as useful (and may in fact
be misleading) compared to that from string columns in T.
The same is true for other features of D, for example, the
number-of-rows (big table vs. small table); or how unique
are the values (e.g., long and unique integers, vs. short and
common ones; or unique mixed-alphanumeric strings vs.
commonly-occurring ones). Such sub-setting can be viewed
as a type of featurization.

Figure 5 shows a cube diagram and a few dimensions along
which we can featurize data in T. For test data D, we can
perform analysis using a sub-cube that is the subset of T
most relevant to D, as opposed to the full T. This approach
creates disjoint subsets of data, that can be thought of as leaf
nodes in decision trees.
Let SFD (T) = {T |T ∈ T, F (D) = F (T)} be a subset function

that selects tables in T like D based on a featurization func-
tion F . The ratio we would like to compute P (D |T)

P (DP
O |T)

can be

rewritten as P (D |S (T))
P (DP

O |S (T))
(we omit the superscript and subscript

of S when the context is clear).
We use a concrete example of detecting uniqueness viola-

tions to intuitively explain this idea.

Example 2. [Uniqeness violation.] Existing approaches
(e.g. [37, 48]) detect almost-unique columns (e.g. 99%-unique)
as possible violations to uniqueness constraints. While these
approaches are intuitive and can detect true errors such as
Figure 4(a) and 4(b), they also incorrectly flag many false-
positives such as tables in Figure 2(a) and 2(b), making them

unable to meet the high-precision requirement for error-
detection in software settings.
An observation here is that the false-positives tend to be

relatively common strings (e.g., people’s names in Figure 2(a),
for names can be identical by chance), as well as number-
related strings such as floating-points or date-time (from a
large list of numbers, a few can be identical by chance as in
Figure 2(b)).

In comparison, for columns with “rare” tokens (measured
by an idf-like metric) such as Figure 4(a) and 4(b), or columns
with mixed-alphanumeric values (which also likely contain
rare tokens), such as ones shown in Figure 6 (taken from
real web tables), our human intuition is that these are a lot
more likely to be true violations of uniqueness. If we can
featurize columns based on these characteristics, and find
relevant evidence in data to support such intuition, then it
should lead to better predictions.
Recall that in our framework, we use P (D |T)

P (DP
O |T)

to reason
about the surprisingness of a perturbation O , and its abnor-
mality. In this case we use the uniqueness-ratio (UR), or the
fraction of unique values in D, as the metric-function to “de-
scribe” D. Since the duplicate values are suspected errors, for
perturbation we can naturally drop duplicate values.
Suppose given a column D with 100 values, where only

two of which are duplicates, we can compute UR(D) =
0.99, and UR(DP

O) = 1. Given this description of D, we can

compute P(D |T) as | {D |D∈T,UR(D)=0.99,UR(DP
O)=1} |

|T | . Similarly
P(DP

O |T) can be computed as | {D |D∈T,UR(D)=1} |
|T | . Overall, the

ratio P (D |T)
P (DP

O |T)
can be computed as | {D |D∈T,UR(D)=0.99,UR(DP

O)=1} |
| {D |D∈T,UR(D)=1} | .

Note that this calculation makes intuitive sense – out of all
columns in T (~600M), a large fraction of columns are either
exactly unique with UR = 1 (~150M), or not at all unique
(e.g., UR < 0.5) (~250M). There is only a small fraction of
columns (~200K) that are 99% unique, where the removal of
one value would make the column 100% unique. The ratio
above can thus be calculated as 200K

150M =
1
750 , a surprisingly

small number, suggesting that a duplicate value in such cases
is suspicious.
In comparison, if we featurize all columns in T, and only

use the subset of SD (T) relevant to D, we would instead
compute P (D |SD (T))

P (DP
O |SD (T))

=
| {D |D∈SD (T),UR(D)=0.99,UR(DP

O)=1} |
| {D |D∈SD (T),UR(D)=1} | .

Suppose we featurize based on value-types and value-
prevalence (like in Figure 5). Based on this featurization,
for the example in Figure 6, the subset of columns selected
in SD (T) are (1) of type mixed-alphanumeric, and (2) have
rare-tokens / low token-prevalence (e.g., on average values
in D occur in less than 100 other tables in T). Intuitively,
there are likely “ID”-type columns (unique-identifiers, code,
etc.), and should likely be unique. In fact, SD (T) selects a

total of 60M columns from T, out of which 30M are unique
(or |{D |D ∈ SD (T),UR(D) = 1}| = 30M). From the subset
SD (T), it is evenmore uncommon to see columns that are 99%
unique, because these ID-like columns are indeed intended
to be unique, any columns in SD (T) that are 99% unique are
likely unintended errors. Within SD (T), we find around 5K
such columns, or |{D |D ∈ SD (T),UR(D) = 0.99,UR(DP

O) =

1}| = 5K . Combining, the ratio P (D |SD (T))
P (DP

O |SD (T))
can be computed

as 5K
30M =

1
6000 , a even smaller number than 1

750 , suggesting a
higher likelihood of error for cases in Figure 6. The examples
in Figure 4(a) and 4(b) can be computed similarly.
Finally, for the case in Figure 2(a), the featurization sug-

gests that these columns are (1) of type string, and (2) have
high token-prevalence. Such columns are often not key columns,
and it is common to see such columns having 99% unique-
ness yet without quality issues. We compute P (D |SD (T))

P (DP
O |SD (T))

= 200K
20M =

1
100 , suggesting a much less confident prediction

compare to previous cases. �
We note that the idea of featurization and data subsetting

applies similarly to other types of errors.

2.2.3 Putting It Together: UniDetect for Error-Detection.

With intuitions of how perturbation and featurization help
to identify errors, we put them together to formally define
UniDetect as follows.

Definition 4.UniDetect: Perturbation-based Error-
Detection. Given a target table D, a large corpus of tables T,
and a class of target error E. Using suitable metric-functionm,
Featurization F , and perturbation P, identify errors O∗ ⊂ D
as the minimizer of the LR ratio:

O∗ = argmin
O ∈D, |O | ≤ϵ

Pm(D |SFD (T))

Pm(D
P
O |SFD (T))

(4)

Where ϵ specifies the maximum amount of perturbation,
SFD (T) = {T |T ∈ T, F (D) = F (T)} is the subset function
that selects tables like D in T based on featurization F , and
Pm(D |T) uses the metric functionm to estimates P(D |T), de-
fined as Pm(D |T) = {T |T ∈T,m(D)=m(T) | }

|T | . Note that for a fixed
significance level α , we can use Equation (2) to determine if
we should predict O∗ as an error.

In the Example 2 for uniqueness violation above, we would
instantiatem() as the uniqueness-ratio function UR(), F as
the featurizationwith {column-value-types, value-prevalence},
and the perturbation P as simply dropping duplicate values.
In the Example 1 for spelling errors, we can instantiate

m() as theMPD(), F similarly as above, and the perturbation
P as dropping a value with the smallest pair-wise distance.
Note that using UniDetect in Definition 4 to solve the

general problem in Definition 1 (which is defined for all
classes of errors such as {Uniqueness, FD, numeric-outlier,
misspelling}), we only need to instantiate UniDetect for

each class of error, and then produce a union of all errors
as a ranked list, since each prediction is associated with a
(comparable) statistical significance value computed from
LR-ratio in Equation (2).
In this work we instantiate UniDetect for each class of

errors, using appropriate configurations (m, F ,P) that are
often inspired by existing methods in the literature. Our
aspiration is to model the general UniDetect as a search
problem: given a space of metric functions M, featurizations
F, and perturbations P, find appropriate configurationm ∈ M,
F ⊂ F, and P ∈ P to instantiate UniDetect.
Definition 5. Configuration Search for UniDetect.

Given a target error class E, target tables D, training corpus
T, and a configuration space of metric functionsM, featuriza-
tions F, and perturbation P. For a fixed significance level α ,
find the configuration (m, F ,P) ∈ (M, F, P) that maximizes
surprising discoveries in UniDetect, defined as

argmax
(m,F ,P)∈(M,F,P)

|{D |D ∈ D, min
O ∈D, |O | ≤ϵ

Pm (D |SFD (T))

Pm (DP
O |SFD (T))

< α }| (5)

The intuition is that only when (m, F ,P) are configured
properly, can we find a large number of statistically surpris-
ing results. For if it is not the case, e.g. whenm and F do not
“project” D the right way, we would not observe surprising
LR-ratios, because in general a small perturbation P would
not makeD andDP

O substantially different. For example, sup-
pose we use P that drops duplicate values as in Example 2,
but form instead of usingUR we useMPD from Example 1.
Clearly this P would not affectMPD, and would not produce
any surprising LR-ratios, resulting in an empty result set in
Equation (5), suggesting that this combination is not a good
configuration.
Another variant of the search problem is to label tables

for errors, and then evaluate predictions of each configura-
tion (m, F ,P) using the labeled data. The best configuration
can then be selected based on optimization objectives (e.g.,
maximizing recall, with a precision greater than 0.95%).
We believe that this opens up a new space for designing

error-detection methods, with non-trivial open challenges
such as controlling False Discovery Rate (FDR) [85]3, because
in a naive implementation of Equation (5), we would use the
same T repeatedly to test a large number of hypotheses.
In this work we take the first step to show that simple

instantiation of UniDetect is already promising without
exploring the full search problem.

System Architecture. Our UniDetect has two main
components, the first is an expensive and offline “learn-
ing” component, which performs hypothesis testing on a
large corpus T as described above. We implemented it as
3Note that FDR only applies to automatic configuration search, and does
not apply to our current instantiation of UniDetect, where configurations
are fixed a priori, and each data point in T is only used once by a sub-model.

MapReduce-like jobs in order to crunch T. Surprising dis-
coveries are pre-computed and “memorized” as rules: e.g., if
MPD(D) increases 1 to 9 with a one-row perturbation, then
the LR ratio computed on T is 1

50000 (Example 1). This is a
surprising result and can be used to detect future errors, so
we memorize it using materialization.

At on-line prediction time, we only need to compute rele-
vant metric for a new table D, and perform a lookup to find
relevant predictions without computing LR from scratch us-
ing T. This makes it possible to have real-time predictions at
interactive speeds.

Current Limitations. While we show how to instanti-
ate UniDetect for four common classes of errors (and we
will show how related work like Auto-Detect [50] is con-
sistent with it in Section 3.5), these errors have relatively
simple structures with ample examples in T for UniDetect
to “learn”.

We would like to point out that there are more expressive
mechanisms in the literature (e.g., Denial Constraints [33],
CFD [23], Matching Dependencies [38]), that can be more
complex (e.g., first-order logic). These often require human
understanding of data semantics before they can be pro-
grammed correctly (e.g., tax rates are different for different
jurisdictions). We suspect that it would be difficult to extend
the automated reasoning in UniDetect to these formalism
in their most general forms.
3 UNI-DETECT FOR DIFFERENT ERRORS

In this section, we demonstrate how UniDetect in Defi-
nition 4 can be instantiated to detect seemingly unrelated
errors: misspellings, numeric-outliers, uniqueness-violations,
and FD-violations.
We note that while these instantiations can be quite in-

volved, we note that as software features they only need
to be programmed once for each type of error, compared
to the consulting approach which would require separate
configurations for each data set.

3.1 Numeric outliers.

Numeric outliers is a common and important class of data
errors that can arise due to entry errors, scale mismatch, etc.
Existing algorithms such as [48] detect values that are

outside of k (e.g., 3) standard-deviations (SD) or median-
absolute-deviations (MAD) [65] as outliers. Both SD and
MAD measure statistical dispersion [27], which is a measure
of how “spread out” a distribution is. The SD and MAD of a
column C are defined as follows.

SD(C) =

√∑
v ∈C (v −mean(C))2

N − 1
(6)

MAD(C) =medianv ∈C (|v −median(C)|) (7)

Since SD is well known, we show an example of calculating
MAD below.

Figure 7: Example SD scores in distributions.

Example 3. Given the column in Figure 2(e), denoted as
C− = {43, 22, 9, 5, 0.76, 0.32, 0.30}, the median ofC− is 5, and
MAD(C−) =median({38, 17, 4, 0, 4.24, 4.68, 4.70}) = 4.68.
For the column in Figure 4(e), denoted as C+ = {“8,011”,

“8.716”, “9,954”, “11,895”, “13,329”, “11,352”, “11,709”} – note
that the second value “8.716” is an outlier that incorrectly
uses “.’ in place of “,”.Median(C+) can be computed as 11352.
and theMAD(C+) is calculated asmedian({3341, 11344, 1398,
543, 1977, 0, 357}) = 1398. �

Given SD/MAD that measures dispersion of a distribution
C , the “outlier-ness” of a data point v ∈ C can then be cal-
culated using the dispersion. For example, the SD-score of a
value v is the number of SDs v lies away from themean(C):

scoreSD (v,C) =
|v −mean(C)|

SD(C)
(8)

Figure 7 shows a probability density function of a distribu-
tion. A point that lies at “+1 SD” or “-1 SD” has an outlier-ness
SD-score of 1, since it is 1 SD away from the mean, and a
point at “+2 SD” or “-2 SD” has SD-score of 2, etc. A larger
SD-score indicates a higher degree of outlier-ness.

The MAD-score is defined similarly usingmedian(C):

scoreMAD(v,C) =
|v −median(C)|

MAD(C)
(9)

Example 4. Continue with Example 3, the value with the
highest scoreMAD in C− is the most outlying value 43, where
the score is 43−median(C−)

MAD(C−)
= 43−5

4.68 = 8.1.
In the case of C+, the value with the highest scoreMAD is

8.716, which has a score of |8.716−median(C+) |
MAD(C+) =

|8.716−11352 |
1398 =

8.1, which is a score comparable to C−. �
Note that these scores are non-parametric (i.e. they do not

rely on assumptions of underlying distributions), and are
thus broadly applicable. In the influential work by Heller-
stine [48], it was shown that MAD from the robust statis-
tics [65] can more reliably predict outliers. In the following
discussion we will focus on MAD, but the analysis is equally
applicable to SD, or other measures of statistic dispersion
(e.g., Interquartile-range/IQR [65]).

We instantiate UniDetect in Definition 4 for numeric-
outliers as follows. We use max-MAD of a numeric column
C as the metric functionm, defined as

max-MAD(C) = max
v ∈D

ScoreMAD (v,C) (10)
Effectively we use the most outlying value in C to measure
the outlier-ness of the C . For perturbation P, we naturally
drop the suspected outlier, which is the value with the high-
est ScoreMAD . Finally, for featurization F , we use (1) data

types (integer vs. floating-point numbers, etc.), (2) num-
ber of rows (bucketized as: {(0-20] , (20-50], (50-100], (100-
500], (500-1000], and (1000-∞)}), and (3) whether logarithm-
transform better fits the data [68].
Recall that we find outliers O∗ by minimizing LR. Using

the aforementioned (m, F ,P), we can further rewrite the
ratio as Pm (D |S FD (T))

Pm (DP
O |S FD (T))

=
| {D |D∈S FD (T),max-MAD(D)=θ1,max-MAD(DP

O)=θ2 } |
| {D |D∈S FD (T),max-MAD(D)=θ2 } |

(11)

Where θ1 = max-MAD(C) and θ2 = max-MAD(CP
O) for the

given test column C , respectively.
Smoothing.Note that max-MAD(D) ∈ R+, and if we plot

the probability density of max-MAD in T, using max-MAD
as the x-axis and freq(x) = |{D |D ∈ T,max-MAD(D) = x}|
as the y-axis, we see a highly irregular and non-smooth
distribution with significant ups and downs. This is because
max-MAD takes a large range of possible values, so that for
a specific x = max-MAD(C) score we may not see tables
with that exact x even in a large T. However if we look at
the small neighborhood x ± δ , we will find plenty of tables.
This motivates the need to “smooth out” the distribution for
a reliable estimate.

There are a couple of different ways to perform smoothing.
One approach is to use the classical Kernel Density Estima-
tion (KDE) [72], where kernels functions are used to smooth
individual observations. We tested this method and find it
to be ineffective, because smoothing parameters need to be
empirically tuned (e.g., using cross-validation [43]) for each
distribution in SFD (T), which often leads to inaccuracy.
We instead propose an alternative smoothing by modify-

ing how data are “described” in Equation (11). Recall that
in Equation (11), Pm(D |SFD (T)) is interpreted as “tables in the
subset SFD (T) that are ‘like’ D based on metric-function m”.
Instead of interpreting the “likeness” as an exact point-based
estimate of “before perturbation the max-MAD of a table is
exactly θ1, after perturbation the max-MAD is exactly θ2”,
which suffer from non-smoothness, we instead use range-
based predicates. We rewrite Equation (11) as Pm (D |S FD (T))

Pm (DP
O |S FD (T))

=

| {D |D∈S FD (T),max-MAD(D)≥θ1,max-MAD(DP
O)≤θ2 } |

| {D |D∈S FD (T),max-MAD(D)≥θ2 } |
(12)

Note that in Equation (12), we reformulate Pm(D |SFD (T)) as
| {D |D∈S FD (T),max-MAD(D)≥θ1,max-MAD(DP

O)≤θ2 } |
|S FD (T) | , which reads as

“before perturbation the max-MAD is greater than or equal to
θ1, after perturbation the max-MAD is less than or equal to θ2”.
Note that this still captures the intuition of surprisingness –
an max-MAD score higher than θ1 before perturbation that
drops below θ2 after perturbation, is more surprising than
the exact θ1 → θ2.

Theorem 1. [Monotonicity.] Let r (D) be the smoothed
ratio defined in Equation (12), the following monotonicity

holds for r (D). For any column pair C and C ′, with θ1 =
max-MAD(C), θ2 = max-MAD(CP

O), θ ′1 = max-MAD(C ′),
θ ′2 = max-MAD(C ′P

O):
θ1 ≥ θ ′1,θ2 ≤ θ ′2,⇒ r (C) ≤ r (C ′) (13)

We note that monotonicity is a desirable property, for intu-
itively it guarantees that a more surprising discovery from
perturbation is guaranteed to produce a smaller (more sur-
prising) LR result using the smoothed r (D). Note that this
property generalizes to all other error types. A proof of this
result can be found in Appendix E.

We use the following example to illustrate smoothed scores.

Example 5. [Numeric outliers.] Continue with Exam-
ple 4, note that both the max-MAD(C+) and max-MAD(C−)

have the same score of 8.1, which make them indistinguish-
able for MAD-based methods such as [48].

In comparison, UniDetect reasons about the likelihood of
error using the ratio in Equation (12). Specifically, forC−, be-
fore perturbation max-MAD(C−) is 8.1 (θ−1 = 8.1), after per-
turbation (removing value “43”) max-MAD(C−P

O) becomes
7.4 (θ−2 = 7.4). For C+, before perturbation max-MAD(C+) is
8.1 (θ+1 = 8.1), after perturbation (removing value “8.716”)
max-MAD(C+PO) becomes 3.5 (θ+2 = 3.5).
Putting θ in Equation (12), the ratio for C+ is:

| {D |D ∈ S FD (T), max-MAD(D) ≥ 8.1, max-MAD(DP
O) ≤ 3.5} |

| {D |D ∈ S FD (T), max-MAD(D) ≥ 3.5} |
(14)

Note that it is uncommon to see data with max-MAD larger
than 8.1 before perturbation, and after perturbation drops to
below 3.5, this leads to a small LR ratio.

In comparison, the ratio for C− is:
| {D |D ∈ S FD (T), max-MAD(D) ≥ 8.1, max-MAD(DP

O) ≤ 7.4} |
| {D |D ∈ S FD (T), max-MAD(D) ≥ 7.4} |

(15)

Observe that consistent with Theorem 1, the ratio in Equa-
tion (14) is guaranteed to be smaller than that in Equa-
tion (15), because the denominator in Equation (14) is larger
than that of Equation (15), while its nominator is (substan-
tially) smaller. Overall we would find C+ to be significantly
more suspicious than C− using these scores, and correctly
predict “8.716” in C+ (Figure 4(e)) to be an outlier, while “43”
in C− (Figure 2(e)) is not. �

3.2 Spelling Errors.

We explained intuitions of detecting spelling errors in Exam-
ple 1. In this section we define it more formally.

We instantiate UniDetect using minimum pair-wise edit-
distance (MPD) as the metric functionm (inspired by Fuzzy-
Clustering in OpenRefine [8] and Paxata [9]), defined as:

MPD(C) = min
u ∈C,v ∈C,u,v

Edit(u,v)

The intuition here is that a small MPD indicates likely
misspellings. For example, the tables in Figure 2(g), 2(h), 4(g)
and 4(h) all have value pairs withMPD of 1.
Given that we want to identify misspellings, a natural

perturbation P is to drop a value from the pair with the

smallest distance. For featurization F , we use featurization
similar to Figure 5, which includes (1) data types, defined
as: {string, integer vs. floating-point numbers vs. mixed-
alphanumeric}, (2) number of rows, defined as: {(0-20] , (20-
50], (50-100], (100-500], (500-1000], and (1000-∞)}, and (3)
the average length of the tokens that differ between the MPD
pair, again bucketized into ranges ({(0-5] , (5-10], (10-15],
(15-20], and (20-∞)}).

While the first two featurizations are straightforward, the
last one is specific to misspellings, and is based on the obser-
vation that if edit between a pair of values happens on long
tokens, it is more likely to be an misspelling (e.g., “Doeling”
and “Dowling”), whereas for shorter tokens (e.g., “XXI” and
“XXII”) it is more likely to be false-positives.

Given these we compute the ratio as:

Pm (D |SFD (T))

Pm (DP
O |SFD (T))

=
|{D |D ∈ SFD (T),MPD(D) ≤ θ1,MPD(DP

O) ≥ θ2}|

|{D |D ∈ SFD (T),MPD(D) ≤ θ2}|

Where θ1 = MPD(C) and θ2 = MPD(CP
O) are computed from

the given test column C , respectively.
It is worth noting that this computation not only captures

our intuition that a column C is suspicious if it initially has
a small MPD(C), which when perturbed produces a sub-
stantially large MPD(CP

O); it also quantitatively measures
surprisingness, which makes it directly comparable between
an MPD increase from 1 to 10, v.s. another MPD increase
from 3 to 15. UniDetect quantifies all such scenarios in a
data-driven manner to accurately predict errors.

3.3 Uniqueness violations.

We informally explained uniqueness in Example 2. More
formally, we instantiate it using UniDetect as follows. We
use the uniqueness-ratio (UR) function as the metric function
m. For a column C , UR(C) is defined as num-distinct-values(C)

num-total-values(C) .
The intuition is that a column with a UR close to 1 likely has
violations to uniqueness constraints.

For perturbation P it is natural to drop duplicate values
in C . For featurization F , we use: (1) Data types, defined
as: {string, integer vs. floating-point numbers vs. mixed-
alphanumeric}. (2) Number of rows, defined as: {(0-20] ,
(20-50], (50-100], (100-500], (500-1000], and (1000-∞)}. (3)
The leftness of column C in a table [26, 28], defined as the
column position of C counting from the left. (4) The average
prevalence of tokens inC , or on average the number of times
the tokens in C occur in other tables, defined as:
Prev(C) = avg

v ∈C
avg

t ∈tokenize(v)
|{T |T ∈ T,v ∈ T , t ∈ tokenize(v)}|

We also bucketize this as {(0-50] , (50-100], (100-1000], (1000-
10000], (10000-100000], and (100000-∞)}.

The ratio can be instantiated as:
Pm (D |SFD (T))

Pm (DP
O |SFD (T))

=
|{D |D ∈ SFD (T),UR(D) ≤ θ1,UR(DP

O) ≥ θ2}|

|{D |D ∈ SFD (T),UR(D) ≤ θ2}|

Where θ1 = UR(C) and θ2 = UR(CP
O) are computed from the

given test column C , respectively.
As we discussed in Example 2, features such as mixed-

alphanumeric data-type and low Prev(C) intuitively capture
“ID”-like columns (unique identifiers, code, etc.), which pre-
dicts violations more accurately.

3.4 FD violations.

FD violations are conceptually similar to Uniqueness, but
are defined over two groups of columns. We use the FD-
compliance-ratio (FR) function as themetric functionm. Given
a table T , let Cl ,Cr be two groups of columns in T , that are
the lhs and rhs of an FD, respectively. Let u,v be two rows
in D, and u(C) and v(C) be the values of u and v in columns
C . The FD-compliance-ratio of FD candidate (Cl → Cr) over
table D, denoted by FRD (Cl ,Cr), is defined as follows.
FRD (Cl ,Cr) =

| {(u(Cl),u(Cr)) |�u,v ∈D,u(Cl)=v(Cl),u(Cr),v(Cr)} |
| {(u(Cl),u(Cr)) |u ∈D)} |

For instance, for the table in Figure 4(c), the FR(“ID”,
“Awardee”) = 4

6 . Like the UR metric function for Unique-
ness, an FR closer to 1 indicates likely FD violations. A natu-
ral perturbation P is to drop rows in suspected violations,
{u |u,v ∈ T ,u(Cl) = v(Cl),u(Cr) , v(Cr)}. And we use the
same featurization F as in Section 3.3.
The ratio can be computed as Pm (D |S FD (T))

Pm (DP
O |S FD (T))

=

| {(Cl ,Cr) |D∈S FD (T),Cl ,Cr ∈D,FRD (Cl ,Cr)≤θ1,FRDP
O
(Cl ,Cr)≥θ2 } |

| {(Cl ,Cr) |D∈S FD (T),Cl ,Cr ∈D,FRD (Cl ,Cr)≤θ2 } |
Where θ1 = FRT (Cl ,Cr) and θ2 = FRT P

O
(Cl ,Cr) are computed

for the given T and (Cl ,Cr) ∈ T .

3.5 Compatibility Error in Auto-Detect [50]

A recent work AutoDetect [50] focuses on detecting pattern
incompatibility, which is an orthogonal class of data errors.
For example, it detects incompatible values such as “2001-
Jan-01” vs. “2001-01-01” in same columns, also leveraging
statistical analysis on large table corpus.

We show that the basic mechanism of PMI (point-wise mu-
tual information) in AutoDetect is actually consistent with
the likelihood-ratio (LR) test in UniDetect, which further
illustrates its generality. We give a detailed derivation in
Appendix C in the interest of space.

4 EXPERIMENTS

4.1 Datasets

In our experiments, we use two web table corpora extracted
from the index of a commercial search engine, and a corpus
of enterprise spreadsheet tables extracted from the intranet
of a large enterprise.

total
#tables

avg-#columns
per-table

avg-#rows
per-table

WEB 135M 4.6 20.7
WIKI 3.6M 5.7 18

Enterprise 489K 4.7 2932
Table 2: Summary statistics of table corpora.

•WEB.WEB contains a set 135M relational tables extracted
from the web. Non-relational and low-quality tables have
been filtered by ML-classifiers in a production pipeline [28].
• WIKI.WIKI a subset of WEB from the wikipedia.org do-
main with over 3M tables. As one would expect,WIKI is of
high quality since these pages are collaboratively edited by
millions of editors.
• Enterprise. Enterprise is a collection of 489K spreadsheet
tables, extracted from Excel (.xlsx) files, crawled from the
intranet of a large enterprise. These tables are substantially
larger than web tables, and are often populated directly from
enterprise databases (as evidenced by the presence of data-
base connection-strings [2]).

Summary statistics of the corpora can be found in Table 2.
UniDetect uses a large table corpus for statistical reason-

ing, which is referred to as T that is analogous to “training
data”. In this work we use WEB as the training corpus T.
Given the large number of tables inWEB, it is likely to cover
diverse tables and generate reliable statistics.

In order to test the quality of error detection for different
types of errors, we sampled 10% of WIKI, 1% of WEB, and
all of Enterprise as our test benchmarks, henceforth referred
to asWIKIT,WEBT and EnterpriseT. We execute UniDetect
models learned from theWEB completely unchanged on these
corpora to produce ranked lists of predictions, and compare
with those from existing algorithms.

4.2 Methods Compared

We implemented UniDetect and a total of 15 existing meth-
ods to generate predictions onWIKIT,WEBT and EnterpriseT,
using a production Map-Reduce-like environment.
• Speller [1, 6]. Spellers from commercial search engines
are trained using large amounts of usage data, and perform
spelling corrections at very high accuracy (e.g., precisionwell
over 0.9 [40, 63]). Applying Spellers to detect misspellings
in tables is a natural baseline. We programmatically invoke
Speller from a commercial search engine to produce a ranked
list of predicted misspellings, ordered by confidence scores.
• Speller (address-only). Since not all table data are suit-
able for Spellers to produce corrections, in this variant we
invoke Speller only on the restricted domain of address data,
for which Speller is believed to be suitable (to filter down
to address data, we only look at columns whose headers are
“address”, “city”, or “location”, and manually remove non-
address columns during final human evaluation).
• Fuzzy-Cluster [8, 9]. Existing systems such as Paxata [9]
and OpenRefine [8] use fuzzy-clustering to group together

values in the same column that are within a small distance
(e.g., Edit-distance=1), since these are likely misspellings. We
simulate this Fuzzy-Cluster feature by producing a ranked
list of value pairs within sames columns, ordered first by
edit-distance, and then by the length of tokens where the
values differ (as values that differ in longer tokens are more
likely typos, e.g., “mississippi” vs. “missisippi”, compared to
shorter ones like “mark” and “mary”).
• Word2Vec [67] and GloVe [73]. Word embedding such
asWord2Vec and GloVe produce vector representations of
words trained over large text corpus, and were suggested
as alternatives to compare with in the review process. We
use the Glove model trained over 840B tokens [5], and the
Word2Vec model trained over 100B tokens [16]. Words that
are out-of-vocabulary (OOV) are predicted as misspelled.
• Distance-based outlier detection (DBOD) [57]. DBOD
is an outlier detection method proposed for databases, which
scores a value v high if a large fraction of values in the
same column lie far away from v . For a given column C , we
sort values ascendingly to get {v1,v2, . . . ,vn}, and score the
most outlying values (v1 and vn) based on their distances to
the closest neighbors, normalized by min/max of C . Namely,
DBOD(v1)= v2−v1

vn−v1
, andDBOD(vn)= vn−vn−1

vn−v1
. All predication

are again sorted by DBOD scores to produce a ranked list.
• Local outlier factor (LOF) [24]. LOF detects outliers us-
ing a notion of local density [24], and scores value v based
on its density. We rank outliers using LOF scores.
•Max-MAD [48]. Hellerstein proposes to use MAD scores
from robust statistics to detect numeric outliers [48]. This
is one of the state-of-the-art approaches for outliers. We
compute the MAD score (Section 3.1) of each value in a
column, and rank predictions based on MAD scores.
•Max-SD [20]. This approach is similar toMax-MAD, but
uses the more standard SD score (Section 3.1) instead of MAD
score. We again rank by SD scores (larger scores indicate
higher likelihood of error).
• Unique-row-ratio [37]. The Unique-row-ratio detects ap-
proximate uniqueness constraints, using the ratio of distinct
values in a column to the total number of rows. Columns
with scores close to 1.0 are more likely to be errors.
• Unique-value-ratio [48]. Unique-value-ratio is proposed
as an improvement to Unique-row-ratio, and is robust to
“frequency outliers” (values with high frequencies) [48]. It is
defined as the ratio of unique values (values with frequency
one) to the total number of distinct values in a column. We
rank predictions the same way as Unique-row-ratio.
• Unique-projection-ratio [53]. This approach detects ap-
proximate FD (X → Y) in T , using Unique-projection-ratio,
defined as |πX (T) |

|πXY (T) |
. We enumerate column pairs and rank

predictions based on this score.

•Conforming-row-ratio [56]. This is a variant of theUnique-
projection-ratio for approximate FDs, which usesConforming-
row-ratio defined as | {u |u ∈T ,�v ∈T :u[X]=v[X],u[Y],v[Y]} |

|T |
, or the

ratio of rows conforming to FD to the total number of rows.
• Conforming-pair-ratio [56]. In Conforming-pair-ratio,
approximate FDs are detected based on the ratio of row-pairs
conforming to FD, defined as | {(u,v) |u,v ∈T ,u[X]=v[X],u[Y],v[Y]} |

|T |2
.

• UniDetect. This is the method proposed in this work.
4.3 Evaluation of Prediction Quality

We manually judge top-100 predicted errors of each method
described above, onWIKIT,WEBT and EnterpriseT (requir-
ing over 5000 labels in total). Each prediction is labeled as
true/false/not-sure. Our quality metric is Precision@K [79],
defined as #-true-errors@K

K .
Figure 8(a), Figure 9(a) and Figure 10(a) show the quality

comparisons of predicted spelling errors on WEBT, WIKIT

and EnterpriseT, respectively. We can see that UniDetect
has the best precision: over 0.8 for all three corpora. Examples
of detected misspellings can be seen in Figure 4(g) and 4(h).
Fuzzy-Cluster performs reasonably well with precision at
around 0.5. Surprisingly, the Speller from the search en-
gine performs the worst. An inspection of the false-positives
(shown in Figure 3) suggests that amismatch between train/test
– the training is based on search engine query logs, which
are very different from the idiosyncratic data we encounter
in tables (imagine a table with employee aliases like “Jen-
niferA” and “SmithB” that would all trigger false-positives
for Speller). When we manually filter down table data to
only address data, the precision of Speller(address) improves
to 0.4-0.7, which still lags behind UniDetect. Lastly, while
commercial Spellers already leverage word-embedding, our
results show that it is not a good fit to use Word2Vec and
GloVe directly for spell checking.
We would like to highlight that in this case UniDetect

detects spelling errors entirely based on a data-driven dis-
tribution analysis of WEB, without any lexical analysis, or
looking at any English dictionary. This is the reason why a
model trained onWEB can be applied unchanged, yet still
generalize to EnterpriseT.

We found that false-positives of UniDetect in this case in-
clude pairs such as “Macroeconomics” and “Microeconomics”
(listed in the same column). From a distribution’s perspec-
tive this pair is suspiciously close, but a simple dictionary
would refute the hypothesis that the pair has misspellings,
as both of them are valid entries in dictionaries. We use this
simple method to combine UniDetect with Wiktionary [4].
The result is labeled as “UniDetect+Dict” in Figure 8(a) and
Figure 9(a), which consistently achieves precision over 0.9.

Given that WEBT and WIKIT are only 1% and 10% of their
respective full corpus, we can extrapolate that if we were to
label all tables, we can find tens of thousands of spelling errors

(a) Spelling (b) Numeric-outlier (c) Uniqueness

Figure 8: Quality of predicted errors onWEBT
, evaluated using Precision@K.

(a) Spelling (b) Numeric-outlier (c) Uniqueness

Figure 9: Quality of predicted errors onWIKIT, evaluated using Precision@K.

(a) Spelling (b) Numeric-outlier (c) Uniqueness

Figure 10: Quality of predicted errors on EnterpriseT, evaluated using Precision@K.

on Wikipedia (non-trivial because Wikipedia is already of
high quality), and hundreds of thousandsmore for the general
Web, all at a high precision.

Figure 8(b), Figure 9(b), and Figure 10(b) show a similar
comparison for numeric-outliers. UniDetect achieves pre-
cision at 0.92, 0.95 and 1, for WEBT, WIKIT and EnterpriseT,
respectively, outperforming alternative methods specifically
designed for numeric-outliers (LOF, DBOD, etc.). Among all
other methods, we can see that MAX-MAD improves sub-
stantially overMAX-SD, reaffirming the benefit of leveraging
robust statistics as reported in [48].

For Uniqueness-violations, a similar trend can be observed
in Figure 8(c), Figure 9(c) and Figure 10(c). Note that com-
pared to baselines, UniDetect uses the same Unique-value-
ratio (UR) as its metric function, but is able to significantly
outperform a simple application of the metric.

Additional experiments on FD and its variant synthesized-
FD are discussed in Appendix D in the interest of space.

5 CONCLUSION AND FUTUREWORK

We propose UniDetect, a unified approach to error detec-
tion that leverages a large corpus of tables. We demonstrate
that this framework can be instantiated to handle four seem-
ingly disparate yet common classes of errors.
Interesting directions of future work include extending

UniDetect to test its effectiveness for more types of errors,
as well as exploring the possibility of learning configurations
for more accurate detection.

A RELATEDWORKS

Error detection vs. Error repair. We in this work focus
on automatic error-detection, which is orthogonal to and
one step before error-repair that has a long and fruitful
line of research. Influential methods in error-repair include
minimality-based [22, 36], HoloClean [77], as well as many
other novel methods (e.g. [18, 34, 35, 82], etc.).
In the following we will review existing error-detection

methods by types of errors. The authors in [17, 48] give
excellent surveys of recent error-detection methods.

Numeric outliers. Hellerstein [48] proposes to use the
metric of MAD (median absolute deviation) from robust sta-
tistics to detect outliers in numeric data. There is a large lit-
erature on non-parametric outlier detection in databases [19,
29, 42, 47–49, 55], which differ in aspects such as metrics
used and application scenarios.

Spelling mistakes. Existing commercial systems such as
Paxata [9] and OpenRefine [8] employ fuzzy-group-by to
cluster together values in the same column that are syntacti-
cally close. Users are then expected to inspect the clusters
to determine true misspellings. Spellers from commercial
search engines [1, 6] are also relevant efforts.

Constraint violations. Existing methods detect likely vi-
olations of uniqueness [37, 48], FD constraints [21, 41, 54, 56],
and other types of logic-based constraints [30, 33], mainly
leverage the idea that constraints that almost hold are likely
violations. While this is clearly useful, we show in UniDe-
tect how such intuitions can be further improved in a data-
driven manner.

Pattern-based error detection. Existing systems such
as Trifacta [15], Power BI [10] and Talend [13] all have pre-
defined regex-like patterns to recognize common data types
(e.g., IP addresses, emails, etc.). When most values in an input
column conform to known patterns while a small fraction
of values do not, the non-conforming ones can be flagged as
errors (Appendix B gives more details).
Potter’s Wheel [76] infers patterns from a given column

based on minimum description length (MDL).
Auto-Detect [50] uses large corpus and PMI to learn pat-

tern incompatibility, which is consistent with and can be
derived from the LR scores (Appendix C).

Other error-detection methods. There are a number
violations that are not studied in this work, including more
general forms of constraints (CFD [23], DC [32], etc.). As we
discussed some of these are hard to automate as they tend to
be highly specific to data sets that are hard to learn from T.

B DETECT ERROR IN EXISTING SYSTEMS

A few existing systems provide simple error-detection func-
tionalities. We discuss a few representatives here.

Figure 11: OpenRefine cluster similar values in the

same column for possible spelling variations.

Microsoft Excel [7]. Excel pre-defines a set of 9 simple
error checking rules (shown in Figure 1), which include well-
known ones such as “Number stored as text”, and “Formulas
inconsistent with other formulas in the region”. These are
manually curated, high-precision rules, that covers a very
limited number of scenarios, which are nevertheless already
useful in a software setting (high-precision, low-recall).

Trifacta [14]. Trifacta recognizes around 10 built-in “data
types” (IP-address, phone-numbers, email, etc.) based on
predefined patterns [15]. Values in a column not conforming
to patterns associated with a data-type are flagged as errors.
In addition, Trifacta offers a rich set of visual-histograms
(e.g., distribution of string lengths) for values in a column,
which help users identify potential quality issues. Similar
functionalities are also available in systems like Paxata [9]
and Talend [13].
OpenRefine/GoogleRefine [8]. OpenRefine does not detect

errors directly, but like Paxata [9] it provides a text clustering
feature that groups together similar values in a column, so
that users can see whether similar values may be misspelled
variations of canonical values. Figure 11 shows results from
column clustering, where similar values like “U.S.” and “US”,
“USA” and “U.S.A.” are grouped together, so that users can
decide whether to collapse these clusters of values into a
canonical representation.

C RELATIONSHIPS TO COMPATIBILITY

ERRORS IN AUTO-DETECT [50]

A recent work AutoDetect [50] focuses on an orthogonal
class of data errors, which is pattern incompatibility. For
example, it detects values such as “2001-Jan-01” and “2001-01-
01” as incompatible, using a PMI-based (point-wise mutual
information) analysis of large table corpus.
We show that this basic mechanism of PMI is actually

consistent with the likelihood-ratio (LR) test in the proposed
UniDetect.
Specifically, the LR test we propose is LR = P (H0 |evidence)

P (H1 |evidence) ,
which can be rewritten as below (derived in Section 2.2):

LR =
P(H0 |D,T)
P(H1 |D,T)

=
P(D |H0,T)
P(D |H1,T)

P(H0 |T)
P(H1 |T)

∝
P(D |H0,T)
P(D |H1,T)

(16)

Given two patterns P1 and P2 considered in AutoDetect
(say, “\d\d\d\d-\l\l\l-\d\d” for “2001-Jan-01” and “\d\d\d\d-\d\d-
\d\d” for “2001-01-01”, where \d stands for digits and \l stands
for letters, respectively), we can perform a similar LR ratio
statistical test. Given a table column D that includes P1 and
P2 in the same column, the null hypothesis H0 is that P1 and
P2 are not negatively correlated, or assumed to be randomly
co-occurring. In this case, the probability of P(D |H0,T), or
the chance of seeing D in T, can be estimated as n1

N
n2
N , where

n1, n2, are the number of columns in the corpus T with P1
and P2, respectively, and N is the total number of columns
in the corpus.
The alternative hypothesis H1 is that P1 and P2 are neg-

atively correlated, or incompatible. In this case, the proba-
bility of P(D |H1,T) can be estimated based on the observed
co-occurrence of P1 and P2, or n12

N , where n12 is the number
of columns in the corpus T that have both P1 and P2.

Combining the above with Equation (16) above, we get

LR ∝
P(D |H0,T)
P(D |H1,T)

=

n1
N

n2
N

n12
N

Note that the right-hand-side of the equation above is
exactly the definition of PMI – the metric used in [50].
There are a substantial amount of optimizations in Auto-

Detect that trades off accuracy for storage that are specific
to pattern co-occurrences. However, it is interesting that the
metric used in Auto-Detect, targeting an entirely orthogonal
type of errors is actually consistent with our LR-tests.

D ADDITIONAL EXPERIMENTS

We also compare quality results for detecting FD errors in
Figure 12. Specifically, we compare two types of FDs, one is
the classical FD as discussed in Section 3.4, where FD (X →

Y) is said to hold on T at the instance-level, if |πX (T) |
|πXY (T) |

= 1.
In addition, we also consider a variant that uses techniques

from the programming synthesis literature (e.g., [45, 62, 81]),
such that for a candidate X → Y , not only do we require the
functional relationship holds, as in a classical FD sense, but
also we require an explicit programmatic-relationship to be
learnt for a majority of rows from X to Y , before considering
a relationship exists between the two columns.
Examples of explicit synthesized programmatic relation-

ship are, for instance, a column with “full-name” (e.g., “Doe,
John”), followed by twomore columns of “first-name” (“John”)
and “last-name” (”Doe”). In such cases a programmatic rela-
tionship can be learnt between the columns (e.g., concatenat-
ing “last-name”, a comma, a space, and “first-name” produces
the “full-name” column; while splitting “full-name” using a
comma and taking the first component produces the “last-
name” column, etc.).
We term such refined form of FD as FD-synthesis (since

program-synthesis is used). Note that explicit programmatic

relationship produced between X and Y makes sure that
a relationship really exists between the columns.The exact
error-detection reasoning for FD-synthesis in UniDetect is
identical to FD (described in Section 3.4).
Figure 12(a) and 12(b) show the comparison of detecting

FD errors on WEBT and WIKIT, respectively. As can be seen
from the results, UniDetect still outperforms FD-detection
algorithms [53, 56], though the precision is not very high.
This underlines the difficulty of detecting FD errors relative
to other types of errors – FD contains two groups of columns,
where it is substantially more likely to generate candidates
that appear to have an FD, but in reality have no real rela-
tionship (e.g., because the two columns X and Y take values
from a large range, making collision/FD-violations unlikely).
In comparison, Figure 12(c) and 12(d) show quality re-

sults of detecting errors that violate FD-synthesis (FD with
learnt programmatic relationship via program synthesis).
Compared to FD results in Figure 12(a) and 12(b), the qual-
ity of FD-synthesis is substantially better. Figure 13, and 14
show example Wikipedia tables that are detected to be in
violation of FD-synthesis relationships. Note that the explicit
programmatic relationships not only ensures high quality
error-predictions, but also enables exact repair (through gen-
erative program synthesis).

E PROOF OF THEOREM 1

We show that the monotonicity property defined by the in-
equality in Equation (13) holds. Observe that given a column
pair C and C ′, r (C) and r (C ′) are defined as follows.

r (C) =
|{D |D ∈ SFD (T),max-MAD(D) ≥ θ1,max-MAD(DP

O) ≤ θ2}|

|{D |D ∈ SFD (T),max-MAD(D) ≥ θ2}|
(17)

r (C ′) =
|{D |D ∈ SFD (T),max-MAD(D) ≥ θ ′1,max-MAD(DP

O) ≤ θ ′2}|

|{D |D ∈ SFD (T),max-MAD(D) ≥ θ ′2}|
(18)

Where θ1 = max-MAD(C), θ2 = max-MAD(CP
O), θ ′1 =

max-MAD(C ′), and θ ′2 = max-MAD(C ′P
O).

Given it is known that θ1 ≥ θ ′
1 and θ2 ≤ θ ′2, it can be

shown that the numerator of Equation (17) is smaller than
that of Equation (18), because θ1 ≥ θ ′

1 and θ2 ≤ θ ′2, which
ensures that the numerator in Equation (17) is precisely a
subset of that in Equation (18).

Conversely, it can be shown that the denominator of Equa-
tion (17) is larger than that of Equation (18), because θ2 ≤ θ ′2,
which ensures that the denominator in Equation (17) is a
superset of that in Equation (18).

Combining the relationships in numerator and denomina-
tor, we can conclude that ⇒ r (C) ≤ r (C ′).

(a) FD onWEBT (b) FD on WIKIT (c) Synthesis-FD onWEBT (d) Synthesis-FD onWIKIT

Figure 12: Quality of predicted errors, evaluated using Precision@K.

Figure 13: Real error from Wikipedia detected by

FD-Synthesis. Value “738” should be “748”, based on

programmatic relationships with“Malaysia Federal

Route 748”.

Figure 14: Real error from Wikipedia detected by FD-

Synthesis. Value “Mr Gay Honkong” should be “Mr

Gay Hong Kong”, based on programmatic relation-

ships with “Hong Kong”.

REFERENCES

[1] Bing spell check. https://azure.microsoft.com/en-us/services/
cognitive-services/spell-check/.

[2] Database connection strings in excel. https://docs.microsoft.com/
en-us/dotnet/framework/data/adonet/connection-string-syntax.

[3] Excel error checking rules. https://excelribbon.tips.net/T006221_
Changing_Error_Checking_Rules.html.

[4] Excel error checking rules. https://www.wiktionary.org/.
[5] Glove 840B tokens model. https://nlp.stanford.edu/projects/glove/.
[6] Google spell check. https://code.google.com/archive/p/

google-api-spelling-java/.
[7] Microsoft excel error checking rules. https://excelribbon.tips.net/

T006221_Changing_Error_Checking_Rules.html.
[8] OpenRefine (formerly Google Refine). http://openrefine.org/.
[9] Paxata data preparation. https://www.paxata.com/.
[10] Power bi. https://docs.microsoft.com/en-us/power-bi/

desktop-data-types.
[11] Self-service data preparation, worldwide, 2016. https://www.gartner.

com/doc/3204817/forecast-snapshot-selfservice-data-preparation.
[12] Spreadsheet mistakes - news stories, compiled by european spread-

sheet risk interest group EuSpRiG. http://www.eusprig.org/

horror-stories.htm.
[13] Talend data services platform studio user guide: Semantic discov-

ery. https://help.talend.com/reader/nAXiZW0j0H~2~YApZIsRFw/
_u0D0oqWxesgBDSihDgbYA.

[14] Trifacta. https://www.trifacta.com/.
[15] Trifacta built-in data types. https://docs.trifacta.com/display/PE/

Supported+Data+Types.
[16] Word2Vec 100B Google News model. https://github.com/mmihaltz/

word2vec-GoogleNews-vectors.
[17] Z. Abedjan, X. Chu, D. Deng, R. C. Fernandez, I. F. Ilyas, M. Ouzzani,

P. Papotti, M. Stonebraker, and N. Tang. Detecting data errors: Where
are we and what needs to be done? VLDB, 9(12), 2016.

[18] F. N. Afrati and P. G. Kolaitis. Repair checking in inconsistent databases:
algorithms and complexity. In Proceedings of the 12th International
Conference on Database Theory. ACM, 2009.

[19] A. Arning, R. Agrawal, and P. Raghavan. A linear method for deviation
detection in large databases. In KDD, 1996.

[20] I. Ben-Gal. Outlier detection. In Data mining and knowledge discovery
handbook. Springer, 2005.

[21] L. Berti-Equille, H. Harmouch, F. Naumann, N. Novelli, and S. Thiru-
muruganathan. Discovery of genuine functional dependencies from
relational data with missing values. VLDB, 2018.

[22] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A cost-based model
and effective heuristic for repairing constraints by value modification.
In SIGMOD, 2005.

[23] P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Con-
ditional functional dependencies for data cleaning. In ICDE. IEEE,
2007.

[24] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: identifying
density-based local outliers. In ACM sigmod record. ACM, 2000.

[25] E. Brewer. Cap twelve years later: how the. Computer, (2), 2012.
[26] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and Y. Zhang. Webtables:

exploring the power of tables on the web. VLDB, 1(1), 2008.
[27] G. Casella and R. Berger. R. 2001, statistical inference. Duxbury Press.
[28] K. Chakrabarti, S. Chaudhuri, Z. Chen, K. Ganjam, Y. He, and W. Red-

mond. Data services leveraging bing’s data assets. IEEE Data Eng.
Bull., 39(3), 2016.

[29] V. Chandola, A. Banerjee, and V. Kumar. Outlier detection: A survey.
ACM Computing Surveys, 2007.

[30] F. Chiang and R. J. Miller. Discovering data quality rules. VLDB, 1(1),
2008.

[31] X. Chu, Y. He, K. Chakrabarti, and K. Ganjam. Tegra: Table extraction
by global record alignment. In SIGMOD, 2015.

[32] X. Chu, I. F. Ilyas, and P. Papotti. Discovering denial constraints. VLDB,
6(13), 2013.

[33] X. Chu, I. F. Ilyas, and P. Papotti. Discovering denial constraints. VLDB,
6(13), 2013.

[34] X. Chu, I. F. Ilyas, and P. Papotti. Holistic data cleaning: Putting
violations into context. In ICDE. IEEE, 2013.

[35] X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, N. Tang, and
Y. Ye. Katara: A data cleaning system powered by knowledge bases

https://azure.microsoft.com/en-us/services/cognitive-services/spell-check/
https://azure.microsoft.com/en-us/services/cognitive-services/spell-check/
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/connection-string-syntax
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/connection-string-syntax
https://excelribbon.tips.net/T006221_Changing_Error_Checking_Rules.html
https://excelribbon.tips.net/T006221_Changing_Error_Checking_Rules.html
https://www.wiktionary.org/
https://nlp.stanford.edu/projects/glove/
https://code.google.com/archive/p/google-api-spelling-java/
https://code.google.com/archive/p/google-api-spelling-java/
https://excelribbon.tips.net/T006221_Changing_Error_Checking_Rules.html
https://excelribbon.tips.net/T006221_Changing_Error_Checking_Rules.html
http://openrefine.org/
https://www.paxata.com/
https://docs.microsoft.com/en-us/power-bi/desktop-data-types
https://docs.microsoft.com/en-us/power-bi/desktop-data-types
https://www.gartner.com/doc/3204817/forecast-snapshot-selfservice-data-preparation
https://www.gartner.com/doc/3204817/forecast-snapshot-selfservice-data-preparation
http://www.eusprig.org/horror-stories.htm
http://www.eusprig.org/horror-stories.htm
https://help.talend.com/reader/nAXiZW0j0H~2~YApZIsRFw/_u0D0oqWxesgBDSihDgbYA
https://help.talend.com/reader/nAXiZW0j0H~2~YApZIsRFw/_u0D0oqWxesgBDSihDgbYA
https://www.trifacta.com/
https://docs.trifacta.com/display/PE/Supported+Data+Types
https://docs.trifacta.com/display/PE/Supported+Data+Types
https://github.com/mmihaltz/word2vec-GoogleNews-vectors
https://github.com/mmihaltz/word2vec-GoogleNews-vectors

and crowdsourcing. In SIGMOD, 2015.
[36] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma. Improving data quality:

Consistency and accuracy. In VLDB, 2007.
[37] T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk. Mining

database structure; or, how to build a data quality browser. In SIGMOD,
2002.

[38] W. Fan, X. Jia, J. Li, and S. Ma. Reasoning about record matching rules.
VLDB, 2(1), 2009.

[39] D. Freeman. How to make spreadsheets error-proof. Journal of Ac-
countancy, 181(5), 1996.

[40] Y. Ganjisaffar, A. Zilio, S. Javanmardi, I. Cetindil, M. Sikka, S. Katumalla,
N. Khatib, C. Li, and C. Lopes. qspell: Spelling correction of web search
queries using ranking models and iterative correction. In Spelling
Alteration for Web Search Workshop, 2011.

[41] L. Golab, H. Karloff, F. Korn, and D. Srivastava. Data auditor: Exploring
data quality and semantics using pattern tableaux. VLDB, 3(1-2), 2010.

[42] M. Gupta, J. Gao, C. C. Aggarwal, and J. Han. Outlier detection for
temporal data: A survey. TKDE, 26(9), 2014.

[43] P. Hall, J. Marron, and B. U. Park. Smoothed cross-validation. Proba-
bility theory and related fields, 92(1), 1992.

[44] W. R. Harris and S. Gulwani. Spreadsheet table transformations from
examples. In ACM SIGPLAN Notices, volume 46. ACM, 2011.

[45] Y. He, X. Chu, K. Ganjam, Y. Zheng, V. Narasayya, and S. Chaudhuri.
Transform-data-by-example (TDE): an extensible search engine for
data transformations. VLDB, 11(10), 2018.

[46] Y. He, K. Ganjam, and X. Chu. SEMA-JOIN: joining semantically-
related tables using big table corpora. VLDB, 8(12), 2015.

[47] Z. He, S. Deng, and X. Xu. An optimization model for outlier detection
in categorical data. Advances in Intelligent Computing, 2005.

[48] J. M. Hellerstein. Quantitative data cleaning for large databases. United
Nations Economic Commission for Europe (UNECE), 2008.

[49] V. Hodge and J. Austin. A survey of outlier detection methodologies.
Artificial intelligence review, 2004.

[50] Z. Huang and Y. He. Auto-Detect: Data-Driven Error Detection in
Tables. In SIGMOD, 2018.

[51] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen. Tane: An
efficient algorithm for discovering functional and approximate depen-
dencies. The computer journal, 42(2), 1999.

[52] B.-G. I. Data Mining and Knowledge Discovery Handbook: A Complete
Guide for Practitioners and Researchers. Kluwer Academic Publishers,
2005.

[53] I. F. Ilyas, V. Markl, P. Haas, P. Brown, and A. Aboulnaga. Cords:
automatic discovery of correlations and soft functional dependencies.
In SIGMOD, 2004.

[54] I. F. Ilyas, V. Markl, P. Haas, P. Brown, and A. Aboulnaga. Cords:
automatic discovery of correlations and soft functional dependencies.
In SIGMOD, 2004.

[55] E. Keogh, S. Lonardi, and C. A. Ratanamahatana. Towards parameter-
free data mining. In SIGKDD, 2004.

[56] J. Kivinen and H. Mannila. Approximate inference of functional de-
pendencies from relations. Theoretical Computer Science, 149(1), 1995.

[57] E. M. Knox and R. T. Ng. Algorithms for mining distance based outliers
in large datasets. In VLDB, 1998.

[58] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural
information processing systems, 2012.

[59] V. Le and S. Gulwani. Flashextract: a framework for data extraction
by examples. In ACM SIGPLAN Notices, volume 49. ACM, 2014.

[60] P. M. Lee. Bayesian statistics. Arnold Publication, 1997.

[61] E. L. Lehmann and J. P. Romano. Testing statistical hypotheses. Springer
Science & Business Media, 2006.

[62] H. Lieberman. Your wish is my command: Programming by example.
Morgan Kaufmann, 2001.

[63] G. Luec. A data-driven approach for correcting search quaries. In
Spelling Alteration for Web Search Workshop, 2011.

[64] Y. E. Mark Ziemann and A. El-Osta. Gene name errors are widespread
in the scientific literature. Genome Biology, 2016.

[65] R. A. Maronna, R. D. Martin, V. J. Yohai, andM. Salibián-Barrera. Robust
Statistics: Theory and Methods (with R). Wiley, 2018.

[66] F. McSherry and K. Talwar. Mechanism design via differential privacy.
In Foundations of Computer Science, 2007. FOCS’07. 48th Annual IEEE
Symposium on. IEEE, 2007.

[67] T.Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed
representations of words and phrases and their compositionality. In
Advances in neural information processing systems, 2013.

[68] J. Neter, M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. Applied
linear statistical models, volume 4. Irwin Chicago, 1996.

[69] J. Neyman and E. S. Pearson. On the problem of the most efficient
tests of statistical hypotheses. Phil. Trans. R. Soc. Lond. A., 1933.

[70] R. R. Panko. What we know about spreadsheet errors. Journal of
Organizational and End User Computing (JOEUC), 1998.

[71] T. Papenbrock, T. Bergmann, M. Finke, J. Zwiener, and F. Naumann.
Data profiling with metanome. VLDB, 8(12), 2015.

[72] E. Parzen. On estimation of a probability density function and mode.
The annals of mathematical statistics, 33(3), 1962.

[73] J. Pennington, R. Socher, and C. Manning. Glove: Global vectors for
word representation. In EMNLP, 2014.

[74] S. G. Powell, K. R. Baker, and B. Lawson. Errors in operational spread-
sheets: A review of the state of the art. In System Sciences, 2009.
HICSS’09, 2009.

[75] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. Squad: 100,000+
questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250, 2016.

[76] V. Raman and J. M. Hellerstein. Potter’s wheel: An interactive data
cleaning system. In VLDB, volume 1, 2001.

[77] T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré. Holoclean: Holistic data
repairs with probabilistic inference. VLDB, 10(11), 2017.

[78] S. Schelter, D. Lange, P. Schmidt, M. Celikel, and F. Biessmann. Au-
tomating largescale data quality verification. In VLDB, 2018.

[79] H. Schütze, C. D. Manning, and P. Raghavan. Introduction to informa-
tion retrieval, volume 39. Cambridge University Press, 2008.

[80] R. Singh. Blinkfill: Semi-supervised programming by example for
syntactic string transformations. VLDB, 9(10), 2016.

[81] R. Singh and S. Gulwani. Transforming spreadsheet data types using
examples. In Acm Sigplan Notices, 2016.

[82] M. Yakout, L. Berti-Équille, and A. K. Elmagarmid. Don’t be scared: use
scalable automatic repairing with maximal likelihood and bounded
changes. In SIGMOD, 2013.

[83] C. Yan and Y. He. Auto-Type: Synthesizing type-detection logic for
rich semantic data types using open-source code. In Proceedings of the
2018 International Conference on Management of Data. ACM, 2018.

[84] C. Zhao and Y. He. Auto-EM: End-to-end Fuzzy Entity-Matching using
Pre-trained Deep Models and Transfer Learning. In WWW, 2019.

[85] Z. Zhao, L. De Stefani, E. Zgraggen, C. Binnig, E. Upfal, and T. Kraska.
Controlling false discoveries during interactive data exploration. In
SIGMOD, 2017.

[86] E. Zhu, Y. He, and S. Chaudhuri. Auto-join: Joining tables by leveraging
transformations. VLDB, 10(10), 2017.

	Abstract
	1 Introduction
	2 The Uni-Detect Approach
	2.1 Problem Statement
	2.2 UniDetect: A Data-driven Approach

	3 Uni-Detect for different errors
	3.1 Numeric outliers.
	3.2 Spelling Errors.
	3.3 Uniqueness violations.
	3.4 FD violations.
	3.5 Compatibility Error in Auto-Detect huang2018auto

	4 Experiments
	4.1 Datasets
	4.2 Methods Compared
	4.3 Evaluation of Prediction Quality

	5 Conclusion and Future Work
	A Related Works
	B Detect Error in Existing Systems
	C Relationships to Compatibility Errors in Auto-Detect huang2018auto
	D Additional Experiments
	E Proof of Theorem 1
	References

