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Abstract
We consider the problem of Reinforcement Learning (RL) in a multi-batch setting, also sometimes called growing-batch setting. It
consists in successive rounds: at each round, a batch of data is collected with a fixed policy, then the policy may be updated for
the next round. In comparison with the more classical online setting, one cannot afford to train and use a bad policy and therefore
exploration must be carefully controlled. This is even more dramatic when the batch size is indexed on the past policies performance.
In comparison with the mono-batch setting, also called offline setting, one should not be too conservative and keep some form of
exploration because it may compromise the asymptotic convergence to an optimal policy.

In this article, we investigate the desired properties of RL algorithms in the multi-batch setting. Under some minimal assumptions,
we show that the population of subjects either depletes or grows geometrically over time. This allows us to characterize conditions
under which a safe policy update is preferred, and those conditions may be assessed in-between batches. We conclude the paper by
advocating the benefits of using a portfolio of policies, to better control the desired amount of risk.
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1 Introduction

The most common setting for Reinforcement Learning (RL) is online: the algorithm directly interacts with the true environment and
is allowed to be updated anytime. This setting is the less restrictive one from the algorithmic point of view, but real world problems
(RWP) have all sorts of additional constraints that make it – most of the time – inapplicable. First example, RWP generally have a
high complexity and a complete policy update would be too expensive to compute at every time step, hence the use of online RL
algorithms that only perform small updates on the policy or the value-function estimators through temporal difference or gradient
descent. The online RL algorithms comply with the complexity constraint but are less sample efficient. Second example, RWP are
also generally meant to be widely deployed, on different devices with limited bandwidth, memory and computational power, which
prevents frequent policy updates. As a consequence, while the online setting does not suffer from bad intermediate policies, since
those can be fixed promptly, we argue that bad intermediate policies would jeopardize most RWP services.

At the opposite, the single batch setting, in the words of [3], refers to a reinforcement learning setting, where the complete amount
of learning experience, usually a set of transitions sampled from the system, is fixed, without any access to the true environment. The
literature on single batch RL focuses on safe policy improvement of the baseline policy that was used to generate the batch [6]. RWP
never amount to a single policy update. Instead, we argue that most of them consist in a multi-batch setting, also sometimes referred
to as growing batch in the literature, where the policy is successively trained on the past batches of data. This setting is commonly
encountered in the following domains: dialogue systems, crop management or pharmaceutical treatment. The single batch setting
might therefore be regarded as a greedily myopic study of the multi-batch setting where the former objective is a mix of safety and
expected performance, neglecting the longer-term impact of the chosen policy on the quality of the next batches. As a consequence,
algorithm safety might be counterproductive as it punishes exploratory strategies, which is detrimental to the asymptotic performance.
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Figure 1: Multi-batch setting.

Our contributions are the following:

• We make the first attempt to model the multi-batch setting process.
• Under a set of minimal assumptions, we prove that, asymptotically, either the pool

of subjects depletes, or grows geometrically.
• We conclude the paper with a set of recommendation for situational desired prop-

erties of the algorithms and argue that the situation may be assessed during the
process with mild assumptions.

2 Multi-Batch Reinforcement Learning Process

Process 1 formalizes the generic process involved in the multi-batch setting: at every batch,
the RL algorithm trains/updates a policy (Step 1). This policy is used to collect a dataset
(Step 3) through interactions with a set of subjects, whose enrollment depends on the past
subjects experience (Step 2). Figure 1 is an illustration of the multi-batch setting.

Step 2 is generally overlooked in the literature. However, we will show that it is crucial.
Indeed, the size of the datasetDβ , called crowd and denoted by κβ = |Dβ | in the following,
is dependent on the past subject experience. For instance, if the algorithm generates a bad policy, it is likely to lose its subjects and
later, it may only get a handful of additional experience in the next batch. Then, it may be slow to regain subjects’ trust.

The goal is to optimize the cumulative return after B ∈ R+ batches. More formally, we have:

J (α, κ0, {π0,D0} , B) =

B∑
β=1

κβ∑
k=1

ρ̇πβ ,τk = J (α, κ1, {π0,D0} ∪ {π1,D1} , B − 1) +

κ1∑
τ=1

ρ̇π1,τ , (1)

Process 1: Multi-batch setting process
Input: Initial policy π0 Input: Initial crowd κ0 Input: Unknown environment MDP: M = 〈X ,A, P,R, γ〉
Input: Initial dataset D0 Input: Multi-batch algorithm α Input: Horizon of the process (number of batches): B

for each batch β ∈ J1, BK do
Step 1: with α, train the new policy πβ on past datasets and their behavioural policies: πβ ∼ α

(
{πβ′ ,Dβ′}β′∈J0,β−1K

)
.

Step 2: enroll a crowd of κβ subjects, in function of the past subjects experience: κβ ∼ g
(
{Dβ′}β′∈J0,β−1K

)
.

Step 3: collect dataset Dβ of size κβ , by following policy πβ : Dβ =
{
τk ∼ 〈X ,A, P, πβ , R, γ〉

}
k∈J1,κβK

.

end for
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where k is the index of trajectory τk, β is a batch index, α is a multi-batch RL algorithm, πβ is the policy trained by algorithm α at
batch β on dataset

⋃β−1
β′=0 {πβ′ ,Dβ′}, ρ̇πβ ,τk is the random variable denoting the performance of trajectory τk, when following policy

πβ , κβ is the crowd at batch β, π0 is the initial policy, and D0 denotes the possibly empty initial batch of data.

In the following, the performance ρ̇πβ ,τ of a given trajectory τ will be defined as the classical infinite horizon RL discounted return:
ρ̇πβ ,τ =

∑∞
t=0 γ

trπβ ,τ,t, (we assume that all trajectories of batch B − 1 have terminated before starting batch B) but any other
trajectory-sighted objective function may be considered and, at the exception of Proposition 2 (for which similar bounds may still be
found under some other mild assumptions), all results hold. For instance, ρ̇πβ ,τ may be defined as the binary task completion.
Remark 1. We make the following remarks about Process 1:

(i) Step 1: some algorithms are randomized, hence the sampling sign ‘∼’.

(ii) Step 1: algorithms cannot be considered monotonous with respect to the samples they are trained on. Indeed, some data
may be misleading and lead to bad policies [4]. Some algorithms (such as vanilla model-based RL) may train policies that
are performing worse with larger datasets, even in expectation [5].

(iii) Step 2: the function g for the crowd update is stochastic, hence the sampling sign ‘∼’.

(iv) Step 2: the function g depends on individual factors: “did the subject have a good past experience with the system?” ; and
global factors: “does the system have a good image?”, “what is the pool size for the crowd?”.

(v) Step 2: the function g is dependent on the task. In some domains, it may be unacceptable for the system to fail: it is essentially
evaluated on its efficiency (e.g. autonomous cars). In others, it is acceptable for it to fail regularly (e.g. dialogue systems).

(vi) Step 2: the function g may not be monotonous: it has happened in the past that some systems got hyped because they were
failing in an entertaining way. We may cite three famous examples: Tay, Baidu and Youtube Rewind 2018.

(vii) Step 3: the dataset collection involves several sources of stochasticity: πβ , P , and R.

(viii) Steps 2 & 3: subjects behave differently from one another and overtime.

3 Analysis

In order to give some insights on the dynamics, and similarly to [2], we make a series of assumptions that should account for a large
variety of multi-batch RL settings:
Assumption 1. The multi-batch RL process is simplified as follows:

(i) The performance ρ̇πβ ,τ of trajectory τ generated at batch β is a random variable that belongs to [−1, 1].

(ii) The crowd κβ at any given batch β is assumed to be subject-centered, i.i.d., linearly bounded, and stationary over time.

Assumption 1(ii) states that each subject having followed a trajectory τ during batch β enrolls ġπβ ,τ ∈ N subjects for the next batch.
ġπβ ,τ is assumed to be a random variable that only depends on its last individual experience and that is bounded by some maximal
value ġmax. While ρ̇πβ ,τ and ġπβ ,τ are only depending on the generated trajectory, it is more convenient to consider them as being
directly sampled from a distribution only dependent on the policy πβ : ρ̇πβ ,τ ∼ ρ̇(πβ) and ġπβ ,τ ∼ ġ(πβ), but one has to keep in mind
that ρ̇πβ ,τ and ġπβ ,τ are thus correlated through τ .

Assumption 2. Additionally, we assume that the random function ġ(π) is Λ-Lipschitz with respect to π and `1,∞ :

Eτ [|ġπ1,τ − ġπ2,τ |] ≤ Λ‖π1 − π2‖1,∞, (2)

where `1,∞ is defined as follows: ‖π1 − π2‖1,∞ = supx∈X
∫
a∈A|π1(a|x)− π2(a|x)|da.

Assumption 2 is satisfied in most cases, and in particular when the trajectory length is bounded by tmax. We denote the empirical
mean performance during batch β with the random variable ρ̂β and the empirical batch growth with ĝβ :

ρ̂β =
1

κβ

κβ∑
τ=1

ρ̇πβ ,τ and ĝβ =
1

κβ

κβ∑
τ=1

ġπβ ,τ . (3)

Then, we may write:

κβ = κβ−1ĝβ−1 = κ0

β−1∏
β′=0

ĝβ′ , (4)
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As a consequence of the assumption on κβ’s dynamics, if ġπ,τ can take values greater than 1 for some policy π, then the crowd is
automatically assumed unbounded.

This section makes the analysis of the multi-batch process under Assumptions 1 and 2 in a tacit manner. Due to space constraints, all
the proofs are omitted in the extended abstract.
Proposition 1. The objective function J unfolds as follows:

J (α, κ0, {π0,D0} , B) = κ0

B∑
β=1

ρ̂β

β−1∏
β′=0

ĝβ′ . (5)

From now on, we focus the analysis on the asymptotic behaviour of J with respect to B.
Assumption 3. We assume that πβ uniformly converges in probability with respect to the `1,∞-norm to some policy π∞ as β tends
to infinity:

∀ε > 0,∃β0 ∈ N, such that ,∀β > β0, ‖πβ − π∞‖1,∞ < ε. (6)

Assumption 3 only states the convergence of πβ , it does not say anything on the quality of the policy π∞ in the limit. This assumption
generally holds for unbiased algorithms since the incoming data depletes either in quantity: the crowd equals 0 at some batch and
thereafter, no more data may be collected, or in informative content as a consequence of the strong law of large numbers, and of the
increasing nature of the data collection (as long as the trained policies do not oscillate between several equally (sub-)optimal solu-
tions). More specifically, in finite spaces X and A, this assumption is satisfied by most greedy-in-the-limit algorithms. In continuous
space, it has to be noted that most algorithms include a bias that makes them sensitive to the data distribution, and this distribution
is in turn dependent on the previously used policy. In case of crowd depletion, there is also the possibility for the algorithm to be
randomized and therefore to generate a different policy at every batch. But, since these policies are never used because of the crowd
depletion, this special case could be treated separately in a trivial way, and would not be a real issue for the generality of the theory.
Proposition 2. We consider t ∈ N and two policies π1 and π2. Then, with probability larger than 1− t‖π1 − π2‖1,∞ :

|ρ̇π1,τ − ρ̇π2,τ | ≤ 2γt.1 (7)

Corollary 1. If ‖π1 − π2‖1,∞ < ε, then, with probability larger than 1 + ε
⌊
logγ−1 ε

⌋
: |ρ̇π1,τ − ρ̇π2,τ | ≤ 2ε.

Proposition 2 and its corollary relate the distance between the trajectories generated by two policies with their distance.
Proposition 3. If ‖π1 − π2‖1,∞ < ε, then, ġπ1,τ and ġπ2,τ are close in mean and variance:

|Eġπ1,τ − Eġπ2,τ | ≤ Λε and |Vġπ1,τ − Vġπ2,τ | ≤ Λεġmax, (8)

and are equal with probability higher than 1− Λε.

Proposition 3 relates the distance between the enrollments implied by two policies with their distance.
Corollary 2. Under Assumption 3, ρ̇πβ ,τ and ġπβ ,τ respectively converge in probability to ρ̇π∞,τ ∼ ρ̇(π∞) and ġπ∞,τ ∼ ġ(π∞) :

∀ε > 0, lim
β→∞

P
(
|ρ̇πβ ,τ − ρ̇π∞,τ | > ε

)
= 0, (9)

∀ε > 0, lim
β→∞

P
(
|ġπβ ,τ − ġπ∞,τ | > ε

)
= 0. (10)

Corollary 2 proves, under Assumption 3, the convergence in probability of ρ̇πβ ,τ and ġπβ ,τ , when β tends to ∞. Now, we define
two modes of asymptotic behaviour of the multi-batch process. Then, we show as our main contribution that, except for identified
degenerate cases, the multi-batch process follows one of the two following modes:
Definition 1. The crowd depletion mode (CDM) has the following properties:

(i) The crowd converges to 0 almost surely: limβ→∞ κβ = 0.

(ii) The dataset remains finite: |
⋃
β∈NDβ | <∞.

(iii) The objective function J remains finite: limB→∞ J <∞.
1The use of the same subscript τ for both random variables ρ̇π1,τ and ρ̇π2,τ indicates that as long as both policies behave the same, the other

random events follow the same realization. In other words, they behave as generated with the same random seed.
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Definition 2. The geometric crowd mode (GCM) has the following properties:

(i) The crowd asymptotically grows geometrically with ratio Eġπ∞,τ as a function of β.

(ii) The dataset size grows to infinity: |
⋃
β∈NDβ | =∞.

(iii) The objective function J asymptotically grows geometrically with ratio Eġπ∞,τ as a function of B. As a consequence, J
diverges either to +∞ or−∞, according to the sign of Eρ̇π∞,τ . If Eρ̇π∞,τ = 0, then nothing can be said about limB→∞ J .

Theorem 1. In the degenerate case ġπ∞,τ = 1, nothing may be said, except that it does not follow GCM.

If Eġπ∞,τ ≤ 1, then the process almost surely enters CDM.

If Eġπ∞,τ > 1, then with some probability p∞ > 0, the process asymptotically enters GCM. With the complementary probability
1−p∞, it enters CDM. p∞ may be lower bounded from batch β0 on, if β0 is such that for all β ≥ β0, expectation Eġπβ ,τ ≥ µ0 > 1,
and variance Vġπβ ,τ ≤ σ2

0 :

p∞ ≥ 1− min
µ∈(1,µ0)

 σ2
0µ

κβ0
(µ0 − µ)2(µ− 1)

;
e
−

2κβ0
(µ0−µ)

2

ġ2max

1− e−
2κβ0

(µ−1)(µ0−µ)2

ġ2max

 . (11)

In particular µ = 1
4

(
1 +
√

8µ0 + 1
)

minimizes the first term (obtained with Chebyshev’s bound), the second term (obtained with
Hoeffding’s bounds) may be shown to have a unique local minimum that does not admit a closed form expression. A numerical
simulation (not reported here) shows that Equation 11 is not a tight bound and, more surprisingly, suggests that p∞ is close to being
constant when µ0 − 1 is small, and when κβ0

(µ0 − 1) and σ2
0 are constant. The derivation of tighter bounds is left for future work.

4 Concluding recommendations

The goal is to maximize the objective function J , but given the stochasticity of the process, one has to consider the expected indirect
utility. The concept of indirect utility classically refers to a measurement of the satisfaction obtained by the decision maker as a
function of its objective function. It is generally assumed to be monotonically increasing with the objective function, concave in R+,
reflecting aversion to risk and diminishing marginal utility, and asymmetric with respect to the origin. The logarithm utility function,
first proposed by Bernoulli, is still commonly used: Υlog(J ) = sign(J ) log(1 + |J |).

Under the log-utility, the following recommendations may be made. The goals for a multi-batch algorithm are the following, by
decreasing order of importance: to make Eρ̇π∞,τ positive, to maximize p∞E [logEτ ġπ∞,τ |GCM], and only marginally, maximize
the asymptotic expected performance Eρ̇π∞,τ . In other words, the most important for a service is to make it profitable for its owner
(ρ̇π∞,τ > 0), then to make it viable (p∞E [log ġπ∞,τ |κβ →∞]), and only then, to make it effective (Eρ̇π∞,τ ). In most cases, maxi-
mizing p∞ and E [log ġπ∞,τ ] is achieved through maximizing Eρ̇π∞,τ . But in some cases, a “too good” service has for consequence
to lose potential future customers. This is, for instance, why planned obsolescence exists. Consequently, the multi-batch setting is
multi-objective and its most salient objective is not the optimization of the performance.

The random variable ġπ,τ is generally strongly dependent on the trajectory performance random variable. Assuming past samples of
ġπ,τ are observable, after several batches, one might have a good estimate of it as a random function of ρ̇π,τ . Based on such a model,
one is now able to assess whether risk should be taken in order to increase Eġπβ ,τ or to be safe in order to optimize p∞. A/B testing
over two or more policies, including a safe past policy, even without online optimization, is beneficial in order to balance the desired
amount of risk and explore new policies at the same time. With online optimization, an algorithm selection for RL has been shown to
outperform the most efficient one in the portfolio with a minimal amount of embedded computation power [4] and bandwidth [1].
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