
Physical Programming for Blind and Low Vision Children at Scale

Cecily Morrison1, Nicolas Villar1, Alex Hadwen-Bennet2, Tim Regan1, Daniel Cletheroe1, Anja Thieme1, Sue Sentance2,3

1Microso� Research
2Kings College London, Centre for Research in Educa�on in Science, Technology, Engineering & Mathema�cs

3 Rasberry Pi Founda�on

ABSTRACT
There is a dearth of appropriate tools for young learners with mixed visual abilities to engage with computational
learning. Addressing this gap, Torino is a physical programming language for teaching computational learning to
children ages 7-11 regardless of level of vision. To create code, children connect physical instruction pods and
tune the parameter dials to create music, audio stories, or poetry. Currently, the uptake of novel educational
technologies to support inclusive education of children with disabilities continues to be limited at scale. We
consider how the Torino Learning Environment supports non-specialist teachers to teach computational learning
to children with mixed visual abilities in a UK-wide evaluation with 75 children and 30 teachers over a period of
three months. We demonstrate how children can successfully learn with a novel physical programming language.
We articulate how key design constructs such as persistent program overview and liveness supported non-
specialist teachers to co-produce learning for children of different ages, visual and cognitive abilities. We conclude
with reflective guidance on evaluating inclusive educational technologies at scale.

CCS CONCEPTS
Human-centered compu�ng → Accessibility → Empirical studies in accessibility

KEYWORDS
Inclusive learning; mixed visual abili�es; blind; accessibility; tangible educa�on technology; computa�onal learning; evalua�on at scale;
computer science educa�on (CSE).

1 INTRODUCTION
Policy initiatives are being developed throughout the world to include programming, and computational learning
more broadly (Cooper, Pérez, and Rainey 2010), into education and national curricula (e.g. (Peyton-Jones,
Humphreys, and Mitchell 2013)). Addressing these initiatives, a range of specialist teaching tools have been
designed and developed to encourage the development of computational learning in school children (Brennan
and Resnick 2012; Cooper, Pérez, and Rainey 2010). A recent paper reviewed more than 47 different tools
available for children between the ages of 2 and 18 (Duncan, Bell, and Tanimoto 2014). Tools for younger children
are frequently block-based languages, such as the widely known Scratch (Maloney et al. 2010), but the momentum
continues with the development and uptake of new physical technologies. Micro:bit, for example, was recently
given to every 11-year-old in the UK (Rogers et al. 2017).

The formalization of computational learning into schools and curricula makes more apparent the lack of
appropriate tools for many children with disabilities (Burgstahler and Ladner 2007). While there is growing
research in the area of inclusive computing (Lechelt et al. 2018; Stefik, Hundhausen, and Smith 2011; Israel et al.
2015; Kane, Koushik, and Muehlbradt 2018), there remains a dearth of tools for teaching computational learning

Figure 1: Two learners with mixed visual abilities using Torino: a physical programming language for teaching computational
learning to children ages 7-11 regardless of level of vision.

to children ages 7 – 11 with mixed visual abilities. Common languages used by their sighted peers, such as Scratch
or Alice (Utting et al. 2010) are visual both in manipulating the code (e.g. drag and drop) and in the effect that
the code has (e.g. animation). Existing physical programming languages also rely heavily on visual properties
(Horn, Solovey, and Jacob 2008); distinguishing pieces, connecting them correctly, and experiencing the outcome
of the program are all visual activities.

Addressing this gap, Torino is a physical programming language for teaching computational learning to children
ages 7-11 regardless of level of vision (see Figure 1). To create code, children connect physical instruction pods
and tune the parameter dials to create music, audio stories, or poetry. The design of the initial Torino prototype
and early evaluations have been reported previously in (Morrison et al. 2018; Thieme et al. 2017). Multiple design
iterations have resulted in a new, full-featured, manufacturable version of Torino. This is complemented by a
scheme of work that guides non-specialist teachers and children through the concepts of the UK computing
curriculum, forming the Torino Learning Environment.

Uptake of novel technologies at scale for children with mixed visual abilities in educational settings continues to
be limited (Bouck 2016; Zhou et al. 2011). While researchers are addressing some of the challenges through co-
design (Brule et al. 2016; Cullen and Metatla 2018), there remain challenges with the confidence and skills that
qualified teachers of the visually impaired (QTVIs) have with technology. In the UK, the majority of blind and low
vision children are in mainstream education leaving QTVIs expected to be fluent in all subjects, with the
responsibility for adaptation (and often teaching) resting with additional teaching assistants (Metatla and Cullen
2018; Bach, Kessler, and Heron 2004). To ensure that specialist teaching tools for computational learning are
utilized effectively in such settings requires their evaluation at scale.

We carried out a large-scale evaluation of the Torino Learning Environment with 75 children and 30 teachers
situated across 24 localities in the UK. We provided Torino sets to teachers along with a scheme of work and
teacher’s guide for a full three-month academic term. We captured children’s engagement and learning as well
as considered the experiences of teachers through survey and diary instruments. Our findings show that children
were highly engaged and that teachers reported age- and ability-appropriate learning across the cohort. Further,
our analysis suggests that successful learning is not a simple end-point of the Torino Learning Environment, but
something co-produced by non-specialist teachers.

This paper makes the following contributions:

• Demonstrates that children ages 7 – 11 with mixed visual abilities can successfully learn using a novel physical
programming language at scale;

• Provides insight into design features, persistent program overview and liveness, that support or hinder non-
specialist teachers to co-produce learning using the Torino Learning Environment with children of different
ages, visual, and cognitive abilities;

• Offers reflective guidance for future research aiming to evaluate inclusive educational technologies at scale.

2 RELATED WORK
We set the scene by describing how children with mixed visual abilities are taught in the UK. We then discuss
existing tools for computational learning and physical computing in educational settings. The final section
discusses assessment of computational learning, motivating the evaluation strategy taken in this study.

2.1 Teaching Learners with Mixed Visual Abilities
In the UK, and most high-income countries, the majority of blind and low vision children are taught in mainstream
schools (RNIB 2016). Learners are supported by peripatetic qualified teachers of the visually impaired (QTVI) who
lead the adaptation process. In cases of severe visual impairment, a teaching assistant realizes adaptations on a
day-to-day basis. There are also a very few specialist schools that work with blind and low vision students who
have an additional or profound disability; local “special” schools for children with a range of disabilities unable to
attend mainstream schools; and children schooled at home (approximately 10%). This variety suggests that a
successful intervention needs to work across a wide range of settings and teachers.

The mainstreaming of learners with disabilities was motivated by a vision of social inclusion supported through
inclusive teaching practices (UK Parliment 1981). In practice, inclusive education requires the use of multisensory
teaching techniques so that all learners can participate regardless of their abilities. This stands in contrast to the
model of assistance, either human or technological, that modifies materials to enable access, e.g. creating tactile
graphics. Lack of resource and time on the part of teachers, coupled with new non-inclusive technologies in
schools, have made the implementation of mainstream education for disabled children fraught with challenges,
impacting academic and social participation (Gray 2009).

As a result, there has been a focus on addressing the (seemingly) more immediate need of making class materials
accessible. This has been particularly challenging for STEM (Science, Technology, Engineering and Math) subjects
(Moon et al. 2012). One approach has been to pair disabled and non-disabled students and divide the work by
abilities -- a sighted learner manipulates the Scratch environment, while a blind child suggests ideas for an
animation that s/he cannot experience. This however, leads to partial or even non-participation. Alternatively,
teaching assistants (TA) are often asked to bridge the gap, making adaptations on the fly. This approach often
leads to focused interactions between TA and student, creating an assistance bubble that isolates disabled
children from the rest of the class (Metatla and Cullen 2018). Thus, there is a mismatch between the vision of
social inclusion in education and the reality of teaching STEM subjects.

2.2 Inclusive Computational Learning Tools
Computational learning is being introduced into schools through a range of policy initiatives (e.g. (Peyton-Jones,
Humphreys, and Mitchell 2013). Yet, there is much debate as to what it entails. We ground our theoretical
approach in the work of (Cooper, Pérez, and Rainey 2010), who define computation thinking for school learning
environments. They specifically highlight the iterative and interactive process between the student and the
computer, making explicit the student’s capacity for abstraction and for problem formulation. More practically,
we draw upon three aspects of computation defined by (Brennan and Resnick 2012), which includes:
Computational Concept, Computational Practices, and Computational Perspectives. Finally, we adhere to the
learning goals of the UK computing curriculum for primary school children (Department for Education 2013).

A range of tools have been developed to support computational learning by learners with mixed visual abilities,
summarized in (Hadwen-Bennett, Sentance, and Morrison 2018). The majority of these tools focus on making
existing programming languages more accessible by making code structure apparent, e.g. (Baker, Milne, and
Ladner 2015), or interoperable with assistive technology, e.g. (Ludi, Ellis, and Jordan 2014). Efforts have been
made in Quorum (Stefik, Hundhausen, and Smith 2011) to ensure all learners can use the same platform through
the creation of an evidence-based accessible language. The recent Bonk (Kane, Koushik, and Muehlbradt 2018)
goes beyond an accessible language, actively engaging learners with mixed visual abilities to create audio games

together. While most of these examples seek to support accessibility, only the most recent ones are designed to
mediate an inclusive learning environment (Metatla, Thieme, et al. 2018).

To date, the development of computational learning tools has mainly been targeted at secondary school students
(11+) competent in assistive technologies and with a fully developed working memory. There is currently no
alternative to the Initial Learning Environments (ILE) used to teach primary school learners (6 –11) to code. Most
ILEs are drag and drop block-based languages for creating digital media (e.g. animations). They offer abstractions
of important programming concepts found in conventional languages, such as iterative or branching flow
structures, without the complication of syntax. Recent work has documented the accessibility challenges of block-
based ILEs and proposed a more inclusive alternative (Milne and Ladner 2018). Torino Learning Environment was
designed to address the gap for learners ages 7 – 11. In the vein of inclusive education, it is intended to benefit all
learners in a classroom regardless of visual abilities.

2.3 Physical Technology in Educational Settings
A good number of physical or tangible technologies have been developed for teaching computational learning:
e.g. (Horn and Jacob 2007b; Zuckerman, Grotzer, and Leahy 2006; Sullivan, Elkin, and Bers 2015; Lechelt et al.
2016). Physical computing has been proposed to support human interaction. Evaluations of Tern, for example,
highlight the advantages for child interaction when working on programs away from a computer (Horn and Jacob
2007a) as well as the opportunity to draw people into participation in classroom and museum (Horn et al. 2009).
Video analysis of an early version of Torino (Thieme et al. 2017) as well as Magic Cubes physical toolkit (Lechelt et
al. 2018) emphasize how the technology supports collaboration between people of different abilities, alluding to
the consequent learning that can then take place. These references suggest that physical computing has the
potential to support the kind of collaborative interaction desirable between children with mixed visual abilities.

Empirical validation of physical technologies for teaching computational learning in educational settings is rare
(Zaman et al. 2012). Taking a qualitative action research approach, Virnes, Sutinen, and Kärnä-Lin (2008) consider
how robotics can be used to teach hands-on programming with eight diverse learners with special educational
needs over a period of nine months. A study with Magic Cubes uses interaction analysis to understand how
collaboration, comprehension, and engagement are achieved when teaching computing concepts in a special
school to 11 students age 16-19 (Lechelt et al. 2018). Wyeth (2008) takes a quantitative approach to observational
data, capturing specified criteria that indicate program understanding, structure, debugging, planning, and
multiple solutions. These studies focus on how the technology achieves learning goals through observation
methods rather than measures of rate or breadth of learning across a cohort.

There are few studies at scale. Martinez, Gomez, and Benotti (2015) use multiple-choice tests to assess concept
comprehension using a robotics platform in children ages 3-11 with 190 students. The data collection and analysis
descriptions are limited so it is unclear how measurement was taken and whether there were multiple sites.
Sentance et al. (2017) provide a qualitative study of the roll-out of the UK program to give a micro:bit to every 11
year old. Fifteen computing teachers along with 54 students in 8 focus groups (age 11-13) were interviewed.
Despite specific prompts, teachers focused on engagement rather than characterizing learning and assessment.
As such, there are no studies that attempt to evaluate a technology through assessing computational learning at
scale.

2.4 Assessing Computational Learning
The lack of large-scale evaluation stems in part from the challenge of assessing computational learning. It is a
research area in its infancy hindered by a lack of identified skills or competencies to measure (Giordano et al.

2015). A recent paper proposes a measured assessment
of computational learning (Román-González, Marcos,
Juan-Carlos Pérez-González and Jiménez-Fernández
2017); however, because it is highly visual and designed
for learners age 11+, it is inappropriate to younger
learners with mixed visual abilities. As an alternative,
Brennan and Resnick (Brennan and Resnick 2012)
propose a range of assessment activities: 1) analysis of
constructs used in a program; 2) artefact interviews in
which learners explain a program; and 3) programming
exercises. Their combination is further proposed to
enable a full overview of a learner’s understanding
(Grover, Cooper, and Pea 2014).

The assessment activities detailed in the literature all
have challenges at scale. Analysis of constructs can be
automated and easily done by a non-specialist teacher,
but it has been shown that usage does not equate to
code understanding. Further, achieving this through log
data analysis requires an individual log-in for each child,
which is impractical when working with a physical
system, (non-specialist) teachers, or in groups. While

artefact interviews better address understanding, they are time consuming and require teacher expertise to
formulate prompt questions. Programming exercises can be set by researchers but are best used as a formative
assessment as the line between assessment and learning is unclear. As such, there is currently no scalable
measurement instrument of computational learning in the education literature that is: accessible to children;
accounts for shared technology use; and usable by non-specialist teachers (Kallia 2017).

We can, however, measure motivational and engagement constructs. The Expectancy-Value Model (Eccles and
Wigfield 2002) of motivational constructs theorizes that both expectancies and values influence career choices
and are a better predictor of career choice than attainment in primary school. Engagement is also a key part of
the learning process and can be measured through a validated research instrument in computing students ages 5
to 18 (DeLyser, Mascio, and Finkel 2016).

3 TORINO LEARNING ENVIRONMENT
The Torino Learning Environment is a combination of the Torino system (hardware and software), the scheme of
work (lessons), and the approach taken in introducing these to teachers (set provision).

3.1 Torino System
Torino is a physical programming language for teaching computational learning to children age 7-11 regardless of
level of vision. To create code, children connect physical instruction pods and tune their parameter dials to create
music, auditory stories or poetry as shown in Figure 2.

Play (sound, duration)

Hub

Rest (duration)
Loop (constant)

Selection
(if x > random)

End if

Figure 2: Torino system pieces connected in a multi-
threaded program with text-based code below.

Program Flow

Each pod is a statement in the program. Learners can
build up a range of program flows with different pods. In
this new version of Torino, in addition to play, rest, and
loop pods, there is also selection (if then), and merge (end
if). Each pod has a number of connectors and cables that
allow them to be plugged together to define the structure
of the program. Pods plug into one of four jacks on the
main unit (Hub), representing the logical starting point of
the program with each connection point the start of a
thread. For example, Figure 2 shows a program with three
concurrent threads. The first thread will play a single
sound, and then will enter a loop that will repeat the
action of playing a rest (silence) followed by a sound. A
second thread will play three sounds in sequence. A third
thread will play either a sound or a rest, depending on the
outcome of a conditional statement.

Torino was deliberately designed to have a low floor and high ceiling. Seven year olds (or those with additional
learning needs) can start with very simple programs: a sequence of three play pods to learn that a program is a
sequence of commands; whereas 11 year olds can combine constructs, such as nested loops or looping selection
(if then) statements, to push their understanding of program execution. Each Torino set has 15 pods (8 plays, 3
rests, 2 loops, selection, and merge) keeping the focus on the constructs and their execution, rather than long
programs. The type and number of pods was determined to ensure that our matching scheme of work could cover
all concepts in the UK national curriculum for this age group.

Each pod was designed to be tactually and visually distinct. The base shell of the pod is the same while the top
has different slopes and textures along with differentiated placement and number of dials. Dials each have a
distinct texture and are colored to support those using visual information. This includes sighted children and
teachers, as well as many blind and low vision children. We were careful to avoid disparity between tactual and
visual information to ensure unimpeded interaction between those of different abilities.

Data Flow
Pods have knobs that represent configurable parameters, which can be rotated to specify the value of the
parameter. Play pods have two knobs, one to specify the sound and one duration; rest pods have a single knob
for the duration of silence; the knob on a loop pod specifies the number of loop iterations; and the pair of knobs
on a conditional pod represent the values of the conditional statement x > y. Dials have eight possibilities before
looping (e.g. 1,2,3…8,1) with the exception of duration which has four. New to this version of Torino are plugs that
can be inserted into the knobs to programmatically change their values, enabling taught concepts to include
constants and variables. The set of plugs include: constant values 1-8, random, infinity, increment and decrement
counters as well as variables. Variables can be assigned by placing a plug into a variable sleeve and then into a
dial. The variable is read by placing an empty variable sleeve into another dial as demonstrated by the children in
Figure 3.

Figure 3: Two blind children looking at the variable they
have created. The child on the left holds the second

"read" variable to be put in the second loop.

Twisting a dial gives an immediate audio response if a pod is plugged in. Children can rotate through their options
until they find what they are looking for. This liveness was a specific design feature used to mimic the liveness of
ILEs (Tanimoto 1990; Burg, Kuhn, and Parnin 2013). It was derived from our iterative design process that
highlighted the ways children engaged with the world through their hands (Morrison et al. 2018). Pods hold their
state if unplugged and re-plugged into another thread on the Hub.

The sound set of each thread can be changed by selecting it in the software. Torino currently includes midi
instruments as well as samples of natural sounds, e.g. siren. Poems and stories can also be recorded and broken
into sections to work with. With some planning, teachers can add student sounds to the system.

Reviewing Code
Students are expected to read their code physically. They are particularly encouraged to follow their program as
it executes, precisely touching or pointing to each pod as the program progresses. Research has noted that
incorrect mental models can form when there is an inadequate understanding of the 'hidden' processes that are
not directly observable from the program (Sorva 2013). As a result, Torino followed the design construct to provide
a persistent program overview of the program at all times. Combined with the physicality of the program, this
design approach encourages computational learning through planning and prediction (algorithmic design (Waite
et al. 2018)), and by following program execution (tracing and debugging (Lister et al. 2004)). Physical program
following has the added benefit of supporting shared attention between learners and can assist in debugging as
the learner’s hand is already in position to fix a bug when spotted.

Figure 4: A picture of the individual components in the Torino set, including 105 plastic parts, 48
circuit boards, and three custom cable designs.

As students get ready to transition from Torino to a text-based language, they can listen to their code by pressing
simultaneously the play and stop button on the Hub. Those with vision can view their code in software in an
appropriate visual medium. We found teachers and adults often used the visual code (see Figure 2).

Hardware Description
Each pod contains a custom-designed circuit board, a microcontroller and connectors which power connected
pods and enable them to communicate. Messages, including type of pod and current state, are propagated
through the network until they reach the Hub. From these messages a network graph is constructed, where a
node is a pod and the edges are the connections between them. Plugs also contain a custom-circuit board design
attached directly to a connector that can connect through the dials to the pod circuit board. The processing is
done on a linked device, e.g. tablet.

Design for Manufacturer
A substantial part of the design iteration focused on capturing the design traits of the first prototype (see Morrison
et al. 2018) in a form that was manufacturable at scale. Two key changes included a change to a single configurable
circuit-board for all pods and a change to a single interaction mode of dials. As a result, all pods had the same
basic shape (and base shell) and are tactually distinguishable by number and placement of dials as well as
differently shaped upper shells. Nonetheless, the final kit includes: 45 injection-moulded part designs, 5 circuit
board designs assembled in 25 different configurations; and 3 custom cable designs. The final kit has 105 individual
plastic parts and 48 circuit boards. See Figure 4.

3.2 Scheme of Work
A scheme of work was developed to support non-specialist teachers using Torino. It was our assumption that
Torino would be used by QTVIs, teaching assistants, and parents. We expected none of these people to have
programmed previously. The scheme was developed by a researcher in computer science education with
substantial classroom experience. Topics cover the learning goals of the UK Curricula for children ages 7 – 11
(Department for Education 2013). Learners are expected to “design, write and debug programs that accomplish
specific goals” and solve problems through decomposition. They are expected to do this by using: sequence,
selection, repetition, variables, and inputs and outputs; and to use logic to detect and correct errors in algorithms
and programs.

The scheme of work that we developed contains 12 topics broken into two modules as well as five unplugged
activities. The first module covers: sequences, parameters, threads, debugging, loops, loops with sequences, and

Figure 5: (left) Set as provided to teachers includes Torino kit and pre-paired tablet; (right) example from the teacher's guide which
includes differentiated outcomes, activities, prompt questions in green, and a pictorial description of the answer to the challenge.

problem decomposition. The second module contains: constants,
selection, variables, counters, and nested loops. Unplugged topics
include: understanding computing careers, binary numbers, and
networks. Each topic is presented as an interactive learning resource
that can be worked through independently by older learners or
presented to the learner by the teacher. It begins with new
vocabulary (e.g. debug) followed by a series of exercises. A use-
modify-create strategy was utilized to introduce concepts (Lee et al.
2011). Code cards with pseudocode are given to learners to create
with pods and then modify. Each topic finishes with one or more
challenges. Challenges can be complete programs that the learner
must listen to and recreate or open-ended instructions to inspire
creative programming.

There is an accompanying comprehensive, 100+ page Teachers’
Guide shown in Figure 5(right). It includes differentiated outcomes,
activities, prompt questions in green, and a pictorial description of
the answer to the challenge. We specifically encourage teachers to
ask questions to stimulate thinking, e.g. “How many commands are
in the program that you just listened to?” We emphasize planning
(algorithm design), predicting program output, and iterative
debugging. We also stressed use of appropriate language (Grover,
Cooper, and Pea 2014).

3.3 Set Provision
Each set included a Torino kit and tablet as shown in Figure 5 (left). Sets were prepared to ensure the out-of-the-
box experience was not frustrating for teachers: the tablet and Torino Hub were pre-paired through Bluetooth;
the software was pinned to the task bar; and the learning resources pre-loaded and pinned to the task bar of the
tablet. Internet in the educational setting was not required. Teachers also received a Frequently Asked Questions
(FAQ) document that highlighted available accessibility features. A teachers’ email list was available, and the
researchers answered questions sent to the project alias. Weekly top tips were also provided to encourage the
teacher’s thinking.

Training was provided to all participant teachers. Those with more than one learner were trained individually,
mainly in person, although some remotely. Those with a single learner were trained through group workshops in
London and Manchester, attending both a kick-off and closing workshop. Each teacher was assigned a mentor
who was a blind or low vision person working in the computing industry. Teachers were asked to carry out a
minimum of 8 hours of instruction for each student over the period of a school term. No specification was given
about the format of the sessions as we assumed educators would need to fit within the constraints of a range of
educational settings. We encouraged teachers to have students with mixed visual abilities work as pair
programmers (Sentance and Csizmadia 2016).

Figure 6: Map of participating educational
settings.

4 STUDY DESIGN
The Torino Learning Environment aims to enable learning for children with a range of abilities supported by non-
specialist teachers in varied educational settings. From the literature we identified: (1) limited uptake of novel
technologies at scale for children with mixed visual abilities (Bouck 2016; Zhou et al. 2011); and (2) challenges of
up-skilling non-specialist teachers at scale (Sentance and Waite 2018). To judge whether we successfully
addressed these issues, we ran a large scale evaluation of the Torino Learning Environment with 30 teachers
supporting 75 children and across 24 localities in the UK for 3 months illustrated in Figure 6.

We ask the following research questions:

• Were teachers invested in and able to mediate learning with the Torino Learning Environment?
• Did students learn using the Torino Learning Environment?
• What design features of the Torino Learning Environment enabled non-specialist teachers to facilitate learning?

4.1 Data Collection
We designed a mixed-method study that captured different angles of student learning. In our study design, we
were sensitive to the following key characteristics of our setting:

• students are diverse in their abilities, so we cannot expect a single learning end-point for all students;
• teachers are non-specialists and busy;
• data collection by researchers (e.g. video or skilled assessment) is restricted due to logistics of scale and school entry

by non-teachers.

The data set includes a combination of semi-structured questionnaires, open-ended diary entries, and technology
use logs. These different data sources enable data triangulation of learning while meeting the above criteria. This
approach addresses the lack of an appropriate summative measure of computational learning that could be used
without direct researcher supervision by focusing on teacher reported learning. It also recognizes that given the
diversity of students and a lack of a learning end-point, teachers are best placed to articulate their students’
learning. We report data from three research instruments as relevant to the above research questions: Learner
pre/post questionnaires, teacher questionnaire, and teacher diaries. We do not include technology use logs as we
found looking at decontextualized use, given multiple users of the system, told us little about student learning.

Learner Pre/Post Questionnaire
A learner questionnaire was given pre and post Torino usage to understand learner engagement and motivation.
It consisted of 8 and 12 questions respectively with a mix of Likert scale and free response questions drawn from
a variety of sources. We report here three pre/post questions measuring change in motivational construct (self-
efficacy (Kasanen, Raty, and Eklund 2009), reported interest, and perceived future usefulness). Three post only
questions are intended to measure engagement with the Torino Learning Environment (excitement, perceived
importance, and frequency of thought) taken from a validated questionnaire to measure engagement with
computing for school students (DeLyser, Mascio, and Finkel 2016).

The self-efficacy question asks learners to give themselves one to five stars. All others are discrete Likert scales
taken In line with typical Likert scale formats, “1” equates to strongly disagree and “5” to strongly agree. However,
the wording is adjusted for each question. For the question, “How useful do you think coding / programming will
be to you in the future?” students can tick the box for: Not at all useful, slightly useful, somewhat useful, quite
useful, and extremely useful. Materials were created to be as accessible as possible either through enlarged text

or through a screen reader. However, it is not uncommon for teaching assistants to read out and fill-in paper
documents for learners who are braillists.

Teacher Post Questionnaire
A teacher questionnaire was given post Torino Learning Environment usage, intended to capture a quantitative
snapshot of its benefit. It included five Likert scale questions and a section for free response comments. Questions
included desired future use as well as probed the challenges around understanding coding concepts or using the
scheme of work. Teachers were instructed to answer each statement on a scale from 1 to 5 (1 = disagree strongly
and 5 = agree strongly).

Teacher Diary
The teacher diary provided a structured way for teachers to reflect on the learning that was, or was not, taking
place with the Torino Learning Environment. Teachers were asked to focus on three areas: 1) aims and whether
they were achieved; 2) engagement and disengagement; and 3) logistics of teaching sessions, including
adaptations made. Diaries were requested after the 4th and 8th lesson. These diaries were deliberately designed
as more open-ended inquiries, specifically intended to help us understand what kind of learning took place
without specifying targets.

4.2 Participants
Participants were recruited to use the Torino Learning Environment through an online blog post and a demo booth
at a UK-wide conference for QTVIs. Teachers (including parents) could either apply to support a number of children
(e.g. across a Local Authority) or a single child. Torino sets were allocated to all those who applied and fit the
criteria for age and location.

Qualitative Data: The qualitative data in the paper is drawn from 30 teachers supporting 75 students across 24
localities who provided at least one teacher diary. Sixteen of these teachers were QTVIs or teaching assistants, six
were parents, five were IT or resource coordinators, and three were specialist IT teachers. Sites were spread across
the UK from Cornwall in the southwest to Edinburgh in the northeast, spanning all social demographic levels. We
included all data received to ensure we captured any negative views that may have stopped participation or data
submission.

Quantitative data: Quantitative data was included from 59 learners. Given a stronger need for completeness to
interpret the results, we only included learners if both pre and post questionnaires were returned and the learner
had engaged in the minimum 8 hours of use. The demographics of the quantitative data is shown in Table 1. A
wide range of visual abilities were covered with about a third having an additional disability. There was a skew of
boys to girls. Survey data was returned from 22 teachers.

Attrition: A total of 112 learners were originally allocated 50 sets. Attrition mainly came from two large sites
requesting large numbers of sets and then dropping out before sets were received (20 learners). Another large
center (8 learners) lost their IT coordinator and therefore did not have capacity to submit research data even
though the sets were used. The remaining attrition was a mix of changes to school setting (2 learners), health
deterioration (3 learners), or inability to attend training (4 learners).

4.3 Data Analysis
The data of the learner and teacher questionnaires was not normally distributed. Thus, a Wilcoxon Signed rank-
test is used to compare pre and post data to understand changes to motivational construct. Descriptive statistics
are used to present post-only engagement data. Mann-Witney U tests are used to consider significant differences

Table 1: Participants for quantitative data by gender, vision level, additional disability, and educational setting

Gender Vision Level Additional Disability Educational Setting
Female 28.8% (17) Blind 35.6% (21) None 67.8% (40) Mainstream 57.6% (34)
Male 62.7% (37) Blind (Residual Vision) 28.8% (17) Learning 11.9% (7) Other 33.9% (20)
Unknown 8.5% (5) Partial Sight 27.1% (16) Physical 6.8% (4) Unknown 8.5% (5)
 Unknown 8.5% (5) Other 5.1% (3)
 Unknown 8.5% (5)

across sub-group types: gender, vision level, additional disability, and type of educational setting. Descriptive
statistics are also used to report the teacher questionnaire data. In all cases, median values are presented because
the data is not normally distributed.

Thematic analysis was used with the teacher diaries (Braun and Clarke 2006). As responses were highly varied,
some answering the questions and others reflective of the teacher’s interest, two researchers individually
identified episodes of learning and reflections on teachers’ experiences. These were then cross-checked and any
differences discussed and resolved. Learning episodes were then thematically group using Brennan and Resnick’s
framework of computational learning (Brennan and Resnick 2012): 1) Computational Concepts (e.g sequences,
iteration, loops, selection, variables); Computational Practices (incremental & iterative, testing and debugging,
problem decomposition); 3) Computational Perspectives (expressing themselves with computation, connecting
with others through computation, questioning the world around). Further themes were drawn out around two
key design features of Torino: persistent program overview and liveness (Morrison et al. 2018).

5 RESULTS
The majority of teachers reported using the Torino Learning Environment weekly for 45-75 minutes, scheduled
when convenient rather than in conjunction with existing computing lessons. Below are two example lessons from
the same teacher. The first is for an able 9 year old girl who is blind with residual vision and the second is for a 7-
year old boy with no vision who may have additional learning needs.

The last session I had with the year 4 pupil was Threading, she was able to create 2 sequences of commands. When asked
what would happen when she ran the program she replied “It will play two at the same time.” However, when she ran the
program thread 1 did not run so she went from play pod to play pod checking their connections. She then ran the program
again and this time both threads played. I introduced the pupil to the pause pod. I then played her the example program
she was able to state that there were two threads, she was also able to say how many commands were used. She then
recreated the program for thread 1. She then tried to recreate the program on thread 2, however, when she ran the
program she noticed that thread 2 was not correct and realized that she had not counted the pause as a command. She
then began to reconnect the pods and ran the program, tracing thread 2 as she listened and made adjustments to fix any
errors. She was then able to run the program successfully. (T5)

His last session – ask him to get out the hub and pods and set up a train of pods to make the ambulance noise he loves.
Then move onto setting up 2 threads and trying to match the sound example of the story with sound effects using the
pause pods. Once achieved, add a bug to one of the threads and ask him to find it and fix it. He then wanted to put bugs
in for me to find with his help. Finish by setting up so he can listen to the ambulances again. Student then puts all the
equipment away with minimal help. (T5)

These two descriptions illustrate the diversity of children’s learning needs that teachers needed to address with
the Torino Learning Environment. With this context, we first consider the experience of teacherss as mediators of
the learning experience. We then look at learning as captured through quantitative measures and teacher reports.

Table 2: Median results of the Teacher Likert-scale Questionnaire with 1 = disagree strongly and 5 = agree strongly. To illustrate the
positive response of teachers, we have included the ideal response in brackets.

Finally, we bring both of these perspectives together to reflect on Torino as a tool designed to support learning.

5.1 Teacher Mediation
We first consider the experiences of educators, asking the question: “Were teachers invested in and able to
mediate learning with the Torino Learning Environment?” This is an important foundation to learning for children.

Teacher Aims
Teachers generally had positive views as illustrated by their rating of the Torino Learning Environment as a good
tool for teaching children who are blind or low vision and their desire to use it again as shown in Table 2. This
aligns with the aims for using Torino that teachers expressed in their diaries. Most teachers wanted to help their
learners understand code, with some framing that particularly as a matter of access. One teacher portrayed the
situation through the following quotation:

For my 2 students to be able to access programming ideas and principles, including problem solving and thinking through
sequences in a logical way. Neither student can use Scratch or similar KS2 programs due to their VI needs so do other work
during these IT whole class sessions or work with a partner who then takes the active role in making any decisions. (T9)

Indeed references to “access” by teachers articulated this as both a need for opportunity to gain the problem-
solving and logical thinking emphasized in computer programming as well as address the social impact on the
students of being excluded from a subject in school. From the survey results presented in Table 2, we can infer
that teachers were satisfied that their aims of accessing and learning were met by the Torino Learning
Environment.

Non-specialist teachers
The challenge of teaching with Torino as a non-specialist also seemed manageable in most cases. The survey
results suggest that the Teachers’ guide was usable but with some room for improvement. The question of
whether computing concepts were difficult to understand had the widest spread of answers as some teachers
found this a real challenge, while others were specialist teachers with existing subject knowledge. Teachers with
a math or science background generally described the material as easy to engage with. A number of teachers
spoke about their own personal teaching journey with Torino as exemplified by the quotations below from a
teacher’s first and second diary entry.

Initially I was slightly apprehensive as I don’t see myself as understanding code. (Diary 1, T8)

Now I am more confident with the equipment and the concepts, I am more aspirational for the students. (Diary 2, T8)

Teachers noted strategies of working together with a colleague (although that too posed challenges for peripatetic
teachers) and allocating extra time to learning the “trickier” aspects. One teacher mentioned that a focus on the
language helped provide a concrete approach to a subject that was unfamiliar. These approaches seemed to give

Question Median Response

I think Torino is a good tool for teaching coding to visually impaired children. 5 (5)

I found some of the computing concepts hard to understand. 2.5 (1)

Teaching with Torino helped me to improve my own computing subject knowledge. 4 (5)

The teachers’ guide was hard to follow. 2 (1)

I would like to use Torino to teach coding in the future. 5 (5)

teachers confidence, yet they require the expectation that time can be allocated to teacher learning. With purpose
and confidence, we can expect the teachers to be positive mediators of the learning experience.

5.2 Learning with Torino
We next report data to answer the question: Did children learn using the Torino Learning Environment? We
consider: 1) engagement; 2) motivation for further pursuit; and 3) teacher-reported learning.

Engagement

Table 3: Results of the post-only questions in the Learner Questionnaire with 1 = negative response and 5 = positive response. To
illustrate the positive response of learners, we have included the ideal response in brackets.

Students reported strong engagement as measured by excitement levels before a Torino session and the
importance of doing well in a Torino session as shown in Table 3. There was a range of responses to how often
learners thought about Torino outside their lessons with a peak around weekly. There was little difference
between sub-groups. Participants in mainstream schools tended to rate their excitement before Torino sessions
and the importance of doing well more highly (Median = 5) compared to participants in other provision (Median
= 4) (U=243, p = 0.048 and U=234 p=.035 respectively). While engagement is a prerequisite for learning and one
of the most common approaches to assessing new technologies for computational learning, motivation to
continue to learn is thought to be more indicative of future learning.

Motivation for Further Pursuit

Table 4: Results of the pre /post questions in the Learner questionnaire with 1 = negative response and 5 = positive response.

Self-efficacy in coding ability grew substantially after exposure to the Torino Learning Environment with a change
in the Median score from 2 to 4 with large effect size, r = -0.730. This comes in the context of learners rating coding
as interesting and personally useful: Median = 4 in both cases. Learners not in mainstream education showed an
increase in interest from 3 to 4 (Median) with a large effect size of r = -0.512 and significance level of p = .022.
These results are shown in Table 4.

Engagement Median Response

How excited are you before you start your Torino sessions? 5 (5)

How important is it to you to do well in your Torino sessions? 5 (5)

When not using Torino, how often do you talk about ideas from your Torino sessions? Never:17

Monthly: 7

Biweekly: 8

Weekly: 23

Daily: 4

Mo�va�on for Further Pursuit Median Response

 Pre Post P-Value

How many stars would you like to give yourself now for your coding / programming ability? 2 4 P<.0001

How Interested are you in coding / programming? 4 4 P=.160

How useful do you think coding / programming will be to you in the future? 4 4 P=.240

Teacher Identified Learning

Computational Concepts

All sites indicated that students had learned a range of computational concepts. This was expressed in a number
of ways. First, teachers described programs that students had created themselves:

In the last Torino session, the two higher-ability learners were creating their own tunes using the piano sounds and making
use of loops, nested loops, pauses and variables. They enjoyed having the freedom to try out what they had learned
previously. (T4)

Second, students demonstrated their knowledge verbally by explaining the utility of a particular piece and giving
an example:

He worked through the tasks and at the end could explain to me what a variable was and an example of how he had used
one. (T20)

Third, students used the correct vocabulary, which many teachers rightly understood as being key to ensure that
learners could interact with other students not using Torino:

When completing activities, the children now often use correct key terms – ‘sequence’, ‘thread’, ‘parameter’ etc. (T10)

While the endpoint of learning varied with the age and ability of the student, all deployment sites reported
learning of concepts and vocabulary across the cohort.

Computational Practices

A majority of teachers mentioned problem-solving as a key area of learning. Some focused on the “automatic”
response learners developed to “work out” or “fix” their programs:

The most noticeable impact on progress has been the development of problem solving skills. During the first handful of
Torino sessions, the children struggled to identify where to start when repeating an example task. Now, they are quick in
identifying roles for each other, tracing and building the sequence of code. (T1)

Other teachers suggested that problem-solving was profound in changing students’ beliefs about how they
approached learning. One pupil “now believes they can ‘ace’ a challenge – even if it requires a bit of debugging
first,” suggesting that confidence has been gained. Another learner has become more patient now that he can
name the process he must follow if something does not work – an experience noted for various students who
showed autistic spectrum condition learning traits.

Problem-solving, although most commonly related to debugging by teachers, also included a range of other
computational learnings. The data provides examples of both decomposition and efficient programming. The
following example describes the latter:

She corrected her program when she realised she didn’t have enough pods to complete what she originally wanted to
do…thought about possible solutions and decided to only have one sound towards the start of the story when the main
character appears…Through trial and error, she worked out where to place the pause pods in both of her threads and was
successful. (T3)

While teachers may have been less aware how these examples connected to computational learning, that several
such examples were posed, illustrates their importance to teachers.

Computational Perspectives

A few teachers explicitly mentioned inclusive learning. In some cases this was a main focus of the teaching and
success was reported in strengthening “collaborative problem-solving skills, listening skills, and solid friendships”.

Other teachers reported students explaining programs and code
cards to friends and family as a way of sharing (and reinforcing)
their learning. Teachers noted the important role of vocabulary in
making this a shared experience with other students.

Stories of Learning

A large number of student specific learning examples were raised
that spoke to the general development of the child rather than
computational learning per se. To give two examples:

Bobby is blind with an additional autism spectrum condition. He
attends a special school. His qualified teacher of the visually impaired
(QTVI) noted that he had uncharacteristically good concentration
when working with Torino and could work for an hour at a time. The
teacher noted that Bobby started “using the debugging process to
solve problems that he encountered (non-torino based) between sessions, showing that this was a good way to help him
develop generalised skills”.

Jeremy is a blind boy, age 10, with a very strong interest in technology and exceptional maths skills. He attends an
independent school with small class sizes, but struggles to engage with the other children due to lack of a good shared
activity. Jeremy found that Torino could be a shared activity with meaning with his sighted classmate that could be
completed without the interference of a teaching assistant.

These extra-curricular benefits can be extremely powerful for these children and are an important part of the
efficacy of the experience.

5.3 Reflections on Design for Learning
We consider how two key design constructs supported non-specialist teachers in enabling the above described
learning.

Persistent Program Overview

Program Following (Tracing)

The most important design construct was to have a persistent overview of the program, an extreme contrast to
programming with assistive technology which requires substantial working memory to contextualize the line of
code seen or heard. The importance of a persistent program overview was found to be particularly useful in
activities of problem-solving and debugging. It was a consistent theme across teacher diaries, in which several
teachers made explicit references by speaking about students’ abilities to follow or trace program execution:

I should mention that we made good use of the tip relating to ‘tracing’ the programme. For some students this is really
important and aids their understanding. The students felt it and described it. (T18)

Others mentioned it as part of the learning process, such as hand-over-hand joint learning, something commonly
done with children who are braillists.

Extensibility

Requiring a persistent overview limits the complexity of the programs. However, we were able to build in
extensibility by allowing teachers to change the sound sets. This proved critical for teachers to adapt to the
heterogeneity of their students’ abilities. For example, one school focused on “creating and debugging lyric based
songs or stories” as it was motivating. Another parent created many activities with loops for her child. A teaching

Figure 7: Tactile representation of code created by a
teacher to support transitioning to text-based code.

assistant created simpler programs for her student, making them herself and recording them on the mobile phone.
She noted that this was a very successful teaching approach for her student, but required accommodating her
mobile phone in lessons which was distracting.

Seeing the bigger picture

Some teachers found it difficult to help their learners relate the coding they did with Torino to their other
experiences with technology:

The greatest challenge to the aim of developing the children’s understanding of computer coding is that some of the group
still struggle to link the activities they are completing to how computer code works in the ‘real world’. (T12)

Torino’s design supports learners in linking pods to lines of code by reading out or viewing the code. This feature
was missed by many teachers as it was not immediately apparent (despite two mentions in the top tips). Some
teachers created their own materials to support this connection as shown in Figure 7. Notwithstanding the
creativity of teachers, the difficulty of relating code to computers is a challenge for any non-specialist teacher.

It is indicative of the more general challenge of understanding the specific, desired learning outcomes. We saw
that teachers struggled to determine appropriate expectations for individual students. One teacher, for example,
was disappointed when a blind child age 7 (likely with additional learning needs) could only create programs of 3
pods long. This was put across as a failure of system and student, rather than a potential very valuable learning
for a student with a very weak sense of sequence (very common in young blind children). Supporting
differentiation of learning more explicitly could give teachers more confidence.

Liveness
The liveness, or immediacy of Torino responding as soon as manipulated, was consistently mentioned as key to
engagement. This is eloquently captured by one of the specialist IT teachers at a school for the blind with a deep
knowledge of accessible programming:

Currently entry level environments such as Scratch are either inaccessible to my students or provide very dry feedback i.e.
text based output that is then read using a screen reader. The same output could easily be achieved by writing in a text
editor. The perceived relevance of programming can be lost because of this. One of the advantages of a product such as
Torino is that it provides immediate feedback to students from the very first plugging in of a ‘play pod’. The physical nature
of the device removes some of the abstraction of creating and running a programme using an IDE. (T17)

The immediacy of feedback also encouraged free experimentation:
Disengagement looks like randomly connecting pods midsession and then questioning what that means or does; an
excellent way of learning but it sometimes means that we have to step ahead a few steps and then pull them back again.
(T8)

Iterative experimentation is often encouraged in computational learning (Brennan and Resnick 2012), but it can
make it difficult for non-specialist teachers to support learning as they may not have “the answers” to student
questions. In contrast, the majority of teachers did feel confident adjusting tasks or the pace of learning to suit
individual needs.

Inclusive Learning

Some teachers felt that the liveness was so important that they were disappointed when students had to work
together:

I haven’t been aware of any disengagement. The only issues have been around turn taking because of not having access
to an individual system.

Teaching students separately does not take advantage of the collaborative learning possible with Torino (Thieme
et al. 2017). In contrast, a minority of teachers centered their teaching around inclusive learning. One teacher, for
example, focused explicitly on Torino as a mechanism for shared interaction between four children from different
schools:

Joint story creation exercise – each pupil was given a real life cuddly toy which they had to describe to their peers. These
then became the characters in a [dynamic story] that the pupils created [and coded] thus encouraging the use of descriptive
language and developing their listening skills. (T9)

The same teacher commented at the close of the study: “Torino has provided an equal playing field for the pupils
to be able to learn the skills, concepts and language required to progress through the scheme together.”

6 DISCUSSION
This paper reports a successful large-scale evaluation of a physical programming language for teaching
computational learning to children ages 7 – 11 with mixed visual abilities. Over a period of three months, 75
children and 30 teachers worked through the scheme of work within the Torino Learning Environment. Non-
specialist teachers were able to adaptively support the learning of children as illustrated by the range of data
collected: high levels of student-reported engagement and motivation to continue study as well as consistent
teacher reported learning.

This was achieved using two key design features of the language: its persistent program overview and liveness.
The physical persistent representation of the code enabled teachers to support students in demonstrating their
understanding of program execution by physically following their program, while the extensibility of the software
allowed teachers to quickly adapt content to support engagement. The liveness generally encouraged
engagement, but also raised challenges for non-specialist teachers to manage unexpected questions and
distractions (e.g. phone).

Completing a large-scale study of an educational technology that aimed to: 1) assess learning with a novel
technology; 2) work with non-specialist teachers; and 3) create an inclusive learning experience, is not without
challenges and trade-offs. We reflect on these below.

6.1 Assessing Learning
As a result, in this study we relied heavily on teacher-reported learning, requiring non-specialists to assess
computational learning. Our data demonstrated that teachers had the intuition to assess learning using the
materials provided (e.g. quizzing on vocabulary). However, the heterogeneity of their reports suggests that
teachers were uncertain about what constituted computational learning. This impacted reported learning in a
variety of ways. Some teachers only reported programming constructs learned, missing the broader aspects of
computational practices and perspectives. Others missed student appropriate learning that we surmised from
reported activities as it was more basic than teachers may have expected. Our findings suggest that it is important
to scaffold teacher’s understanding of potential learning outcomes throughout explicit frameworks.

In retrospect, we needed to do more to scaffold teachers understanding of computational learning for assessment
purposes. Specifically, we could build on the approach of program explanation (Grover, Cooper, and Pea 2014)
and the physicality of the language. Teachers could assess learning by asking students to physically follow their
program during execution and then repeat with an explanation of the program. This could be supported with a
number of teacher-specific tools: an auto-generated explanation of the code to judge correctness and an easy
mechanism to share student code and explanations with expert teachers to support upskilling. Finally, a

framework of targeted skills is needed to ensure teachers include a broad range of learnings and differentiate
appropriate levels of learning for individual children.

An important, and unexpected, result of open-ended teacher diaries was frequent reporting of learning that
focused on the whole child rather than just computational learning. Teachers described the development of joint
working skills or sustained attention. Had we used a summative assessment or had a very structured assessment
protocol, we might have missed the powerful extra-curricular learning experiences that students had. These may
be particularly important to children with disabilities who might have had developmental impact or limited
participation in non-academic spheres. We suggest that researchers invite and value the reporting of whole-child
learning.

6.2 Working with Non-specialist Teachers
Teachers, despite being non-specialists, showed substantial ingenuity in adapting Torino to support the
motivation and learning of their students. Many created their own sound sets based on students’ interests and
abilities as well as own program challenges. This willingness to make and adapt by QTVIs has been highlighted as
a “maker culture” [4]. More could be done to support this making. For example, the Torino software could enable
the creation and sharing of new challenges. Our experience suggests that teachers gained a sense of ownership
of the material when actively engaged in adapting the scheme of work, which further helped build confidence.

In contrast, we also saw evidence of many teachers lacking confidence to deviate from the structure of the
curriculum, allowing learning through iterative exploration. It may be that non-specialist teachers are not
confident in how they could achieve learning outcomes without structure; or perhaps they find answering student
questions challenging. We found the three teacher personas articulated in (Sentance et al. 2017) matched our
observations: Inspirers created open-ended resources for students and shared with the wider community;
providers created structured resources and focused on learning outcomes; consumers used existing resources and
focused on engagement rather than learning. These provide a starting point to consider the design of teacher
tools to support learning and assessment, encouraging teachers to develop from consumers to inspirers.

6.3 Create Inclusive Learning Experiences
The Torino Learning Environment was designed to enable inclusive learning experiences. We saw several examples
in which teachers took this to heart, bringing multiple children with mixed visual abilities together to learn on a
“level playing field,” or supporting friendship between a blind and sighted child. Yet, many teachers rejected the
idea of having children work together, seeing it as difficult and a practical annoyance. Despite aligning to an
educational vision of inclusion, during the evaluation we had to respect existing practices of teaching non-
accessible subjects one-to-one rather than inclusively in the classroom (Metatla, Serrano, et al. 2018). Cultural
change takes time and cannot be achieved through the deployment of technology alone (Wing 2009). Technology
can be designed, however, to encourage teacher evangelists to share their practices, a first step in transferring
ownership of the technology from the research team to the teacher community for long-term viability (Taylor et
al. 2013).

6.4 Limitations
Very few teachers actively commented on the design of Torino and its link to learning. While this is not surprising,
as teachers are not researchers, it does make it hard to relate learning to aspects of the design. It would have
been helpful to have had video data of students using Torino as done by (Lechelt et al. 2018; Wyeth 2008).
However, this was impractical given the scale of this deployment. We had 24 local authorities (and even more

schools) spread out across the UK. This was further moderated by constrained access to schools, since our
relationship was with a peripatetic teacher rather than a school. Negotiating access or video opportunities with
so many parties was entirely impractical and could have reduced willingness to participate in the research. We
felt that relying on video analysis of a subset of opportunistically sampled students that we could get access to,
given the extreme variation of age, visual, and cognitive abilities, may have led us to draw too heavily on data not
representative of the larger cohort. As a result, what we can say about the relationship between learning and
design is somewhat constrained.

6.5 Points of Reflection
Below are key points of reflection that may provide useful guidance to future studies of inclusive learning
technologies:

• Consider whether a single learning endpoint is appropriate;
• Scaffold teacher’s understanding of potential learning outcomes throughout appropriate frameworks;
• Provide strategies and technology for teachers to share student work with others for support;
• Invite and value the reporting of whole-child learning;
• Identify strategies that balance open-ended learning assignments and structured resources;
• Be prepared to support existing as well as new practices;
• Embed tools for community support to encourage culture shift and community ownership.

7 CONCLUSION
The technologies that we design play a mediating role in our interactions with the world (Verbeek 2015). If we are
to achieve an inclusive learning culture, we need to provide tools that embed this philosophy in the design and
help transform existing practices. Careful design can go beyond an engaging experience to support non-specialist
teachers to co-produce learning and eventually take ownership of the technology.

8 ACKNOWLEDGEMENTS
We would like to acknowledge the teachers and learners who took part in the Beta Trial.

9 REFERENCES

Bach, Stephen, Ian Kessler, and Paul Heron. 2004. “Support Roles and Changing Jobs Boundaries in the Public Services : The Case of Teaching
Assistants in British Primary Schools.” In Proceedings of the 22nd Annual International Labour Press Conference., 5–7.

Baker, Catherine M., Lauren R. Milne, and Richard E. Ladner. 2015. “Structjumper: A Tool to Help Blind Programmers Navigate and
Understand the Structure of Code.” In Proceedings of the 2015 CHI Conference on Human Factors in Computing Systems, 3043–52.

Bouck, Emily C. 2016. “A National Snapshot of Assistive Technology for Students with Disabilities.” Journal of Special Education Technology
31 (2): 4–13.

Braun, Virginia, and Victoria Clarke. 2006. “Using Thematic Analysis in Psychology.” Qualitative Research in Psychology 3 (2): 77–101.
Brennan, Karen, and Mitchel Resnick. 2012. “New Frameworks for Studying and Assessing the Development of Computational Thinking.”

In Proceedings of the 2012 Annual Meeting of the American Educational Research Association, 25.
Brule, Emeline, Gilles Bailly, Anke Brock, Frédéric Valentin, Grégoire Denis, and Christophe Jouffrais. 2016. “MapSense: Multi-Sensory

Interactive Maps for Children Living with Visual Impairments.” In Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems, 445–57.

Burg, Brian, Adrian Kuhn, and Chris Parnin. 2013. “1st International Workshop on Live Programming (LIVE 2013).” In Proceeding of the 2013
ICSE International Conference on Software Engineering, 1529–30.

Burgstahler, Sheryl E., and Richard E. Ladner. 2007. “Increasing the Participation of People with Disabilities in Computing Fields.” Computer
40 (5): 94–97.

Cooper, Stephen, Lance C. Pérez, and Daphne Rainey. 2010. “K--12 Computational Learning.” Communications of the ACM 53 (11): 27–29.
Cullen, Clare, and Oussama Metatla. 2018. “Multisensory Storytelling: A Co-Design Study with Children with Mixed Visual Abilities.” In

Proceedings of the 2018 IDC Conference on Interaction Design and Children, 557–62.
DeLyser, Leigh Ann, Bryan Mascio, and Kelsey Finkel. 2016. “Introducing Student Assessments with Evidence of Validity for NYC’s CS4All.”

In Proceedings of the 2016 WiPSCE Workshop in Primary and Secondary Computing Education, 17–26.
Department for Education. 2013. “Computing Programmes of Study : Key Stages 1 and 2 National Curriculum in England.”

http://www.computingatschool.org.uk/data/uploads/primary_national_curriculum_-_computing.pdf.
Duncan, Caitlin, Tim Bell, and Steve Tanimoto. 2014. “Should Your 8-Year-Old Learn Coding?” In Proceedings of the 2014 WiPSCE Workshop

on Primary and Secondary Computing Education., 60–69.
Eccles, Jacquelynne, and Allan Wigfield. 2002. “Motivational Beliefs, Values, and Goals.” Annual Review of Psychology 53 (1): 109–32.
Giordano, Daniela, Francesco Maiorana, Andrew Paul Csizmadia, Simon Marsden, Charles Riedesel, Shitanshu Mishra, and Lina Vinikienė.

2015. “New Horizons in the Assessment of Computer Science at School and beyond: Leveraging on the Viva Platform.” In Proceedings
of the 2015 ITiCSE on Working Group Reports, 117–47.

Gray, Colette. 2009. “A Qualitatively Different Experience: Mainstreaming Pupils with a Visual Impairment in Northern Ireland.” Euro. J.
Special Needs Education 24 (2): 169–182.

Grover, Shuchi, Stephen Cooper, and Roy Pea. 2014. “Assessing Computational Learning in K-12.” In In Proceedings of the 2014 Conference
on Innovation & Technology in Computer Science Education, 57–62.

Hadwen-Bennett, Alex, Sue Sentance, and Cecily Morrison. 2018. “Making Programming Accessible to Learners with Visual Impairments: A
Literature Review.” International Journal of Computer Science Education in Schools, 2 (2).

Horn, Michael S., and Robert J. K. Jacob. 2007a. “Designing Tangible Programming Languages for Classroom Use.” In Proceedings of the
2007 TEI Conference on Tangible and Embedded Interaction, 159–162. New York, NY, USA: ACM.

———. 2007b. “Tangible Programming in the Classroom with Tern.” In Proceedings of the 2007 Conference on Human Factors in Computing
Systems Extended Abstracts, 1965–1970. New York, NY, USA: ACM.

Horn, Michael S., Erin Treacy Solovey, and Robert J. K. Jacob. 2008. “Tangible Programming and Informal Science Learning.” In Proceedings
of the 2008 IDC Conference on Interaction Design and Children, 194.

Horn, Michael S, Erin Treacy Solovey, R Jordan Crouser, and Robert J K Jacob. 2009. “Comparing the Use of Tangible and Graphical
Programming Languages for Informal Science Education.” Proceedings of the 2009 CHI Conference on Human Factors in Computing
Systems. 32: 975.

Israel, Maya, Quentin M. Wherfel, Jamie Pearson, Saadeddine Shehab, and Tanya Tapia. 2015. “Empowering K–12 Students with Disabilities
to Learn Computational Thinking and Computer Programming.” TEACHING Exceptional Children 48 (1): 45–53.

Kallia, Maria. 2017. “Assessment in Computer Science Courses: A Literature Review.” https://royalsociety.org/~/media/policy/projects/
Kane, Shaun K, Varsha Koushik, and Annika Muehlbradt. 2018. “Bonk: Accessible Programming for Accessible Audio Games.” In Proceedings

of the 2018 IDC Conference on Interaction Design and Children, 132–42.
Kasanen, Kati, Hannu Raty, and Anna-Leena Eklund. 2009. “Elementary School Pupils’ Evaluations of the Malleability of Their Academic

Abilities.” Educational Research 51 (1): 27–38.
Lechelt, Zuzanna, Yvonne Rogers, Nicolai Marquardt, and Venus Shum. 2016. “ConnectUs: A New Toolkit for Teaching about the Internet

of Things.” In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems Extended Abstracts, 3711–14.
Lechelt, Zuzanna, Yvonne Rogers, Nicola Yuill, Lena Nagl, Grazia Ragone, and Nicolai Marquardt. 2018. “Inclusive Computing in Special

Needs Classrooms: Designing for All.” In In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 517.
Lee, Irene, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson, Joyce Malyn-Smith, and Linda Werner. 2011. “Computational

Thinking for Youth in Practice.” ACM Inroads 2 (1): 32.
Leuders, J. 2016. “Tactile and Acoustic Teaching Material in Inclusive Mathematics Classrooms.” British Journal of Visual Impairment 34 (1):

42–53.
Lister, Raymond, Elizabeth S. Adams, Sue Fitzgerald, William Fone, John Hamer, Morten Lindholm, Robert McCartney, et al. 2004. “A Multi-

National Study of Reading and Tracing Skills in Novice Programmers.” ACM SIGCSE Bulletin 36 (4). ACM: 119–50.
Ludi, Stephanie, Lindsey Ellis, and Scott Jordan. 2014. “An Accessible Robotics Programming Environment for Visually Impaired Users.”

Proceedings of the 2014 ASSETS International Conference on Computers & Accessibility, 237–38.
Maloney, John, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn Eastmond. 2010. “The Scratch Programming Language and

Environment.” Trans. Comput. Educ. 10 (4): 16:1–16:15.
Martinez, Cecilia, Marcos J. Gomez, and Luciana Benotti. 2015. “A Comparison of Preschool and Elementary School Children Learning

Computer Science Concepts through a Multilanguage Robot Programming Platform.” In Proceedings of the 2015 ACM Conference on
Innovation and Technology in Computer Science Education, 159–64.

Metatla, Oussama, and Clare Cullen. 2018. “"Bursting the Assistance Bubble”: Designing Inclusive Technology with Children with Mixed
Visual Abilities.” In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 346.

Metatla, Oussama, Marcos Serrano, Christophe Jouffrais, Anja Thieme, Shaun Kane, Stacy Branham, Émeline Brulé, and Cynthia L. Bennett.
2018. “Inclusive Education Technologies: Emerging Opportunities for People with Visual Impairments.” In Extended Abstracts of the
2018 CHI Conference on Human Factors in Computing Systems, W13.

Metatla, Oussama, Anja Thieme, Emeline Brulé, Cynthia Bennett, Marcos Serrano, and Christophe Jouffrais. 2018. “Toward Classroom
Experiences Inclusive of Students with Disabilities.” Interactions 26 (1): 40–45.

Milne, Lauren R, and Richard E Ladner. 2018. “Blocks4All: Overcoming Accessibility Barriers to Blocks Programming for Children with Visual
Impairments.” In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 69.

Moon, Nathan W., Robert L. Todd, David L. Morton, and Emily Ivey. 2012. “Accommodating Students with Disabilities in Science,
Technology, Engineering, and Mathematics (STEM): Findings from Research and Practice for Middle Grades through University
Education.” http://www.catea.gatech.edu/scitrain/accommodating.pdf.

Morrison, Cecily, Nicolas Villar, A Thieme, Zahra Ashktorab, Eloise Taysom, Oscar Salandin, Daniel Cletheroe, et al. 2018. “Torino: A Tangible
Programming Language Inclusive of Children with Visual Disabilities.” Human Computer Interaction.
https://doi.org/10.1080/07370024.2018.1512413

Peyton-Jones, Simon. 2018. “Project Quantum: Tests Worth Teaching To.”
https://community.computingatschool.org.uk/resources/4382/single

Peyton-Jones, Simon, Simon Humphreys, and Bill Mitchell. 2013. “Computing at School in the UK : From Guerrilla to Gorilla.”
https://www.microsoft.com/en-us/research/publication/computing-at-school-in-the-uk-from-guerrilla-to-gorilla/.

RNIB. 2016. “Children and Young People England RNIB Evidence-Based Review.” https://www.rnib.org.uk/sites/default/files/Eviden
Rogers, Yvonne, Venus Shum, Nic Marquardt, Susan Lechelt, Rose Johnson, Howard Baker, and Matt Davies. 2017. “From the BBC Micro to

Micro: Bit and beyond: A British Innovation.” Interactions 24 (2): 74–77.
Román-González, Marcos, Juan-Carlos Pérez-González, and Carmen Jiménez-Fernández. 2017. “Which Cognitive Abilities Underlie

Computational Thinking? Criterion Validity of the Computational Thinking Test.” Computers in Human Behavior 72: 678–91.
Sentance, Sue, and Andrew Csizmadia. 2016. “Computing in the Curriculum: Challenges and Strategies from a Teacher’s Perspective.”

Education and Information Technologies, 1–27.
Sentance, Sue, and Jane Waite. 2018. “Computing in the Classroom: Tales from the Chalkface.” It-Information Technology 60 (2): 103–12.
Sentance, Sue, Jane Waite, Lucy Yeomans, and Emily MacLeod. 2017. “Teaching with Physical Computing Devices: The BBC Micro: Bit

Initiative.” In Proceedings of the 2017 WiPSCE Workshop on Primary and Secondary Computing Education, 87–96.
Sorva, Juha. 2013. “Notional Machines and Introductory Programming Education.” ACM Transactions of Computing Education 13 (2).
Stefik, Andreas M., Christopher Hundhausen, and Derrick Smith. 2011. “On the Design of an Educational Infrastructure for the Blind and

Visually Impaired in Computer Science.” In Proceedings of the 2011 CSE Technical Symposium on Computer Science Education, 571.
Sullivan, Amanda, Mollie Elkin, and Marina Umaschi Bers. 2015. “KIBO Robot Demo: Engaging Young Children in Programming and

Engineering.” In Proceedings of the 2015 IDC International Conference on Interaction Design and Children, 418–21.
Tanimoto, S. 1990. “VIVA: A Visual Language for Image Processing.” J. Vis. Languages Computing, 127–39.
Taylor, Nick, Keith Cheverst, Peter Wright, and Patrick Olivier. 2013. “Leaving the Wild: Lessons from Community Technology Handovers.”

In Proceedings of the 2013 CHI Conference on Human Factors in Computing Systems.
Thieme, Anja, Cecily Morrison, Nicolas Villar, Martin Grayson, and Siân Lindley. 2017. “Enabling Collaboration in Learning Computer

Programing Inclusive of Children with Vision Impairments.” In Proceedings of the 2017 DIS Conference on Designing Interactive
Systems, 739–52.

UK Parliment. 1981. “The 1981 Education Act.” Http://www.legislation.gov.uk/Ukpga/1981/60/Enacted.
Utting, Ian, Stephen Cooper, Michael Kölling, John Maloney, and Mitchel Resnick. 2010. “Alice, Greenfoot, and Scratch – A Discussion.”

Trans. Comput. Educ. 10 (4): 17:1–17:11.
Verbeek, Peter-Paul. 2015. “Beyond Interaction: A Short Introduction to Mediation Theory.” Interactions 22 (3): 26–31.
Virnes, Marjo, Erkki Sutinen, and Eija Kärnä-Lin. 2008. “How Children’s Individual Needs Challenge the Design of Educational Robotics.” In

Proceedings of the 2008 ICD International Conference on Interaction Design and Children, 274–281.
Waite, Jane, Paul Curzon, William Marsh, Sue Sentance, and Alex Hawden-Bennett. 2018. “Abstraction in Action: K-5 Teachers’ Uses of

Levels of Abstraction, Particularly the Design Level, in Teaching Programming.” International Journal Of Computer Science Education
In Schools.

Wing, Michael. 2009. “On Technology and Cultural Change.” SIGSOFT Softw. Eng. Notes 34 (2): 4.
Wyeth, Peta. 2008. “How Young Children Learn to Program with Sensor, Action, and Logic Blocks.” The Journal of the Learning Sciences 17

(4): 517–50.
Zaman, Bieke, Vero Vanden Abeele, Panos Markopoulos, and Paul Marshall. 2012. “The Evolving Field of Tangible Interaction for Children:

The Challenge of Empirical Validation.” Personal and Ubiquitous Computing 16 (4): 367–78.
Zhou, Li, Amy T. Parker, Derrick W. Smith, and Nora Griffin-Shirley. 2011. “Assistive Technology for Students with Visual Impairments:

Challenges and Needs in Teachers’ Preparation Programs and Practice.” Journal of Visual Impairment & Blindness 105 (4): 197–210.
Zuckerman, Oren, Tina Grotzer, and Kelly Leahy. 2006. “Flow Blocks as a Conceptual Bridge between Understanding the Structure and

Behavior of a Complex Causal System.” In Proceedings of the 2006 International Conference on Learning Sciences, 880–86.
International Society of the Learning Sciences.

