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ABSTRACT
Existing audio search engines use one of two approaches:
matching text-text or audio-audio pairs. In the former, text
queries are matched to semantically similar words in an in-
dex of audio metadata to retrieve corresponding audio clips
or segments, while in the latter, audio signals are directly
used to retrieve acoustically-similar recordings from an audio
database. However, independent treatment of text and audio
has precluded information exchange between the two modali-
ties. This is a problem because similarity in language does not
always imply similarity in acoustics, and vice versa. More-
over, independent modeling can be error prone especially for
ad hoc, user-generated recordings, which are noisy in both au-
dio and their associated textual labels. To overcome this lim-
itation, we propose a framework that learns joint embeddings
from a shared lexico-acoustic space, where vectors from ei-
ther modality can be mapped together and compared directly.
Thus, we improve semantic knowledge and enable the use of
either text or audio queries to search and retrieve audio. Our
results break new ground for a cross-modal audio search en-
gine, and further exploration of lexico-acoustic spaces.

Index Terms— Joint Audio-Text Embedding, Cross
Modal Retrieval, Audio Search Engine, Content-Based Audio
Retrieval, Query by Example, Siamese Neural Network

1. INTRODUCTION

User-generated audio is shared on the web every day. Ex-
amples of these include recordings from digital personal as-
sistants, security cameras, game streams, podcasts and social
media. For emerging applications such as ambient sensing,
video-content analysis and personalized multimedia services,
it is increasingly important to search these recordings and
retrieve audio segments or textual descriptions that describe
acoustic events such as vehicles, nature, animal and human
sounds. Typically, search engines that are used for this pur-
pose utilize text queries to find semantically similar words
in an index of audio metadata, and retrieve the correspond-
ing audio [1, 2]. An alternative approach is content-based
retrieval, where an audio clip is directly used as a query to
match against acoustically similar recordings and retrieve au-
dio [3, 4]. However, neither approach enables direct compar-
ison between text-audio or audio-text pairs, nor learn to map
together similarities of lexical semantics and acoustics.

Fig. 1. Proposed framework enables cross-modal search and
direct comparison of audio and text modalities. Shared latent
space fuses lexical semantics with acoustic similarity.

Cross-modal search and retrieval is an approach that en-
ables matching of text-audio or audio-text pairs, which can
compensate for missing or ambiguous information in either
modality [5]. This approach is useful because user-generated
multimedia content is inherently noisy in both textual and
auditory content. The labels, tags and descriptions are in-
complete, subjective, lacking or wrong. And the inter- and
intra- class acoustics are increasingly diverse. For instance,
the sounds of popcorn popping and a sink filling are similar
to the sounds of fireworks and a bathtub filling, respectively.
Thus, utilizing information from one modality to improve the
retrieval performance of the other is promising. Authors in [6]
were one of the first to tackle this problem at scale. They
pair audio with an associated text label and utilize it as a
query to retrieve audio based on a combined scoring func-
tion. A limitation of this work is that the labels used in the
query must match exactly those in the index. An earlier work
had proposed a more extensible cross-modal approach that
could name new sounds with existing labels or associate la-
bels with existing sounds [7]. However, the hierarchical lan-
guage model used in the paper limited semantic relations and,
according to the authors, scalability. Neither of these meth-
ods find lexico-acoustic spaces in a data-driven way, which
we aim to do in this paper. An overview of our approach is
illustrated in Fig. 1.

From a technical perspective, learning to map text and
audio together can help combine lexical relationships and
acoustic similarities, which is interesting because similarly-
annotated sounds are not always close in both lexical and
acoustic semantics. For instance, textual labels violin plays
and violin crashes both refer to violins, are close in lexical se-
mantics, yet their acoustics are not. This is an intrinsic prob-
lem in audio and text, exacerbated due to the lack of proper
lexicalization of acoustic phenomena [8]. Furthermore, au-



dio labels are highly subjective; a sound may be described
differently depending on the listener. Authors in [7] create a
connection between acoustic-similarity and lexico-semantic
spaces in a many-to-many setup similar to our objective, but
the relations are forced to be hierarchical. This restricts the
ability to generalize or scale. Due to limited related work in
mapping audio and text together, we looked into the computer
vision domain. Similar problems are observed with images
and text, and indeed there has been work to learn joint em-
beddings with these modalities [9, 10]. Drawing inspiration
from these works, we propose to learn joint embeddings of
audio and text; details of which are provided next.

2. METHODOLOGY

In this section, we present the modeling framework and de-
scribe the Siamese neural network (SNN) architecture.

2.1. Cross-Modal Search Framework
We propose a cross-modal search methodology, where a text
or audio query can be used to retrieve audio or text. This is en-
abled by a shared latent space that combines lexical semantics
with acoustic similarity, thus affecting the retrieved results.
The shared latent space is learned in a data-driven way via a
SNN [11]. Such networks have been used in the literature for
audio-audio retrieval of videos [3], audio-audio human-fall
detection [12], audio-image retrieval of videos [13].

2.2. SNN Embeddings and Loss Function
The SNN, shown in Fig. 2, consists of twin networks that have
the same base architecture with shared weights. The weights
are learned simultaneously at every parameter update. Each
base network utilizes an input vector of any one modality –
audio or text. For training, the SNN does not need any explicit
class labels for each modality, but rather, labels are inferred
per pair to be 1 or 0 depending on whether the inputs are from
the same class or not. While the SNN is trained with pairs
of audio and text examples, a similarity metric is computed
for each pair. This metric is utilized by a loss function to en-
force constraints that cause similar pairs to come together and
different pairs to go apart. During the embedding stage, the
trained base networks can utilize either audio or text vectors
as input to produce a joint embedding vector.

The architecture of the base network is a feed-forward
multi-layer perceptron network. It consists of 5 layers: the
input layer of dimensionality 300, which takes either audio or
text feature vectors, 3 dense layers of dimensionality 1024,
512 and 512, respectively, and the output layer of dimension-
ality 1024, which is the dimensionality of the joint embed-
ding. The dense layers utilize a dropout rate of 0.5 and the
ReLU activation function; max(0, x), where x is input to the
function. We trained the SNN for 100 epochs using the Adam
algorithm. We also tuned the hyper-parameters of the SNN
to achieve good performance with the input features that are
described in the next section.

Fig. 2. Architecture of the SNN that is used to learn the shared
space and compute joint embeddings of audio and text.

In the literature, contrastive loss (LCL) with Euclidean
distance (ED) has been a popular loss function for training
SNNs [11, 3]. However, this did not work in our audio-text
setup. The idea behind this loss is that dissimilar points con-
tribute to the training loss only if the similarity between them
is within a margin. After inspecting the embedding from each
twin network, we noticed that their values were very sparse
and with similar non-zero values, which caused the computed
distance to be close to zero even for negative pairs. We, un-
successfully tried tuning the margin value, modifying the ar-
chitecture and adding more epochs. Hence, we proposed the
binary cross entropy loss LBCE with an exponential nega-
tive Euclidean distance (dw). The proposed distance, instead
of having unbounded similarity values, forces the values to
lie between 0 and 1; a higher value implies more similarity.
Therefore, the LBCE with similarity metric dw is defined for
an audio-text pair (ai, ti) as follows:

LBCE = − 1

N

N∑
i

yilog(dw)− (1− yi)log(1− dw)

dw = exp

(
−

√√√√ N∑
i

(ai − ti)2

)
,

where yi represents output samples produced by the SNN.
We tried different combinations of LCL and LBCE with other
similarity metrics such as distances l1 and l2, and their expo-
nential variants, exp(−l1) and exp(−l2), respectively. How-
ever, as shown in Table 1, for our test data set described ahead
in Section 3.1, exp(−l2) yielded the best retrieval perfor-
mance; measured by the mean-average precision at 3 docu-

Table 1. The combination of LCL and l2 did not work
well for our setup. Therefore we employed LBCE and dw.
MAP@3 scores for retrieving audio with joint embeddings.

Similarity (%)
Loss L1 L2 exp(−L1) exp(−L2)
LCL 32.0 15.4 12.9 14.6
LBCE 40.3 44.7 34.0 61.2



ments (MAP@3)]. Thus, we picked it for future experiments.
We also tried different sizes of the input training data, from
100 to 5,000 audio-text pairs and found that 500 yielded the
best trade-off between performance and processing speed to
train the SNN in all our experiments.

3. EXPERIMENTS AND RESULTS
In this section, we evaluate the retrieval performance of the
cross-modal search framework. We also present some quali-
tative results from searching the lexico-acoustic space.

3.1. Dataset
For evaluation of the proposed approach, we employed
dataset from task-2 of the 2018 DCASE challenge [14]
because it comprised both clean recordings and labels that
could be used for retrieval. The dataset included audio clips
from the Freesound library, which were annotated using a
vocabulary based on the Google AudioSet Ontology. The
training and test sets included ∼ 9.5k and ∼ 1.6k recordings,
respectively, which were unequally distributed among 41
classes. The number of recordings per class ranged between
94-300. The duration of the recordings ranged between 0.3-
30 seconds. The text labels comprised one or two words that
described the class. 20% of the training data was used for
validation. All audio recordings in this dataset were available
as uncompressed PCM 16 bit, 44.1 kHz mono audio files.

3.2. Features
We used text features that exhibit linear substructure and sim-
ilarities in a lexico-semantic space. Global vectors for word
representation (GloVe) is one such embedding [15]. We em-
ployed GloVe features produced from a model that was sepa-
rately trained on Wikipedia and the Gigaword corpus. Thus,
we transformed text labels corresponding to each audio clip
in our dataset into a word embedding of 300 dimensions. If
the labels comprised more than one word, we computed the
average GloVe vector. Feature vectors were eventually nor-
malized to have unit magnitude for consistency with similar-
ity metrics in the SNN.

We used two types of audio features: standard Mel-
frequency cepstral coefficients (MFCCs) and state-of-the-art
Walnet features [16, 17]. MFCCs were computed based on
a sliding window of 25 ms and hop sizes of 10 ms. They
included delta and double delta values, resulting in a feature-
dimensionality of 300 per window. We also tried computing
a set of acoustic features of up to 6,500 features [18], but they
achieved lower performance. We averaged the MFCCs across
all windows to produce one feature vector per audio clip. For
the Walnet features, we computed a 128-dimensional logmel-
spectrogram vector and transformed it via a convolutional
neural network (CNN) that was trained separately on the Au-
dioSet data. The network comprised 8 convolutional layers,
resulting in an output feature vector of dimensionality 527.
We used the intermediate outputs from the 8th layer of the
CNN, which had a dimensionality of 1024. Through principal

Fig. 3. Evaluation system used for cross-modal search.

component analysis (PCA), we reduced the dimensionality
of the resulting feature vector to 300, which matched the
text-based features [19]. Features were L2 normalized.

3.3. Classifiers
Our evaluation system is summarized in Fig. 3. For retrieval
experiments on the test data, audio and text features were
processed in two ways: (1) direct retrieval, which formed
the baseline, and (2) embeddings with the SNN followed
by retrieval. To study the retrieval performance, we em-
ployed three classifiers: support-vector machine, multilayer
perceptron and k-nearest neighbor classifier (kNN). The per-
formance was similar across all three classifiers. Thus, we
picked kNN (k=25) because it exhibited an intrinsic sense of
neighborhood and had less parameters to tune.

3.4. Retrieval Performance
We first demonstrate that the baseline is insufficient for cross-
modal retrieval. Recall that in this case, we train the classi-
fiers with audio features (MFCCs, Walnet) and test them with
text features (GloVe), and vice versa. Retrieval performance
is measured in terms of MAP@3, standard in DCASE Task
2 [14], which is the mean of avg. precision scores for each
query, utilizing the first 3 retrieved results [20]. As shown in
Table 2, homologous training and test features yielded good
performance: 56 and 72% for audio MFCCs and Walnet, re-
spectively, and 100% for text GloVe features (100% is ex-
pected because text labels corresponding to different audio

Table 2. Cross modal search is possible with joint embed-
dings, which outperform the baseline features.

Train
Audio (MFCC) Text

Test Baseline Features Features
Audio (MFCC) Features 56.0% 2.4%
Text Features 2.4% 100%

Audio (Walnet) Text
Test Baseline Features Features

Audio (Walnet) Features 72.0% 2.4%
Text Features 2.4% 100%

Audio (MFCC) Text
Test JE JE JE

Audio (MFCC) JE 61.2% 54.7%
Text JE 100% 100%

Audio (Walnet) Text
Test JE JE JE

Audio (Walnet) JE 74.9% 71.3%
Text JE 100% 100%



Fig. 4. Proposed SNN joint embeddings are robust to additive
random Gaussian noise in the text features.

files were the same in training and test data). However, cross-
modal search with opposite feature types during training and
test yielded random performance (2.4% MAP@3).

Next, we show how SNN embeddings enable cross-modal
retrieval. We processed MFCCs or Walnet, and GloVe fea-
tures together to produce joint embeddings (JEs) and normal-
ized them to have unit norm. We then employed the kNN
classifier to study retrieval performance. Based on the re-
sults shown in Table 2, we make the following conclusions.
First, training and testing on audio JEs yielded 61.2 or 74.9%,
which outperformed the baseline. Second, training and test-
ing on text JEs yielded 100%, which is consistent with the
baseline. Third, cross-modal search results are not random;
MAP@3 of 54.7 or 71.3% for training on text JEs and testing
on audio JEs, and 100% for training on audio JEs and testing
on text JEs. Fourth, better audio features (Walnet) improved
performance. Results could be further boosted with a better
tuning of the Walnet network, but this was out of the scope
of this work. Overall performance was better than the CNN
baseline provided by DCASE (70%).

Noise injection. To address the issue of text labels cor-
responding to different audio files being the same in training
and test data, we altered the text labels. There are several
ways to achieve this goal. We chose to add random Gaussian
noise with one or two standard deviations to each of the text
features. We re-trained the SNN on audio (Walnet) and noisy
text features. The retrieval results with this new embedding
are shown in Fig. 4. As expected, the performance degraded
with more noise. Testing with text JEs resulted in a larger
drop of 36-66% MAP@3 because noise in the input features
affected both the training process of the SNN and test JEs.
However, since audio JEs were affected only while training
the SNN, the performance drop was lesser in the cases where
these were used at test time. As part of future work, we hope
to combine audio metadata together with the labels before ex-
tracting GloVe text features, which will represent a more re-
alistic search set up and approach to adding noise.

3.5. Qualitative Results
We inspected the cross-modal retrieval results with some test
examples. We also studied the retrieval performance when us-

ing out-of-vocabulary (OOV) labels and audio recordings. In
this section, we present some qualitative results for the same.

As a first example, we considered the class label gun-
shot, computed its GloVe features, compared them against
GloVe features of the other 40 classes using cosine similar-
ity, and retrieved the following top four labels: gunshot, tear-
ing, applause, cough. Next, we extracted JEs of the same la-
bel, compared the lexico-acoustic similarity against k nearest
neighbors, and retrieved audio corresponding to the follow-
ing four labels: fireworks, gunshot, microwave oven, knock.
Another example was meow, which retrieved with text simi-
larity: meow, fart, cough and with lexico-acoustic similarity:
meow, bark, trumpet. From these results, the main conclusion
is that although both approaches predicted the correct class,
they retrieved different results, which suggests that the shared
space includes knowledge that combines both modalities.

Our framework allows the use of OOV class labels for
querying. For example, we considered the query house,
which is not part of the training data and which has a more
abstract meaning than any label in the training data. With
text and lexico-acoustic similarity, the top five retrieved items
were: drawer, telephone, writing, gunshot, double bass and
meow, cough, finger snapping, laughter, computer keyboard,
respectively. It is interesting to note that both results are
arguably relevant, but are not the same.

In a reverse cross-modal search setup, our framework also
permits the use of OOV audio clips for querying. For in-
stance, we considered the audio query corresponding to thun-
derstorm downloaded from Freesounds 1. When compared
for acoustic similarity against audio features (Walnet) of the
training set, the following four labels were retrieved: fire-
works, applause, tearing, fart. However, with JEs and lexico-
acoustic similarity, the following results were retrieved: fire-
works, cough, drawer open or close, gunshot. Another exam-
ple of audio query was orchestra, which retrieved applause,
cello, acoustic guitar, flute, fireworks, violin, clarinet and vi-
olin, trumpet, saxophone, flute, double bass, clarinet, cello
with acoustic and lexico-acoustic similarities, respectively. It
is important to note that varying the value of k could some-
times affect the number of retrieved items and their order. Fu-
ture work will involve ranking the results from the JEs .

4. CONCLUSIONS
We proposed a cross-modal search framework that enables us
to retrieve audio recordings using either text or audio queries.
It was built on a shared lexico-acoustic space that was learned
in a completely data-driven way. The shared space thus en-
abled us to map together and directly compare state-of-the-
art text and audio features for search and retrieval. Our re-
sults showed robustness against noise in the text labels. We
also demonstrated good retrieval performance with out-of-
vocabulary text or audio queries that were not found in the
training data.

1https://freesound.org
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