
Auto-EM: End-to-end Fuzzy Entity-Matching using
Pre-trained Deep Models and Transfer Learning

Chen Zhao
∗

University of Maryland, College Park

chenz@cs.umd.edu

Yeye He

Microsoft Research, Redmond

yeyehe@microsoft.com

ABSTRACT

Entity matching (EM), also known as entity resolution, fuzzy join,

and record linkage, refers to the process of identifying records corre-

sponding to the same real-world entities from different data sources.

It is an important and long-standing problem in data integration

and data mining. So far progresses have been made mainly in the

form of model improvements, where models with better accuracy

are developed when large amounts of training data is available.

In real-world applications we find that advanced approaches can

often require too many labeled examples that is expensive to obtain,

which has become a key obstacle to wider adoption.

We in this work take a different tack, proposing a transfer-

learning approach to EM, leveraging pre-trained EM models from

large-scale, production knowledge bases (KB). Specifically, for each

entity-type in KB, (e.g., location, organization, people, etc.), we use

rich synonymous names of known entities in the KB as training

data, to pre-train type-detection and EM models for each type, us-

ing a novel hierarchical neural network architecture we develop.

Given a new EM task, with little or no training data, we can ei-

ther fine-tune or directly leverage pre-trained EM models, to build

end-to-end, high-quality EM systems. Experiments on a variety of

real EM tasks suggest that the pre-trained approach is effective and

outperforms existing EM methods.
1
.

ACM Reference Format:

Chen Zhao and Yeye He. 2019. Auto-EM: End-to-end Fuzzy Entity-Matching

using Pre-trained Deep Models and Transfer Learning. In Proceedings of
the 2019 World Wide Web Conference (WWW ’19), May 13–17, 2019, San
Francisco, CA, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.

1145/3308558.3313578

1 INTRODUCTION

Entity matching (EM), also known as entity resolution, fuzzy join,

and record linkage, has numerous important applications such as

database deduplication [22, 59], entity linking [62], knowledge base

enrichment [28, 50], etc. EM has been a long-standing problem in

the datamining and data integration community. Extensive research

has resulted in a long and fruitful line of work (e.g., see surveys

in [27, 29, 44]).

∗
Work done at Microsoft Research.

1
We plan to release the pre-trained EM models, and are working through required

processes to make this happen. Once approved these models will be released on GitHub

at https://github.com/henryzhao5852/AutoEM.

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW ’19, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-6674-8/19/05.

https://doi.org/10.1145/3308558.3313578

Figure 1: Example entity-matching between two tables.

A typical EM task in a relational setting, is to predict which

records from two tables correspond to the same real-world entities.

(EM in a graph setting such as knowledge graphs can be cast in

a similar manner based on connected nodes [50]). Figure 1 shows

an example EM task. Given two tables of customer records with

information such as customer names and addresses, we need to

match records across the two data sources that likely corresponding

to the same person.

In this example, we can intuitively tell that the first two pairs

of records are likely matches despite their differences in string

representations – “Joe White” and “Joseph White” likely refer to

the same entity, so do “CA” and “California”. However minor string

differences are not sufficient to ensure matches. To the contrary,

there are many record pairs that have minor differences but are

clear non-matches. For example, in the last two pairs of records,

“Sam A. Miller” and “Sam B. Miller” are likely not the same person,

so are “Mark Johnson” and “Mary Johnson”.

As we can see, these match/non-match decisions are domain-

specific and quite subtle, which are non-trivial to predict with high

accuracy. Existing EM approaches such as ML-based methods [10,

15, 59, 63], often require a large amount of training data (labeled

match/non-match pairs) for each new EM task, before accurate EM
predictions can be made. It is clearly expensive, and sometimes

impossible, to obtain a large amount of labeled data for each EM
task, which has become a major obstacle to wider adoption of

advanced EM techniques.

Auto-EM in real-world business applications. This study

is motivated by a commercial CRM (customer relationship man-

agement) system, where an aspiration is to allow enterprise cus-

tomers using the CRM system to automatically match their cus-

tomer records across data silos in enterprises (CRM, ERP, marketing,

billing, customer-service, etc.). Such a capability would allows these

enterprises to have a unified view of their customers, bringing sub-

stantial business values through personalized services (e.g., product

recommendation, churn prediction, etc.).

We would like to highlight that a key requirement of EM in

this application is that the feature should be “self-service” and

automatic – namely it should work accurately out-of-box, with
little or no training data specific to each enterprise (because CRM
users are unlikely to be EM experts). Note that automatic EM for

customer-linking is a vision shared by leading vendors, as evidenced

https://doi.org/10.1145/3308558.3313578
https://doi.org/10.1145/3308558.3313578
https://doi.org/10.1145/3308558.3313578

by features such as Salesforce Customer 360 [7] and Microsoft

Dynamics Customer Insight [6].

The challenge, however, is that customer records in enterprises

are often scattered across non-standard database tables or CSV

files (e.g., Figure 1), where the schema of these tables/files and the

semantics of attributes can be heterogeneous and often not known

beforehand. In such settings, traditionally EM approaches in the

literature often require a large amount of labeled training data for

each EM task [64] (in this case each pair of customer tables), making

existing approaches unable to meet the “auto-EM” requirements.

We would like to emphasize that auto-EM is applicable not only

to verticals like CRM, but also an important operator in general-

purpose data platforms (examples of which include the Fuzzy-

Lookup feature in Excel [4], the record-deduplication feature in

Azure Machine Learning Data Prep [2], and the FindMatches ML

Transform in AWS Lake Formation [1]). Automating EM is increas-

ingly important especially in the context of self-service data prepa-
ration [8], and is similar in spirit to efforts such as [35, 38, 74].

Auto-EM using pre-trained EM models. Motivated by the

need to build automated, end-to-end EM solutions, we in this work

propose a very different approach. We argue that one does not

need to re-train EM models from scratch for each new EM task;

instead we propose a novel transfer-learning approach to EM using

pre-trained models.

Specifically, our insight is that while each EM task may be differ-

ent in its own ways (e.g., tables may have different attributes, and

attributes have different importance, etc.), the types of attributes

involved are often drawn from a set of common attributes (e.g.,

person-names, addresses, organizations, product-names, etc.). We

observe that for each such attribute, the decision of match/non-

match at the attribute-level can often be pre-trained and determined

independent of the overall table-level EM task. For instance, in

Figure 1, for the person-name type, it is rather unambiguous that

(“Joe White”, “Joseph White”) should match, while (“Sam A. Miller”,

“Sam B. Miller”) and (“Mark Johnson”, “Mary Johnson”) should not,

irrespective of the overall table-level EM task involved.

In addition, we observe that training data for these attribute-level

match/non-match decisions are readily available in today’s KBs, in

the form of “synonymous/alias names” that have been curated for a

large variety of entities (e.g., “Bill Gates” is also known as “William

Gates” and “William H. Gates” in KBs). We leverage data harvested

fromKBs to pre-train accurate attribute-level EMmodels for a variety
of common attribute types, and we develop a novel hierarchical

deep model architecture for this task that better captures complex

structures in name variations for different types.

Using pre-trained attribute-level EM models, simple table-level
EM tasks (e.g., ones involving only namematches with no additional

attributes) can already be automated with little human intervention

(and without new training data).

For complex table-level EM task involving multiple relevant at-

tributes (e.g., both name and address), the contribution/importance

of individual attribute-level EM can vary. For instance in Figure 1,

if the address-field of one table is “billing address” and the other

is “mailing address”, then a non-match on that attribute is not as

critical for the table-level decision. In this work, we show that using

pre-trained attribute-level EM models, and limited training data for

each specific table-level EM task, we can quickly converge to accu-

rate table-level EM decisions, by only needing to learn the relative

importance of attributes for pre-trained types (for attribute types

that are not pre-trained, representations from unified pre-trained

models can be fine-tuned via transfer-learning).

We note that our pre-trained approach to attribute-specific EM

coincides with a recent trend of pre-training in NLP (e.g., BERT [25]

and ELMo [56]), which are shown to achieve impressive improve-

ments in a variety of NLP tasks.

We complete the auto-EM architecture using automated attribute

type detection in tables, so that this can be truly hands-off for users,

who would not need to find attribute correspondence between

tables, select relevant attribute-level EM models, and combine them

for a final table-level decision (Section 2).

Contributions.We make the following contributions.

•We propose an end-to-end auto-EM architecture, that leverages

large-scale KB data. We pre-train models for both attribute type-

detection and attribute-level EM, so that it can quickly converge to

an aggregate table-level EM decision with little or no training data.

• We develop a new hierarchical deep model to pre-train EM for

common types of attributes. This model leverages both character-

level and word-level information to better capture complex struc-

tures of name variations in different attributes.

• We perform extensive experiments using diverse KB and real

table data. Results show Auto-EM produces comparable or better

quality compared to state-of-the-art over diverse EM tasks.

2 SYSTEM ARCHITECTURE

The EM problem we consider is simple to state: given two tables

T1 and T2, with n andm records, respectively, determine for each

record in T1, if it matches with any record in T2.
Figure 2 shows the end-to-end architecture of the proposed sys-

tem. At a high level, the online EM prediction system has three

main components: (1) Attribute-type detection; (2) Attribute-level

EM; and (3) Table-level EM. We discuss each component in turn.

The first component is attribute-type detection, which takes a

table as input, and predicts if each attribute/column in the table

corresponds to a known KB type T . In the table of Figure 1, for

instance, the first column is predicted as the KB type person, the
second column as city, etc. These type-detection models are pre-

trained offline using rich KB data from a commercial search engine.

Specifically, KBs used by Google [5], Microsoft [31] and others have

millions of entities for hundreds of common type such as person,
city, organization, book, movie, etc. We leverage these (entity→

type) data to train deep models to detect table column types. This

component will be described in Section 4.

The second component is attribute-level EM models and is the

central part of our system. It takes as input two entity values (e.g.,

“Dave M. Smith” and “David Smith” in Figure 1), and produces a

score indicating the likelihood of match for the two input. We use

two types of attribute-level EM models that are pre-trained offline:

(1) Type-specific models: For each known KB typeT (e.g. person), we
pre-train a separate model to predict match/non-match for values

in T . We use synonymous entity names of type T in KB (e.g., “Bill

Gates” is also known as “William Gates”, “William Henry Gates”

and “William H. Gates”, etc.) as training data, and develop hierar-

chical deep models to learn name variations specific to each type T

Figure 2: System architecture of end-to-end EM.

for accurate match/non-match decisions.

(2) Unified model: This is a single model that predicts match/non-

match for values not in known KB types. While the model archi-

tecture is the same as the type-specific models, we use synonymous

entity names taken from the union of many KB types, to pre-train a

unified attribute-level EM that captures common name variations

across different types (e.g., spelling variations). Such a model is

reasonably accurate, and can be fine-tuned using limited training

data to quickly fit a new type not known a priori.

As illustrated in Figure 2, at online prediction time the attribute-

level EM can take two possible paths using the two types of models

above, based on type-detection results. Specifically, if the type of a

pair of attributes are detected to be a known KB typeT , we apply the
type-specific models forT (the upper path), otherwise we apply the

general-purpose unified model (the lower path). We will describe

this component in Section 3.

The final part of our system is the table-level EM. As discussed

earlier, each table-level EM task can be different (e.g., different at-

tributes, and different levels of importance for the same attributes).

The table-level EM model starts from pre-trained attribute-level

EM, and uses limited training data to quickly converge to aggregate

EM decisions. This approach can also leverage pre-trained repre-

sentations to fine-tune attribute-level EM for types that are not

pre-trained, using limited (e.g., a few dozens) training data.

Terminology. Since in this work we will describe data coming

from the contexts of relational tables and KBs, sometimes the same

concept may be referred to using different names that are more

natural in their respective contexts. For instance, “columns” or

“attributes” that are more natural in tables, are better described

as “entity-types” in KBs; similarly “attribute values” in tables are

commonly described as “entity names” in KBs. While we try to keep

the names consistent, we will use these names interchangeably in

their corresponding contexts when appropriate.

3 ATTRIBUTE-LEVEL ENTITY MATCHING

We start by introducing our attribute-level EMmodels (in themiddle

of Figure 2), since they are the central part of the EM system, for

which we develop novel hierarchical deep models. We defer the first

component on type detection to Section 4, since we use simplified

versions of the hierarchical models for type-detection.

Recall that attribute-level EM needs to take two attribute-values

as input, and produce a score indicating their likelihood of match,

which can be intuitively interpreted as “similarity”.

3.1 Training data preparation

From Bing’s knowledge graph [3, 31] (which is known as Satori and

is similar to Google Knowledge Graph [5]), we select 40 head entity

types that are deemed as common and useful for EM tasks (e.g.,

person, organization, book, etc.). In this KB, each entity e has an

attribute called “alias”, that lists all alternative/synonymous names

of e . For example, the entity “Bill Gates” has alias “William Henry

Gates”, “William H. Gates”, etc. These alternative names are clearly

useful to train type-specific attribute-level EM models.

For positive examples, we take pairs of such alternative names,

while filtering out pairs with no token overlap. The pairs that are

listed as alternative names in KB but with no token overlap are likely

semantic synonyms: e.g., “Lady Gaga” is also known as “Stefani

Joanne Angelina Germanotta”. Such semantic synonyms are too

specific that are fine to memorize but difficult to generalize.

We would like to note that similar synonym data are also widely

available in a similar manner from other KBs, such as the “also-

known-as” relation inWikidata [67], “alias” relation in Freebase [16],

“foaf:nick” relation in DBpedia [12], “means” relation in YAGO [65],

“alternateName” relation in Google Knowledge Graph [5]; as well

as from standalone entity synonym data feeds [18, 21].

For negative examples, we use pairs of entities (e , e ′) in KB,

whose names have some syntactic similarity. For example, we use

“Bill Gates” and “Bill Clinton” as a pair of negative examples, as they

resolve to different KB entities, but also share a common token in

their names. The reason we require negative pairs to have syntactic

similarity is that if the pair are completely different, it is trivial to

determine that they should not match (e.g., “Bill Gates” and “Larry

Page”). Such pairs would not be as helpful for models to learn.

We generate “highly similar” pairs of names that are informative

as negative examples as follows: for each entity e , we find top-

100 entities in the same type, whose names are most similar to

e (similarity to e is first decided based on the number of overlap

tokens with e , and then based on Edit distance when there is a tie).

We note that for each canonical entity name from different types,

on average we produce 2 to 5 positive examples (synonym names),

and exactly 100 negative examples.

Our KB does not currently curates long-form physical mailing

addresses (e.g., “206 South Cross Street, Little Rock, AR”), which

however are common in EM tasks. In order to complement the KB

for address data, we use query logs collected from the “Maps” verti-

cal of the search engine, to obtain variations of addresses (in ways

that users would type them), as well as their canonical addresses

generated by the search engine. For example, a user query may

be “206 South Cross Street, Little Rock, AR”, and it is mapped to

the canonical address “206 S Cross St, Little Rock, AR 72201” by

the search engine. We collect such pairs of addresses as positive

examples. And similar to KB types, negative examples are selected

from high-similar address pairs that resolve to different canonical

addresses. In total, we generate training data for addresses in 9

English-speaking locales (e.g. “en-us”, “en-ca”, “en-gb”, “en-in”, etc.),

and use these as 9 additional types.

In total we pre-train EM models for these 49 attribute-types. We

note that our approach of obtaining training data is general, and can

be easily extended. For example, we could add types from KB, or use

entity names in other languages from KB as additional types (most

entities are curated to have names in many different languages).

The same is true for addresses in other languages/locales.

3.2 Hierarchical Model for Attribute-level EM

We observe that positive examples of matching entity names ex-

hibit complex structures and variations in different attribute-types.

Figure 3: The hierarchical Hi-EM model for attribute-level

EM. The two input “Bob Adam” and “Jo Adam” at the bot-

tom pass through a number of layers (GRU, attention, etc.),

before producing a match score.

We make the following observations that motivate us to design a

specific model architecture for attribute-level EM.

(1) First, we observe that sub-word/character-level matches are

often important: for example, we have (“Dave Smith” = “David

Smith”), and (“International BusinessMachine Corp”= “IBMCorp”),

which requires character-level information to be modeled.

(2) In addition, word-level pairs are also an important source of

information: for instance, we have (“Bill Gates” = “William Gates”),

as well as (“William H. Gates” , “William A. Gates”) and (“Mary

Miller” , “Mark Miller”), etc. While character-level models are able

to capture some of these, for long names with many tokens it can

be difficult, such that explicit word-level models would be useful.

(3) Within one input, different words/characters may have differ-

ent importance. For instance (“IBM Inc.” = “IBM Corp.”), since in

the organization type words like “Inc.” and “Corp.” are not impor-

tant; but (“IBM Corp.” , “IBS Corp.”). The same is true for other

types like person. This motivates us to introduce an intra-input,

self-attention-like mechanism to learn character/word importance.

(4) Between two input, sometimes the word order may be different,

e.g., (“Dave Smith” = “Smith, David”), which calls for an alignment-

like, inter-input attention mechanism between the two input strings

(reminiscent to attention used in machine-translation [13]).

These observations motivate us to develop a hierarchical-EM(Hi-

EM) model shown in Figure 3. At a high level, the model has a hier-

archical structure, which starts with character-level layers (the ones

that start with “Char” in Figure 3), but also has upper-layers that

explicitly capture word-level information (the layers that start with

“Word”). With the hierarchical model, the character-level layers can

not only capture fine-grained character-level variations, but also

address the common out-of-vocabulary (OOV) issues. At the same

time the word-level layers can explicitly leverage word-boundaries

(separating characters in different words), which are especially ben-

eficial for long input strings (e.g., data in types like address often
have 5-10 words). We note that a similar idea of hierarchical models

was recently explored in other contexts [72].

Additionally, for both the character-level and word-level, we in-

troduce layers specifically designed for intra-input attention (within

single input), and inter-input attention (between two input strings),

which would help the model to learn character/word importance,

as well as alignments between two input strings.

We now describe different layers of the model in turn in detail.

3.2.1 Character-level Layers for Word Representations.
We will first describe the 5 layers at the bottom of Figure 3.

These are at the character-level to ultimately produce word-level

representations, and their names all start with “Char”. At a high

level, we will first encode characters in the input, then look at the

other input for alignments using attention, before aggregating to

produce word representations for word-level layers.

Character Encoder. This part includes the first two layers: Char-

Embedding, and Char-Bi-GRU. In the Char-Embedding layer, given

a word wi , i ∈ [i,n], with its characters denoted as cit , t ∈ [1, li],
we embed the characters to vectors through a character-embedding

matrixWe .

eit =We ∗ cit (1)

Then we pass the embedded vectors eit to a recurrent neural net-

work (RNN) block to obtain contextual information of the char-

acters. In this work we use Bidirectional-Gated-Recurrent-Unit

(BiGRU) [13] to capture both forward and backward information

(similar to bidirectional LSTM [33]). The resulting character repre-

sentation is denoted as hcit .
hcit = BiGRU (eit) (2)

Character Inter-input Attention. For each character representa-

tion hcit , we adopt an inter-input attention layer to incorporate the

character alignment hc j , j ∈ [1, l], where l refers to the length of

whole character sequence from the other input. We use a bi-linear

function with learned weightWc to get the attention weights from

the character sequence of the other input.

α j = hcit ∗Wc ∗ hc j (3)

For each character position it , the character information from the

other attribute is summarized as

ait =
l∑
j=1

α jhc j (4)

Character Aggregation and Intra-input Attention. For each

character cit , we produce a representation that is the concatenation

of the element difference and multiplication between hcit and ait .
pcit = [|hcit − ait |;hcit ◦ ait] (5)

We use the intra-attention layer to re-weight each combined char-

acter representation through a linear layer.

βit = wc ∗ pcit (6)

The final representation for each word ri is a weighted average

of character representation.

ri =

li∑
t=1

βit ∗ pcit (7)

We obtain word representation of each word from the two input

strings, denoted as ri , i ∈ [1,n], and r j , j ∈ [1,m], where n,m are

the total number words from the two input, respectively.

3.2.2 Word-level Layers for Attribute-value Representations.
On top of the character-level layers that produce word-level

representations, we stack another set of word-level layers for overall

attribute-value representations. These layers are designed similarly

to include word encoding, inter-input attention, aggregation and

finally intra-input attention, before producing a final representation

for the full attribute value.

Word Encoder.We first use a BiGRU layer to contextualize each

word representation ri , i ∈ [1,n] to produce hwi . And same for hw j .

hwi = BiGRU (ri) (8)

Word Inter-input Attention. We have another inter-input atten-

tion layer to incorporate alignment information with the other

input string hw j , j ∈ [1,m].

α j = hwi ∗Wd ∗ hw j (9)

ai =
m∑
j=1

α jhw j (10)

Word Aggregation and Intra-input Attention. We again con-

catenate the element difference and multiplication of the word

representation and the aligned word representation.

pwi = [|hwi − ai |;hwi ◦ ai] (11)

Then we apply an intra-attention layer for final attribute-value

representation z.
βi = wd ∗ pwi (12)

z =
n∑
i=1

βi ∗ pwi (13)

We denote the final representations of the two input strings so

computed as zp and zq , respectively.

3.2.3 Final Prediction.
The representation zp , zq for a pair of attribute values (P ,Q) are

concatenated and then pass through a multi-layer perceptron (MLP)

layer to produce a final EM score.

score(P ,Q) = MLP(zp , zq) (14)

During training, we use logistic regression loss that averages

over all N examples as the loss function.

loss =
1

N

∑
pos

loд(
1

1 + e−scorepos
) +

∑
neд

loд(
1

1 + escoreneд
) (15)

3.3 Transfer Learning for EM

For each attribute type T , we train a separate attribute-level EM

model that captures the specific characteristics in T (e.g., synony-

mous tokens, token importance, etc.), which can then make highly

accurate match/non-match decisions for data in type T .
However, even though we pre-train attribute-level EM for a large

number of types, there will be attributes in EM tasks that are not in

the known types. For those attributes we apply transfer-learning as

follows, so that even for a new type not known a priori, we could

quickly converge to a high-quality EM model.

We take the union of data in known attribute types, to build a

general-purpose attribute-level EM model, which we will refer to

as the unified-model. Such a model captures common variations

general across many types (e.g., spell variations), and serves as a

good starting point to train models for a new attribute-type. With

limited training data for the new attribute-type, we take internal

representations from the unified-model (right before theMLP layers

in Figure 3), and add new MLP layers that can be fine-tuned using

new training data to quickly converge to an EM model specific to

the new type. Our experiments suggest that this transfer-learning

approach produces high-quality results with limited training data.

Finally, for table level EM, we use a similar transfer-learning ap-

proach. Based on table attribute types, we use either type-specific

attribute-level model or unified-model, to get internal representa-

tions every attribute pair (z in Equation (13)). We concatenate all

representations, and add an MLP layer at the end for table-level EM.

Such a model can be fine tuned end-to-end, using a small amount

of table-level training data.

4 ATTRIBUTE TYPE DETECTION

In this section, we describe the first component of our system shown

in Figure 2, which is for attribute type detection. Recall that for

each value from input table column, we need to detect whether it

belongs to known attribute-types T .

4.1 Training data preparation

Our training data used for attribute-type detection is similar to the

data for attribute-level EM described in Section 3.1.

We use the same 40 common KB types, and 9 address types for

type-detection. Note that each entity in the KB can be associated

with one or more types. For example, entity “University of Califor-

nia” is of type “organization”, “educational institution”, etc.; and

entity “Harry Potter” is of type “written book”, “film”, etc. Since

the type hierarchy in the KB is such that types are not mutually

exclusive but partially overlapping, and a string name can indeed

belong to multiple types, we in this work formulate type-detection

as a multi-hot classification problem – given an input string, predict

all types it belongs to.

For each typeT , we use names of entities inT , or {e ∈ T } as pos-
itive examples for training. For negative examples, initially we use

entities from {e ′ < T }. However, this turns out to be problematic,

because KB types are often incomplete. For instance, while “Univer-

sity of California” has both types “organization” and “educational

institution”, another (smaller) university “Gonzaga University” only

has type “educational institution” but not “organization” (which it

a missing type)
2
. Note that because of the missing type, we may

incorrectly use “Gonzaga University” as a negative example for

“organization”, which confuses the model.

To address this issue, we use a conservative approach to avoid

selecting an entity e ∈ T1 as a negative example forT2, if its known
type T1 has positive correlation with T2 (e.g., “organization” and
“educational institution”). Specifically, for each pair of types T1
and T2, we compute their entity-instance-level point-wise mutual

information (PMI) [45], defined as
| {e |e ∈T1,e ∈T2 } | | {e ∈U } |

| {e ∈T1 } | | {e ∈T2 } |
, where

{e ∈ U } is all the entities in the universe in the KB. If PMI> 0,

then T1 and T2 are likely correlated and overlapping types. For

instance, there are a substantial number of instances belonging

to both “educational institution” and “organization”, resulting in

a positive PMI score. As such, we will not use any entity e of

type “educational institution” as negative example of “organization”,

irrespective of whether e has type “organization”. Formally, we use

{e |e < T1,∀T2 ∋ e, PMI (T1,T2) < 0} as the negative examples of T1.

4.2 Type-detection Models

Figure 4 shows our Hierarchical entity-typing model (referred to as

Hi-ET for short), for attribute type detection. We follow a similar

hierarchical structure as the Hi-EM model.

2
This problem of missing types can arise because types in KB are often generated from

various sources (e.g., structured feeds, web data, etc.), which often do not cover Less

popular entities as well as the head entities.

Figure 4: Our Hie-ET model to detect attribute types

We initially try to combine the type-detection task with the

attribute-level EM task, using multi-task learning [23], given that

they are similar intuitively. However our experiments show inferior

quality in both tasks. We believe the reason lies in the fact that the

“importance” of tokens in these two tasks are in fact opposite – to

detect types for “University of California ”, the token “University”

is more important, but for EM (e.g., compare to “University of

Colorado”), “California” is actually more important. Because of this

reason we will design and train different models for type-detection.

Our type-detection model predicts 40 common KB types plus 9

address types. Since it can detect more than one type for each input

value, we use one binary classifier for each target KB type, which is

connected to the last layer of our model (Figure 4), for a total of 49

such classifiers. A benefit of this setup is that it can easily extend to

new types, without needing to re-train existing models that have

been tuned and tested.

The model in Figure 4 takes an input attribute value withn words

wi , i ∈ [1,n], where each word contains li characters, written as

cit , t ∈ [1, li]. It produces C binary labels (o1, ...oC) ∈ {0, 1}C for

the C pre-trained types. We describe each component of the model

in Figure 4 below, using references to definitions in the attribute-

level EM model from Section 3.

Word Level Representation. For each character cit , t ∈ [1, li],
we first embed it into vectors eit using Eq. 1 in Section 3. Then we

use BiGRU layer (Eq. 2) to get contextual character representation

hcit . Using hcit , we apply intra-attention (Eq. 6) to weight each

contextual hidden state by importance. The final representation for

each word ri is a weighted average of representation hcit (Eq. 7).
Attribute Level Representation. For each word representa-

tion ri , i ∈ [1,n], we first use another BiGRU layer (Eq. 8) to get

contextual representation hwi . Then we apply intra-attention (Eq.

12) to weight each contextual hidden state by importance. The final

attribute representation z is weighted average of word contextual

representation hwi (Eq. 13).

Prediction layer. The representation z passes through an MLP

layer. In our model, each binary output has it own MLP layer.

oi = MLPi (z), i ∈ [1,C] (16)

Then the final output is the softmax of MLP output.

pi = softmax(oi) (17)

Where pi = [pi0,pi1] indicates the probability of predicting the

input value as the ith pre-trained type as true, and false, respectively.

During training, we use cross-entropy as our loss function, the

final loss is the average of C classes over all examples.

L = −
1

N

1

C

∑
ex

C∑
i=1

yi0loд(pi0) + yi1loд(pi1) (18)

Note that the model predicts types for one input value at a time.

When predicting types for a column of k values, we simply compute

an average score for the k values.

4.3 Transfer Learning for Type Detection

In our proposed EM system, we apply transfer-learning approach

by directly using pre-trained type-detection models to detect if any

table column/attribute corresponds to one of the known types.

Similar to transfer-learning in attribute-level EM (Section 3.3),

we can also apply type-detection models to new types by first

building a unified-model, which is trained using the union of data

for all known types. For a new attribute type, we start from the

representation of the unified-model, and use fine-tuning to produce

an accurate model for a new type with little training data. Our

experiments suggest that this is indeed the case – transfer-learning

converges to high-quality type-detectionmodels substantially faster

than training from scratch.

5 EXPERIMENTS

In this section, we report experiments on different system compo-

nents: Type Detection, Attribute-level EM and Table-level EM.

5.1 Type Detection Experiments

The goal of type detection is to accurately predict attribute types

using pre-trained models. We report results on three experiments,

entity-value type detection, table-column type detection, and transfer-

learning for new types.

5.1.1 Entity-value type-detection.
Experimental setup. As discussed in Section 3.1, we use pre-

trained models to detect 49 attribute-types, which include 40 com-

mon entity types from a KB, and 9 address types of different lo-

cales/markets (“en-us”, “en-gb”, etc.) from the “Maps” vertical of a

search engine.

For each type T , we sub-sample at most 20K entities in T as

positive examples (when a type has less than 20K entities we use

all). For negative examples ofT , we use entities not inT , filtered by
the PMI procedure discussed in Section 4.1. This is to filter away

negative examples that may be incorrect due to missing type labels

(e.g., entity “Gonzaga University” has the type “educational institu-

tion” but is missing the type label “organization” in the KB. With

PMI filtering we would not incorrectly use “Gonzaga University”

as a negative example for “organization”, since the two types are

identified as overlapping/related). We randomly split the data into

training (80%), development (10%) and test (10%).

We use PyTorch 0.4.1[54] to implement Hi-ET. We use random

character embedding initialization with size 300. We use bidirec-

tional GRUwith 2 layers, and the size of each hidden layer is 300. For

MLP, we use 2 linear layers of size 300 and ReLU as the non-linear

activation function.

For training, we use batch size 32 and set dropout rate to 0.4 to

help regularization. We use Adam [42] as the optimizer and use the

default initial learning rate 0.001.We set gradient clipping threshold

to 5.0 to increase stability. We finish the training after 5 epochs.

Experimental results. Figure 5 shows the precision-recall curves

of entity-value type detection for the 49 types. In Figure 5(a) and

5(b), we can see that Hi-ET has high precision and recall for most of

KB types, showing its ability to differentiate between entity values

of different types. There are a few types (computer, architecture
venue, airline and sports facility) where the results are not as good.
We found a main reason is the lack of positive training data – these

types are small with less than 2000 entities in KB, which makes it

difficult for deep models to learn. This is further exacerbated by

the fact that entities from small types tend to be less popular and

have more missing type information: if e ∈ T1 but if the T1 type
is missing for e in the KB, we will incorrectly use e as a negative
example of T1, confusing the model. For small types and less popu-

lar entities, this tends to be more common, and is more difficult for

our PMI-filtering approach to detect (Section 4.1).

Figure 5(c) shows precision/recall on 9 address types. It can be

seen that despite the subtle differences of addresses from different

markets (en-us, en-gb, en-ca, en-nz, etc.), where we intentionally

remove obvious indicators such as all country tokens, our models

still successfully differentiate addresses between different markets.

5.1.2 Table-column type-detection.
Experimental setup. For the table-column type-detection ex-

periment, we use 1M Wikipedia tables as the test set, and evaluate

precision/recall of two alternative methods: (1) our pre-trained Hi-

ET models, which predict types using the average score of the first

10 values of each column; and (2) a keyword-based approach, which

detects types based on keyword in Wikipedia table column-header

(e.g., if a column-header contains the keyword “city” or “town”, it is

predicted to be of type city). Note that keyword is a strong baseline
on Wikipedia, as Wikipedia tables are collaboratively edited by

millions of editors [30], where column names are well-curated. In

comparison, in enterprise CSV files and database tables, column

headers are more likely to be cryptic or outright missing [24], which

would make keyword search less effective.

We manually label 100 randomly selected columns, detected to

be of typeT . We report precision results from the 10 most common

types in the interest of space.

Experimental results. Figure 7 shows that formost types (7/10),

Hi-ET model has comparable or better results. However, quality

results from Hi-ET can also be inferior to Keyword Search, notably

for the entity type “food”. Our analysis suggest that there is little

sub-word pattern for this type (e.g., between apple, orange and

banana), which is difficult for Hi-ET to generalize.

While Hi-ET is competitive for type-detection, we believe an

ensemble of type-detection techniques that combine model-based,

keyword-based, and even program-based [58, 70] approaches would

be needed for best detection quality in practice.

5.1.3 Transfer-learning to new types.
Experimental setup. We also experiment whether our pre-

trained type-detection models can be used in transfer-learning,

to learn type-detection for other types faster and with less training

examples. For this experiment, we use the same data from entity-

value type detection (Section 5.1.1). We then select one type out of

49 types as the target-type for transfer-learning, and the remaining

48 types for pre-training. We compare two methods: (1) transfer-

learning, using models fine-tuned from pre-trained type-detection

Train Dev Test

Person 921230 3000 112312

Organization 271376 3000 31930

Movie 219574 3000 28832

Location 613792 3000 74062

Organism 5007 1629 1579

Local 85760 3000 10346

Book 21394 2745 2668

Software 2930 348 314

Table 1: Statistics of types for attribute-level EM.

models on 48 other types; and (2) learn-from-scratch, without us-

ing pre-trained models. For each method, we provide 200, 500 and

2000 examples from the target-type as training, and compare the

resulting precision/recall curves.

Experimental results. Figure 6 compares the results with and

without transfer-learning on 3 representative types. Similar results

are observed in all other types (omitted here due to space con-

straints). We can see that with transfer-learning from pre-trained

models, the model can learn a lot faster compared to learning-from-

scratch, especially with little training data (e.g., 200 examples). We

can see that results are better for types address and person, since
these types have more regularity and are easier to learn. Data in

type organization is more complex with more variations, which

makes transfer-learning converge slower than other types.

5.2 Attribute-Level Entity Matching

We conduct two experiments for attribute-level EM, pre-trained

EM for known types, and transfer-learning for new types.

5.2.1 Experimental setup.
Data sets. As discussed in Section 3.1, for each entity e , we use

synonymous names of e in KB (from the “alias” attribute, such as

“Bill Gates” and “William Gates”) as positive examples, and names

of a different e ′ whose name is similar to e (by syntactic distance)

as negative examples (e.g., “Bill Gates” and “Bill Clinton”). We split

training pairs into train (80%) development (10%), and test (10%).

To evaluate pre-trained attribute-level EM of known types, we

use 4 representative types: person, organization, location andmovie,

which show different types of name variations. The unified attribute-

level model is trained using the union of these data.

For transfer-learning, we start from the unified model, and report

results on 4 different types: organism, local, book and software. We

report results after fine-tuning using 200, 500 and 2000 labeled

examples. Table 1 reports statistics of these types.

We evaluate the model quality using two metrics: Mean Recipro-

cal Rank (MRR) and precision/recall.

Methods compared.We compare the folowing methods:

• DSSM [37] is one of the first deep models proposed for se-

mantic similarity. DSSM uses DNN to represent each input

in a continuous semantic space.

• DeepER [39] is proposed to use pre-trainedword embedding

for EM tasks.

• DeepMatcher [48] is also a deep model for EM problem

with state-of-the-art results. We use its attribute matching

component for attribute-level EM.

• DeepMatcher (Unified) is the same as DeepMatcher, but

trained on unified data (union of data in different types).

• Hi-EM is the proposed EM model with hierarchical deep

structure, trained using data for each type.

0

0.2

0.4

0.6

0.8

1

1.2

0.5 0.6 0.7 0.8 0.9

Pr
ec
is
io
n

Recall

building astronomical airport award
protein written work employer chemical compound
product computer software conference
education institute film food human language
local entity location populated place album

(a) First 20 Types from KB

0

0.2

0.4

0.6

0.8

1

1.2

0.5 0.6 0.7 0.8 0.9

Pr
ec
is
io
n

Recall

organization person house sports team sports facility
sports game recurring event architect venue geo feature gene
job title vidoegame academic title airline military unit
city scholary work model model year trim level

(b) 20 More Types from KB

0.2

0.4

0.6

0.8

1

1.2

0.5 0.6 0.7 0.8 0.9

Pr
ec
is
io
n

Recall

 Australia Canada Great Britain
 Ireland India New Zealand
Philippines US South Africa

(c) 9 Types for Address in different locale

Figure 5: P/R curves of entity-value type-detection using Hi-ET model, for 40 KB entity types and 9 address types.

0

0.2

0.4

0.6

0.8

1

1.2

0.05 0.25 0.45 0.65 0.85

Pr
ec
is
io
n

Recall

Transfer 200 examples Transfer 500 examples
Transfer 2000 examples Scratch 200 exmaples
Scratch 500 exmaples Scratch 2000 examples

(a) Person

0

0.2

0.4

0.6

0.8

1

1.2

0.05 0.25 0.45 0.65 0.85

Pr
ec
is
io
n

Recall

Transfer 200 examples Transfer 500 examples
Transfer 2000 examples Scratch 200 exmaples
Scratch 500 exmaples Scratch 2000 examples

(b) Organization

0

0.2

0.4

0.6

0.8

1

1.2

0.05 0.25 0.45 0.65 0.85

Pr
ec
is
io
n

Recall

Transfer 200 examples Transfer 500 examples
Transfer 2000 examples Scratch 200 exmaples
Scratch 500 exmaples Scratch 2000 examples

(c) US Address

Figure 6: P/R curves for transfer learning using Hi-ET model, varying the amount of training data.

0.87

0.63

1

0.82

0.02

0.94
0.96

0.86

0.42

0.33

0.87

0.97

0.88

0.32

0.89
0.87

0.95

0.88

0.94

0.88

album arhcitecture
venue

film food local city location organization person populated
place

Pr
ec

is
io

n

Keyword Search HI-ET

Figure 7: Comparision of Hi-ET and Keyword Search for

Table-column type-detection across 10most common types.

• Hi-EM (Unified) is Hi-EM trained on unified data.

Implementation details. To make fair comparison, we adopt

same model settings for all methods. We set 300 as character/word

embedding size, 2 layers of size-300 for bidirectional GRU compo-

nent, 2 layers of size 300 for MLP, and ReLU as nonlinear activation.

For training, we use batch size of 32 and set dropout rate of 0.4.

We use Adam as the optimizer with the default initial learning rate

0.001, and we set gradient clipping threshold at 5.0. We finish the

training after 5 epochs (2 epochs for the unified data set). For each

positive entity pair, we randomly select 5 negative examples for

negative sampling.

For DSSM, we use character embedding, BiGRU for entity repre-

sentations, and cosine similarity to compute match scores.

For DeepER, we use Glove [55] as the pre-trained word embed-

ding, and fine-tune the embedding weights during training. For

unknown words, we replace with ’UNK’ token. We use BiGRU to

get entity representations and MLP for final predictions.

For DeepMatcher, the authors present the model with different

neural network components. We report with the best performance

in our experiments, which has character embedding, BiGRU compo-

nent for attribute summarization, learnable distance (dot product)

for attribute comparison and MLP for final predictions.

5.2.2 Experimental Results.
Pre-trained attribute-level EM for known types. Table 2

shows the MRR scores for attribute-level EM using pre-trained mod-

els on four different attribute types. The proposed Hi-EM produces

better results than all other methods. DeepER does not perform

well in this task, with lowest scores across all types. The reason

is that DeepER uses word-based embedding with many OOV to-

kens. DSSM also has lower quality than DeepMatcher and Hi-EM,

since it uses simple model architecture that does not consider in-

teractions between two input strings. Finally, Hi-EM outperforms

DeepMatcher in all types, showing the advantages of the hierarchi-

cal architecture, especially on complex attribute-types.

In the same table, we can see that Hi-EM (Unified) also achieves

better quality than DeepMatcher (Unified). As expected, the unified

models produce lower scores compared to the type-specific models.

Figure 8 reports the same experiments as above using preci-

sion/recall curves instead of MRR. The result is consistent with that

of MRR, except in the movie type, where Hi-EM slightly under-

performs DeepMatcher in some regions of the curve. An inspection

of the errors suggest that the movie type has more synonymous

name pairs that are semantic in nature – for example, the movie

“Love Song” is also known as “Comrades: Almost a Love Story”; and

Person Organization Movie Location

DSSM 0.888 0.850 0.844 0.853

Deep-ER 0.645 0.528 0.492 0.636

DeepMatcher 0.935 0.909 0.895 0.905

DeepMatcher (Unified) 0.924 0.893 0.894 0.896

Hi-EM 0.943 0.925 0.924 0.911

Hi-EM (Unified) 0.934 0.907 0.914 0.899

Table 2: MRR results for pre-trained attribute-level EM

Organism Local Book Software

200 examples scratch 0.726 0.554 0.612 0.553

500 examples scratch 0.794 0.679 0.701 0.786

2000 examples scratch 0.828 0.804 0.790 0.810

0 example transfer 0.831 0.756 0.863 0.918

200 examples transfer 0.873 0.851 0.865 0.903

500 examples transfer 0.884 0.853 0.871 0.915

2000 examples transfer 0.881 0.849 0.880 0.937

Table 3: MRR results for transfer-learning to new types

“Star Crash” is also known as “Star Battle Encounters” or “Stella Star”.

These positive examples are all very specific and hard to generalize.

At training time, Hi-EM overfits on these semantic examples, and

produces high match scores for certain negative examples from

the test data. Note that because the corresponding true-positive

pairs have even higher match scores, in the MRR evaluation these

high-scoring negative examples would not affect results. The P/R

evaluation on the other hand, are more sensitive to the high-scoring

negative examples, which affects precision.

We find other types of errors include name pairs that are inher-

ently ambiguous (e.g., name pairs like “Rick Baker” and “Richard A.

Baker” are marked as negative, but similar pairs like “Rick Barnes”

and “Richard D. Barnes” would also be marked as positive), which

makes it difficult to predict accurately. Finally abbreviation are also

difficult to predict – Hi-EM is able to predict some pairs correctly

(e.g., “IBM” and “International Business Machines Corp.”), but get

others wrong (e.g, “University of Geneva” and “UNIGE”).

Transfer-learning for new types. Table 3 compares the MRR

results between transfer-learning and train-from-scratch, with vary-

ing numbers of training data. We note that transfer-learning clearly

helps, as there is a significant difference between k-example-transfer

and k-example-scratch (for the same k). The difference is more pro-

nounced when using fewer training examples. We also note that

for many types (Organism, Book and Software), results from pre-

trained unified-model (the line marked as “0 example transfer”)

already outperforms learn-from-scratch with 2000 examples, which

is all the training examples we provide in this experiment.

Figure 9 reports precision/recall curves of the same experiment.

We observe that these results are consistent with the MRR results.

5.3 Table-level Entity Matching

In this section, we evaluate our end-to-end EM on table data and

compare with existing EM methods.

5.3.1 Experiment Setup.
Methods compared.We compare the following EM methods:

• Magellan [43] is a state-of-the-art feature-based EM system.

We obtain it from GitHub
3
and use default settings.

• DeepMatcher [48] is a state-of-the-art deep EM model. We

train the model from scratch, and use the same settings for

attribute representations from attribute-level EM.

3
https://github.com/anhaidgroup/py_stringmatching

• Hi-EM is our hierarchical EM model trained from scratch,

using the same settings from attribute-level EM.

• Hi-EM (Unified) is the same as Hi-EM, except that for all

attributes we start with representations from the same uni-

fied attribute-level EM models that are pre-trained, and fine

tune table-level EM based on table-level training data.

• Hi-EM (Type) is the same as Hi-EM, except that when at-

tributes are detected as known types, we start with repre-

sentations from type-specific attribute-level EM models, and

fine tune table-level EM based on training data. This is the

same as our end-to-end architecture outlined in Figure 2.

For both Hi-EM and DeepMatcher, we concatenate the represen-

tations of all attribute pairs and apply a 2 layer MLP of size 300 for

final predictions.

Data sets.We use labeled data from a repository of EM tasks
4
,

which were also used in prior work [43]. There are a total of 24

EM tasks, each with a pair of tables, where some of the record

pairs between the two tables were manually labeled as match/non-

match. We exclude tasks whose corresponding data have quality

issues (mainly due to formatting) and could not be run using the

existingMagellan system, and ones that are very easy (e.g. matches

are almost all exact, and all methods have over 0.95 F1). We use 8

remaining data sets that are more challenging EM tasks.

We evaluate model performance with varying number of training

data. Specifically, for each data set, we randomly sample 5%, 10%

and 20% labeled data as training, and use the remaining 80% as

testing. We report F1 score on the test data. Note that the training

data in most cases has just a few dozen labeled record pairs.

To reduce randomness, we run deep models three times with

different random seeds, and report an average F1. We keep the

same random seed in each run between different deep models.

5.3.2 Experimental Results.
Table 4 shows F1 score across different data sets with varying

amounts of training data. First, the Hi-EM (Type) achieves better

quality than Hi-EM (Scratch) in 23 out of 24 settings, and it outper-

forms DeepMacher in 22 out of 24 settings, showing the benefit of

a pre-training approach even with a small amount of training data.

Between Hi-EM (Type) and Hi-EM (Unified), Hi-EM (Type) pro-

duces better quality in 12/24 settings, and there are 6/24 settings

for which the two methods are identical (since no columns are

detected to be of known types). This is consistent with our finding

in attribute-level EM that type-specific models are more accurate.

Compared to the feature-based EM Magellan, Hi-EM (Type) out-

performs Magellan in 20/24 settings. DeepMatcher is comparable

to Magellan, which is consistent with what is reported in [48].

6 RELATEDWORKS

In this section, we describe existing work in three related areas:

Entity Matching, Deep Learning in NLP, and Transfer Learning.

Entity Matching. Entity matching, also known as entity res-

olution, fuzzy join, record linkage, among other names, has been

a long-standing problem in the literature of data mining and data

integration [27, 29, 32, 44]. Various techniques have been proposed,

including ML-based approaches [10, 15, 59, 63] , and constraint-

based methods [11, 19, 61, 68]. Recently, two deep EM models,

4
Available at https://sites.google.com/site/anhaidgroup/useful-stuff/data

https://github.com/anhaidgroup/py_stringmatching
https://sites.google.com/site/anhaidgroup/useful-stuff/data

0

0.2

0.4

0.6

0.8

1

1.2

0.05 0.25 0.45 0.65 0.85

Pr
ec
is
io
n

Recall

HI-EM(Unified) DSSM
DeepMatcher DeepMatcher(Unified)
DEEP-ER HI-EM

(a) Person

0

0.2

0.4

0.6

0.8

1

1.2

0.05 0.25 0.45 0.65 0.85

Pr
ec
is
io
n

Recall

HI-EM(Unified) DSSM
DeepMatcher DeepMatcher(Unified)
DeepER HI-EM

(b) Organization

0

0.2

0.4

0.6

0.8

1

1.2

0.05 0.25 0.45 0.65 0.85

Pr
ec
is
io
n

Recall

HI-EM(Unified) DSSM
DeepMatcher DeepMatcher(Unified)
DeepER HI-EM

(c) Movie

0

0.2

0.4

0.6

0.8

1

1.2

0.05 0.25 0.45 0.65 0.85

Pr
ec
is
io
n

Recall

HI-EM(Unified) DSSM
DeepMatcher DeepMatcher(Unified)
DEEP-ER HI-EM

(d) Location

Figure 8: P/R curves of different models for attribute-level EM, on 4 types of attributes.

0

0.2

0.4

0.6

0.8

1

1.2

0.05 0.25 0.45 0.65 0.85

Pr
ec
is
io
n

Recall

Transfer 0 example Transfer 200 examples
Transfer 500 examples Transfer 2000 examples
Scratch 200 exmaples Scratch 500 exmaples
Scratch 2000 examples

(a) Organism

0

0.2

0.4

0.6

0.8

1

1.2

0.05 0.25 0.45 0.65 0.85

Pr
ec
is
io
n

Recall

Transfer 0 example Transfer 200 examples
Transfer 500 examples Transfer 2000 examples
Scratch 200 exmaples Scratch 500 exmaples
Scratch 2000 examples

(b) Local

0

0.2

0.4

0.6

0.8

1

1.2

0.05 0.25 0.45 0.65 0.85

Pr
ec
is
io
n

Recall

Transfer 0 example Transfer 200 examples
Transfer 500 examples Transfer 2000 examples
Scratch 200 exmaples Scratch 500 exmaples
Scratch 2000 examples

(c) Book

0

0.2

0.4

0.6

0.8

1

1.2

0.05 0.25 0.45 0.65 0.85

Pr
ec
is
io
n

Recall

Transfer 0 example Transfer 200 examples
Transfer 500 examples Transfer 2000 examples
Scratch 200 exmaples Scratch 500 exmaples
Scratch 2000 examples

(d) Software

Figure 9: P/R curves of transfer-learning for new types using Hi-EM, with varying training data for 4 different attribute-types.

Hi-EM

Type

Hi-EM

Unified

Hi-EM

Scratch

Deep-

Matcher Magellan

Amz-BN 5% 0.510 0.450 0.460 0.200 0.720

Amz-BN 10% 0.853 0.810 0.657 0.350 0.820

Amz-BN 20% 0.854 0.790 0.646 0.650 0.800

Bk-Bw 5% 0.820 0.820 0.517 0.750 0.250

Bk-Bw 10% 0.890 0.890 0.820 0.850 0.400

Bk-Bw 20% 0.790 0.790 0.854 0.880 0.410

GR-BN 5% 0.778 0.720 0.612 0.680 0.710

GR-BN 10% 0.809 0.780 0.634 0.670 0.680

GR-BN 20% 0.843 0.830 0.661 0.650 0.650

YP-Yelp 5% 0.955 0.930 0.755 0.850 0.810

YP-Yelp 10% 0.955 0.940 0.721 0.850 0.810

YP-Yelp 20% 0.950 0.970 0.792 0.860 0.910

Amz-RT 5% 0.852 0.825 0.617 0.810 0.822

Amz-RT 10% 0.868 0.861 0.679 0.812 0.833

Amz-RT 20% 0.853 0.845 0.648 0.773 0.833

ANI-MAL 5% 0.989 0.989 0.927 0.956 0.633

ANI-MAL 10% 0.989 0.989 0.967 0.963 0.518

ANI-MAL 20% 0.989 0.989 0.967 0.964 0.481

BN-Half 5% 0.932 0.929 0.917 0.913 0.677

BN-Half 10% 0.936 0.939 0.919 0.917 0.744

BN-Half 20% 0.940 0.953 0.905 0.908 0.899

RE-IMDB 5% 0.803 0.811 0.772 0.803 0.899

RE-IMDB 10% 0.880 0.885 0.756 0.883 0.881

RE-IMDB 20% 0.863 0.904 0.842 0.860 0.937

Table 4: F1 for table-level EM with varying training data

DeepMatcher [39], and DeepER [48], have been proposed and are

shown to achieve better result quality.

Most existing EM approaches require a large amount of training

data, which is a significant barrier to wider adoption. We in this

work propose a hands-off Auto-EM architecture, which leverages

type-detection and attribute-level EM models that are pre-trained

on a large amount of data from KBs. It is shown to achieve high

EM quality with little training data.

Entity type detection. Unlike the literature on type classifica-

tion in NLP (e.g., [49, 73]), which typically relies on natural language

contexts, our task of entity type detection is for database tables and

columns, where natural language contexts are absent. Our approach

leverages only characteristics of entities, in a setting similar to [70].

Deep model in NLP. Tremendous progress have been made

in applying deep models to NLP. Text-classification and similarity

problems are particularly relevant to our problem.

Classification. Text classification [9] is a fundamental problem

in NLP. Several neural network models are developed, including

Convolution Neural Network (CNN) [41] and Recurrent Neural Net-

work (RNN)[51]. Recently self-attention [66] is used as additional

layer to improve performance.

Similarity. Learning textual similarity between two inputs is

important in NLP, with applications including Natural Language

Inference (NLI) [17, 69], Answer Selection (AS) [71], etc. Early deep

models [37] treat each input independently. Recent approaches

leverage both input pairs [20, 34, 53, 60], and solve these tasks with

a similar architecture of embedding layer, context encoding layer,

interaction(attention) layer, and finally output layer [46].

Transfer learning. Transfer learning [52] is to transfer knowl-

edge from a problem with abundant training data, to a related

target-problem with limited data. Which has been successfully ap-

plied to domains such as computer vision and NLP [14].

In NLP, transfer learning approaches include the well-known

word embedding [40, 47]. Recent approaches propose pre-trained

models with language model objectives [36], with fine-tuning for

specific tasks, which has achieved great success [26, 57].

7 CONCLUSION AND FUTUREWORK

In this work we propose an end-to-end system for EM, that lever-

ages models pre-trained on rich KB data. With the help of transfer-

learning, we train on table-level EM with little labeled data.

Our current deep models are not good at detecting attributes

involving numeric values (e.g., currency and measurements). Using

programmatic methods to featurize these attributes could com-

plement the deep models for better overall EM results, and are

interesting directions for future work.

REFERENCES

[1] AWS Lake Formation ML Transforms: FindMatches/Deduplication. https://aws.

amazon.com/lake-formation/faqs/.

[2] Azure Machine Learning Data Prep SDK. https://docs.microsoft.com/en-us/

python/api/overview/azure/dataprep/intro?view=azure-dataprep-py.

[3] Bing Entity Search API. https://azure.microsoft.com/en-us/services/

cognitive-services/bing-entity-search-api/.

[4] Excel Fuzzy Lookup Addin. https://www.microsoft.com/en-us/download/details.

aspx?id=15011.

[5] Google Knowledge Graphs. https://googleblog.blogspot.com/2012/05/

introducing-knowledge-graph-things-not.html.

[6] Microsoft Dynamics 365 for Customer Insights. https://dynamics.microsoft.com/

en-us/ai/.

[7] Salesforce Customer 360. https://www.salesforce.com/blog/2018/09/

what-is-salesforce-customer-360.html.

[8] Self-service data preparation, worldwide, 2016. https://www.gartner.com/doc/

3204817/forecast-snapshot-selfservice-data-preparation.

[9] C. C. Aggarwal and C. Zhai. A survey of text classification algorithms. InMining
text data, pages 163–222. Springer, 2012.

[10] A. Arasu, M. Götz, and R. Kaushik. On active learning of record matching

packages. In Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data, pages 783–794. ACM, 2010.

[11] A. Arasu, C. Ré, and D. Suciu. Large-scale deduplication with constraints using

dedupalog. In IEEE International Conference on Data Engineering, pages 952–963.
IEEE, 2009.

[12] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. Dbpedia: A

nucleus for a web of open data. In The semantic web, pages 722–735. Springer,
2007.

[13] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly

learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.
[14] Y. Bengio. Deep learning of representations for unsupervised and transfer learn-

ing. In Proceedings of ICML Workshop on Unsupervised and Transfer Learning,
pages 17–36, 2012.

[15] M. Bilenko and R. J. Mooney. Adaptive duplicate detection using learnable string

similarity measures. In Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 39–48. ACM, 2003.

[16] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a collabora-

tively created graph database for structuring human knowledge. In Proceedings
of the 2008 ACM SIGMOD international conference on Management of data, pages
1247–1250. AcM, 2008.

[17] S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning. A large annotated corpus

for learning natural language inference. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pages 632–642, 2015.

[18] K. Chakrabarti, S. Chaudhuri, Z. Chen, K. Ganjam, Y. He, and W. Redmond. Data

services leveraging bing’s data assets. IEEE Data Eng. Bull., 39(3):15–28, 2016.
[19] S. Chaudhuri, A. Das Sarma, V. Ganti, and R. Kaushik. Leveraging aggregate con-

straints for deduplication. In Proceedings of the 2007 ACM SIGMOD international
conference on Management of data, pages 437–448. ACM, 2007.

[20] Q. Chen, X. Zhu, Z.-H. Ling, S. Wei, H. Jiang, and D. Inkpen. Enhanced lstm

for natural language inference. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 1657–
1668. Association for Computational Linguistics, 2017.

[21] T. Cheng, H. W. Lauw, and S. Paparizos. Entity synonyms for structured web

search. IEEE transactions on knowledge and data engineering, 24(10):1862–1875,
2012.

[22] P. Christen. Development and user experiences of an open source data cleaning,

deduplication and record linkage system. ACM SIGKDD Explorations Newsletter,
11(1):39–48, 2009.

[23] R. Collobert and J. Weston. A unified architecture for natural language process-

ing: Deep neural networks with multitask learning. In Proceedings of the 25th
international conference on Machine learning, pages 160–167. ACM, 2008.

[24] E. Cortez, P. A. Bernstein, Y. He, and L. Novik. Annotating database schemas

to help enterprise search. Proceedings of the VLDB Endowment, 8(12):1936–1939,
2015.

[25] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of

deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[26] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of

deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[27] A. Doan and A. Y. Halevy. Semantic integration research in the database com-

munity: A brief survey. AI magazine, 26(1):83, 2005.
[28] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann,

S. Sun, and W. Zhang. Knowledge vault: A web-scale approach to probabilistic

knowledge fusion. In Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 601–610. ACM, 2014.

[29] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record detection:

A survey. IEEE Transactions on knowledge and data engineering, 19(1):1–16, 2007.

[30] Y. Gandica, J. Carvalho, and F. S. dos Aidos. Wikipedia editing dynamics. Physical
Review E, 91(1):012824, 2015.

[31] Y. Gao, J. Liang, B. Han, M. Yakout, and A. Mohamed. Building a large-scale,

accurate and fresh knowledge graph. In KDD, 2018.
[32] L. Getoor and A. Machanavajjhala. Entity resolution: theory, practice & open

challenges. Proceedings of the VLDB Endowment, 5(12):2018–2019, 2012.
[33] A. Graves, N. Jaitly, and A.-r. Mohamed. Hybrid speech recognition with deep

bidirectional lstm. In Automatic Speech Recognition and Understanding (ASRU),
2013 IEEE Workshop on, pages 273–278. IEEE, 2013.

[34] H. He and J. Lin. Pairwise word interaction modeling with deep neural networks

for semantic similarity measurement. In Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 937–948. Association for Computational Linguistics,

2016.

[35] Y. He, X. Chu, K. Ganjam, Y. Zheng, V. Narasayya, and S. Chaudhuri. Transform-

data-by-example (tde): An extensible search engine for data transformations.

Proc. VLDB Endow., 11(10):1165–1177, June 2018.
[36] J. Howard and S. Ruder. Universal language model fine-tuning for text classifica-

tion. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), volume 1, pages 328–339, 2018.

[37] P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck. Learning deep struc-

tured semantic models for web search using clickthrough data. In Proceedings of
the 22nd ACM international conference on Conference on information & knowledge
management, pages 2333–2338. ACM, 2013.

[38] Z. Huang and Y. He. Auto-detect: Data-driven error detection in tables. In

Proceedings of the 2018 International Conference on Management of Data, pages
1377–1392. ACM, 2018.

[39] M. E. S. T. S. Joty and M. O. N. Tang. Distributed representations of tuples for

entity resolution. Proceedings of the VLDB Endowment, 11(11), 2018.
[40] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov. Bag of tricks for efficient text

classification. arXiv preprint arXiv:1607.01759, 2016.
[41] Y. Kim. Convolutional neural networks for sentence classification. In Proceedings

of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1746–1751. Association for Computational Linguistics, 2014.

[42] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[43] P. Konda, S. Das, P. Suganthan GC, A. Doan, A. Ardalan, J. R. Ballard, H. Li,

F. Panahi, H. Zhang, J. Naughton, et al. Magellan: Toward building entitymatching

management systems. Proceedings of the VLDB Endowment, 9(12):1197–1208,
2016.

[44] H. Köpcke and E. Rahm. Frameworks for entity matching: A comparison. Data
& Knowledge Engineering, 69(2):197–210, 2010.

[45] S. Kullback. Information theory and statistics. Courier Corporation, 1997.
[46] W. Lan, Wuweiand Xu. Neural network models for paraphrase identification,

semantic textual similarity, natural language inference, and question answering.

In Proceedings of the 27th International Conference on Computational Linguistics,
pages 3890–3902. Association for Computational Linguistics, 2018.

[47] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed rep-

resentations of words and phrases and their compositionality. In Advances in
neural information processing systems, pages 3111–3119, 2013.

[48] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep, E. Ar-

caute, and V. Raghavendra. Deep learning for entity matching: A design space

exploration. In Proceedings of the 2018 International Conference on Management
of Data, pages 19–34. ACM, 2018.

[49] D. Nadeau and S. Sekine. A survey of named entity recognition and classification.

Lingvisticae Investigationes, 30(1):3–26, 2007.
[50] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich. A review of relational machine

learning for knowledge graphs. Proceedings of the IEEE, 104(1):11–33, 2016.
[51] H. Palangi, L. Deng, Y. Shen, J. Gao, X. He, J. Chen, X. Song, and R. Ward. Deep

sentence embedding using long short-term memory networks: Analysis and

application to information retrieval. IEEE/ACM Transactions on Audio, Speech
and Language Processing (TASLP), 24(4):694–707, 2016.

[52] S. J. Pan, Q. Yang, et al. A survey on transfer learning. IEEE Transactions on
knowledge and data engineering, 22(10):1345–1359, 2010.

[53] A. Parikh, O. Täckström, D. Das, and J. Uszkoreit. A decomposable attention

model for natural language inference. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pages 2249–2255, 2016.

[54] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmai-

son, L. Antiga, and A. Lerer. Automatic differentiation in pytorch. In NIPS-W,

2017.

[55] J. Pennington, R. Socher, and C. Manning. Glove: Global vectors for word repre-

sentation. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pages 1532–1543, 2014.

[56] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettle-

moyer. Deep contextualized word representations. In Proc. of NAACL, 2018.
[57] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving language

understanding by generative pre-training. URL https://s3-us-west-2. amazonaws.

https://aws.amazon.com/lake-formation/faqs/
https://aws.amazon.com/lake-formation/faqs/
https://docs.microsoft.com/en-us/python/api/overview/azure/dataprep/intro?view=azure-dataprep-py
https://docs.microsoft.com/en-us/python/api/overview/azure/dataprep/intro?view=azure-dataprep-py
https://azure.microsoft.com/en-us/services/cognitive-services/bing-entity-search-api/
https://azure.microsoft.com/en-us/services/cognitive-services/bing-entity-search-api/
https://www.microsoft.com/en-us/download/details.aspx?id=15011
https://www.microsoft.com/en-us/download/details.aspx?id=15011
https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
https://dynamics.microsoft.com/en-us/ai/
https://dynamics.microsoft.com/en-us/ai/
https://www.salesforce.com/blog/2018/09/what-is-salesforce-customer-360.html
https://www.salesforce.com/blog/2018/09/what-is-salesforce-customer-360.html
https://www.gartner.com/doc/3204817/forecast-snapshot-selfservice-data-preparation
https://www.gartner.com/doc/3204817/forecast-snapshot-selfservice-data-preparation

com/openai-assets/research-covers/language-unsupervised/language_ understand-
ing_paper. pdf, 2018.

[58] V. Raman and J. M. Hellerstein. Potter’s wheel: An interactive data cleaning

system. In VLDB, volume 1, pages 381–390, 2001.

[59] S. Sarawagi and A. Bhamidipaty. Interactive deduplication using active learning.

In Proceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 269–278. ACM, 2002.

[60] M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi. Bidirectional attention flow

for machine comprehension. arXiv preprint arXiv:1611.01603, 2016.
[61] W. Shen, X. Li, and A. Doan. Constraint-based entity matching. In AAAI, pages

862–867, 2005.

[62] W. Shen, J. Wang, and J. Han. Entity linking with a knowledge base: Issues,

techniques, and solutions. IEEE Transactions on Knowledge and Data Engineering,
27(2):443–460, 2015.

[63] P. Singla and P. Domingos. Entity resolution with markov logic. In Data Mining,
2006. ICDM’06. Sixth International Conference on, pages 572–582. IEEE, 2006.

[64] M. Stonebraker and I. F. Ilyas. Data integration: The current status and the way

forward. IEEE Data Eng. Bull., 41(2):3–9, 2018.
[65] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic knowledge.

In Proceedings of the 16th international conference on World Wide Web, pages
697–706. ACM, 2007.

[66] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,

and I. Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, pages 5998–6008, 2017.

[67] D. Vrandečić and M. Krötzsch. Wikidata: a free collaborative knowledgebase.

Communications of the ACM, 57(10):78–85, 2014.

[68] S. E. Whang, O. Benjelloun, and H. Garcia-Molina. Generic entity resolution

with negative rules. The VLDB Journal, 18(6):1261, 2009.
[69] A. Williams, N. Nangia, and S. Bowman. A broad-coverage challenge corpus for

sentence understanding through inference. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers), pages 1112–1122. Associ-
ation for Computational Linguistics, 2018.

[70] C. Yan and Y. He. Synthesizing type-detection logic for rich semantic data types

using open-source code. In Proceedings of the 2018 International Conference on
Management of Data, pages 35–50. ACM, 2018.

[71] Y. Yang, W.-t. Yih, and C. Meek. Wikiqa: A challenge dataset for open-domain

question answering. In Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 2013–2018, 2015.

[72] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy. Hierarchical attention

networks for document classification. In Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 1480–1489, 2016.

[73] D. Yogatama, D. Gillick, and N. Lazic. Embedding methods for fine grained entity

type classification. In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers), volume 2, pages 291–296, 2015.

[74] E. Zhu, Y. He, and S. Chaudhuri. Auto-join: Joining tables by leveraging transfor-

mations. Proceedings of the VLDB Endowment, 10(10):1034–1045, 2017.

	Abstract
	1 Introduction
	2 System Architecture
	3 Attribute-Level Entity Matching
	3.1 Training data preparation
	3.2 Hierarchical Model for Attribute-level EM
	3.3 Transfer Learning for EM

	4 Attribute type detection
	4.1 Training data preparation
	4.2 Type-detection Models
	4.3 Transfer Learning for Type Detection

	5 Experiments
	5.1 Type Detection Experiments
	5.2 Attribute-Level Entity Matching
	5.3 Table-level Entity Matching

	6 Related Works
	7 Conclusion and Future Work
	References

