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Object Detection in Videos by High Quality
Object Linking

Peng Tang, Chunyu Wang, Xinggang Wang, Wenyu Liu, Wenjun Zeng, and Jingdong Wang

Abstract—Compared with object detection in static images, object detection in videos is more challenging due to degraded image
qualities. An effective way to address this problem is to exploit temporal contexts by linking the same object across video to form
tubelets and aggregating classification scores in the tubelets. In this paper, we focus on obtaining high quality object linking results for
better classification. Unlike previous methods that link objects by checking boxes between neighboring frames, we propose to link in
the same frame. To achieve this goal, we extend prior methods in following aspects: (1) a cuboid proposal network that extracts
spatio-temporal candidate cuboids which bound the movement of objects; (2) a short tubelet detection network that detects short
tubelets in short video segments; (3) a short tubelet linking algorithm that links temporally-overlapping short tubelets to form long
tubelets. Experiments on the ImageNet VID dataset show that our method outperforms both the static image detector and the previous
state of the art. In particular, our method improves results by 8.8% over the static image detector for fast moving objects.

Index Terms—Object detection in videos, object linking.
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1 INTRODUCTION

D ETECTING objects in static images [1], [2], [3], [4], [5],
[6], [7] has achieved significant progress due to the

emergence of deep convolutional neural networks (CNNs)
[8], [9], [10], [11]. However, object detection in videos brings
additional challenges due to degraded image qualities, e.g.
motion blur and video defocus, leading to unstable classi-
fications for the same object across video. Therefore, many
research efforts have been allocated to video object detection
by exploiting temporal contexts [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21], especially after the introduction of
the ImageNet video object detection (VID) challenge.

Many previous methods exploit temporal contexts by
linking the same object across video to form tubelets and
aggregating classification scores in the tubelets [12], [13],
[14], [15]. They first use static image detectors to detect
objects in each frame, and then link these detected objects by
checking object boxes between neighboring frames, accord-
ing to the spatial overlap between object boxes in different
frames [12] or predicting object movements between neigh-
boring frames [13], [14], [15], [16]. Very promising results are
obtained by these methods.

However, the same object changes its locations and
appearances in neighboring frames due to object motion,
which may make the spatial overlap between boxes of the
same object in neighboring frames not sufficient enough
or the predicted object movements not accurate enough.
This influences the quality of object linking, especially for
fast moving objects. By contrast, in the same frame, it is
obvious that two boxes correspond to the same object if
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Fig. 1. (a) Static image detection: only the detections in the first two
frames are correct. (b) Short tubelet detection: the detection in the third
frame becomes correct due to object linking between the second and
third frame. (c) Short tubelet linking: The detections in all the frames are
correct due to short tubelet linking. Here the short video segment length
is 2. For each frame, we only show the top-scoring box, where green/red
boxes correspond to success/failure examples.

they have sufficient spatial overlaps. Inspired by these facts,
we propose to link objects in the same frame instead of
neighboring frames for high quality object linking.

In our method, a long video is first divided into some
temporally-overlapping short video segments. For each
short video segment, we extract a set of cuboid proposals,
i.e. spatio-temporal candidate cuboids which bound the
movement of objects, by extending the region proposal
network for static images [5] to a cuboid proposal network
for short video segments. The objects across frames lying in
a cuboid are regarded as the same object. The main benefit
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from cuboid proposal is to enable object linking in the
same frame and it alone yields minor detection performance
improvement.

For each cuboid proposal, we adapt the Fast R-CNN [1]
to detect short tubelets. More precisely, we compute the
precise box locations and classification scores for each frame
separately, forming a short tubelet representing the linked
object boxes in the short video segment. We compute the
classification score of the tubelet, by aggregating the clas-
sification scores of the boxes across frames. In addition, to
remove spatially redundant short tubelets, we extend the
standard non-maximum suppression (NMS) with a tubelet
overlap measurement, which prevents tubelets from break-
ing that may happen in frame-wise NMS. Considering short
range temporal contexts by short tubelets benefits detection,
see Fig. 1 (b).

Finally, we link the short tubelets with sufficient overlap
across temporally-overlapping short video segments. If two
boxes, which are from the temporally-overlapping frame
(i.e. the same frame) of two neighboring short tubelets,
have sufficient spatial overlap, the two corresponding short
tubelets are linked together and merged. We exploit the
object linking to improve the classification quality by boost-
ing the classification scores for positive detections through
aggregating the classification scores of the linked tubelets.
As shown in Fig. 1 (c), the detection results can be further
improved by considering long range temporal contexts.

Elaborate experiments are conducted on the ImageNet
VID dataset [22]. Our method obtains mAP 74.5% training
on the VID and 80.6% training on the mixture of VID and
DET. The results outperform both the static image detector
and the previous best performed methods. In particular, our
method obtains 8.8% absolute improvement compared with
the static image detector for fast moving objects.

2 RELATED WORK

The task of object detection in both images [1], [2], [3], [4],
[23], [24], [25], [26] and videos [12], [13], [14], [15], [16], [17],
[18], [20], [21], [27] has been widely studied in the literature.
We mainly review related works on video object detection
and classify them into three categories by how they use the
temporal contexts.
Feature Propagation w/o Object Linking. In [18], [20], [21],
[27], the features of the current frame are augmented by
aggregating features propagated from neighboring frames.
The methods in [18], [27] use the optical flows [28] to
spatially align features in different frames for feature prop-
agation. Bertasius et al. [20] propagate features by using
the deformable convolutional network [29] across space and
time. Xiao and Lee [21] adapts the Conv-GRU [30] to propa-
gate features from neighboring frames. Feature propagation
is also exploited in [17] to speed up the object detection.
The authors propose to compute the feature maps (using
a very deep network with high computation cost) for the
key frames and propagate the features to non-key frames
by computing the optical flows using a shallow network
which takes less time. These methods are different from ours
because they do not perform object linking.
Feature Propagation w/ Object Linking. The tubelet pro-
posal network [16] computes tubelets by first generating

static object proposals in the first frame and then predicting
their relative movements in following frames. The features
of the boxes in the tubelets are propagated to each box for
classification by using a CNN-LSTM network. Apart from
the feature propagation w/o object linking, Wang et al. [27]
also link object in neighboring frames for feature propaga-
tion. More precisely, the relative movements in neighboring
frames are predicted for each proposal in the current frame,
and the features of the boxes in neighboring frames are
propagated to the corresponding box in the current frame
by average pooling. Unlike these methods, we link objects
in the same frame and propagate box scores instead of
features across frames. Besides, we directly generate the
spatio-temporal cuboid proposals for video segments rather
than per-frame proposals in [16], [27].
Score Propagation w/ Object Linking. The method in [14],
[15] proposes two kinds of object linking. The first one tracks
the detected box in current frame to its neighboring frames
to augment their original detections for higher object recall.
The scores are also propagated to improve classification
accuracy. The linking is based on the mean optical flow
vector within boxes. The second one links objects into long
tubelets using the tracking algorithm [19] and then adopts
a classifier to aggregate the detection scores in the tubelets.
The Seq-NMS method [12] links objects by checking the spa-
tial overlap between boxes in neighboring frames without
considering the motion information and then aggregates the
scores of the linked objects for the final score. The method
in [13] simultaneously predicts the object locations in two
frames and also the object movements from the preceding
frame to the current frame. Then they use the movements to
link the detected objects into tubelets. The object detection
scores in the same tubelet is reweighed by aggregating the
scores in some manner from the scores in that tubelet.

Our method belongs to the third category. The main
contribution of our work is that we link objects in the same
frame instead of neighboring frames in previous methods
[12], [13], [14], [15], [16]. In addition, to achieve our goal, we
develop a series of methods such as cuboid proposal net-
work which have not been explored in previous methods.

3 METHOD

The task of video object detection is to infer the loca-
tions and classes of the objects in each frame of a video
{I1, I2, . . . , IN}. To obtain high quality object linking, our
method proposes to link objects in the same frame, which
can be used to improve the classification accuracy.

Given a video divided into a series of temporally-
overlapping short video segments as the input, our method
consists of three stages: (1) Cuboid proposal generation
for a short video segment. This stage aims to generate
a set of cuboids (containers) which bound the same ob-
ject across frames as shown in Fig. 2. See Section 3.1.
(2) Short tubelet detection for a short video segment. For
each cuboid proposal, the goal is to regress and classify a
short tubelet which is a sequence of bounding boxes with
each box localizing the object in one frame. The spatially-
overlapping short tubelets are removed by tubelet non-
maximum suppression. The short tubelet is a representation
for linked objects across frames in a short video segment, as
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Fig. 2. The orange cuboid, bounding the movement of the object, is
the target of the cuboid proposal stage. The tubelet, composed of the
blue object boxes in the video segment, is the target of the short tubelet
objection stage.

illustrated in Fig. 2. See Section 3.2. (3) Short tubelet linking
for the whole video. This stage, depicted in Fig. 3, links
the temporally-overlapping short tubelets to link objects in
the whole video, and refines the classification scores of the
linked tubelets. See Section 3.3. The first two stages, cuboid
proposal generation and short tubelet detection, generate
temporally-overlapping short tubelets, and thus ensure that
we can link objects in the temporally-overlapping frame (i.e.
the same frame) in the short tubelet linking stage.

3.1 Cuboid Proposal Generation
The ground truth bounding cuboid of the objects in a short
video segment, containing K frames {It, It+1, . . . , It+K−1},
is defined as follows. Let b̃ be the 2D bounding box of the
tubelet T̃ = (b̃t, b̃t+1, . . . , b̃t+K−1), a series of all ground
truth boxes in the K frames,

b̃ = BoundingBox(b̃t, b̃t+1, . . . , b̃t+K−1). (1)

Here, b̃τ = (xτ , yτ , wτ , hτ ) in frame τ , denoting the hor-
izontal and vertical center coordinates and its width and
height, is the ground truth box of frame τ . The bound-
ing cuboid in our method is just a collection of K b̃s:
c̃ = (b̃, b̃, . . . , b̃), and thus simplified as a 2D box b̃. Fig. 2
provides the examples of the cuboid and the tubelet in a
short video segment.

We modify the region proposal network (RPN) method
in Faster R-CNN [5] and introduce the cuboid proposal
network (CPN) method for computing cuboid proposals.
Unlike the conventional RPN where the input is usually a
single image, our method takes the K frames as the input
to the CPN. The output is a set of whk cuboid proposals,
regressed from a w × h spatial grid, where there are k
reference boxes at each location, and each cuboid proposal
is associated with an objectness score.

3.2 Short Tubelet Detection
We use the 2D form of the cuboid proposal, as the 2D box
(region) proposal for each frame in this segment, which is
classified and refined for each frame separately.

Considering a frame Iτ in this segment, we follow Fast
R-CNN [1] to refine the box and compute the classification
score. We start with a RoI pooling operation, where the
input is a 2D region proposal b and the response map of

(a) 

(b) 

Fig. 3. Illustration of short tubelet linking. Boxes with the same color
belong to the same tubelet. The short tubelets (a) from two temporally-
overlapping video segments are linked together to form new long
tubelets (b).

Iτ obtained through a CNN. The RoI pooling result is fed
into a classification layer, outputting a {C + 1}-dimensional
classification score vector yτ , where C is the number of
categories and 1 corresponds to the background, as well as
a regression layer, from which the refined box is obtained.

The resulting K refined boxes for the K frames
form the short tubelet detection result over this segment,
T = (bt,bt+1, . . . ,bt+K−1). The classification score of this
tubelet is an aggregation of the scores over all the frames,

ȳ = aggregation(yt,yt+1, . . . ,yt+K−1), (2)

where aggregation(·) could be a mean operation. We em-
pirically find that Aggregation(·) = 1

2 (mean(·) + max(·))
performs the best.

To remove spatial redundant short tubelets, we ex-
tend the standard non-maximum suppression (NMS) al-
gorithm to a tubelet NMS (T-NMS) algorithm to remove
spatially-overlapping short tubelets in the same segment.
This strategy prevents tubelets from breaking by frame-
wise NMS which removes 2D boxes for each frame in-
dependently. The main point lies in how to measure the
spatial overlap between two tubelets. We define it on the
base of the overlap between the boxes in the same frame.
Given two tubelets, Ti = (bti,b

t+1
i , . . . ,bt+K−1i ) and Tj =

(btj ,b
t+1
j , . . . ,bt+K−1j ), the spatial overlap is computed as

overlap(Ti, Tj) = min
τ=t,t+1,...,t+K−1

IoU(bτi ,b
τ
j ), (3)

where IoU(bτi ,b
τ
j ) is the intersection over union between

bτi and bτj for frame τ . We choose this measurement because
two short tubelets are not the same even if only one pair of
corresponding boxes do not have sufficient overlap.

3.3 Short Tubelet Linking

Our method divides a video into a series of temporally-
overlapping short video segments of length K with stride
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K − 1:

S1 = (I1, I2, . . . , IK), (4)

S2 = (IK , IK+1, . . . , I2K−1), (5)
. . . . . . (6)

SM = (I(M−1)K−M+2, . . . , IMK−M+1). (7)

Considering two temporally-overlapping short tubelets: the
ith tubelet from the mth segment and the i′th tubelet from
the (m+ 1)th segment:

T mi = (btmi ,btm+1
i , . . . ,btm+K−1

i ),

T m+1
i′ = (btm+K−1

i′ ,btm+K
i′ , . . . ,btm+2K−2

i′ ),

we link them if the spatial overlap between btm+K−1
i and

btm+K−1
i′ from the temporally-overlapping frame (i.e. the

same frame) is larger than a pre-defined threshold.
We perform a greedy short tubelet linking algorithm.

Initially, we put the short tubelets from all short video
segments into a pool and record the corresponding segment
for each tubelet. Our algorithm pops out the short tubelet T
with the highest classification score from the pool. We check
the IoU of the boxes over the temporally-overlapping frame
between T and its temporally-overlapping short tubelets. If
the IoU is larger than a threshold, fixed as 0.4 in our im-
plementation, we merge the two short tubelets into a single
longer tubelet, remove the box with the lower score for the
overlapping frame, update the classification score for the
merged tubelet according to Eq. (2) for better classification,
and record the corresponding segment (a combination of
the corresponding two video segments). We then push the
merged tubelet into the pool. This process is repeated until
no more tubelets can be merged. Fig. 3 gives the examples
of linking short tubelets to form long tubelets.

The tubelets remaining in the pool form the video object
detection results: the score of the tubelet is assigned to
each box in the tubelet, and the boxes from all the tubelets
associated with a frame are regarded as the final detection
boxes for the corresponding frame.

3.4 Implementation Details

Cuboid Proposal. The base network is ResNet-101 [8] pre-
trained on the ImageNet classification dataset [22]: we re-
move all layers after the Res5c layer and replace the convo-
lutional layers in the fifth block by dilated ones [31], [32]
to reduce the stride from 32 to 16. On the basis of the base
network, we add a convolutional layer with 512 filters of
3 × 3, and use two convolutional layers of 1 × 1 to regress
the offsets and predict the objectness scores for cuboid
proposals. The network is split into two sub-networks: the
first one has two residual blocks pass each frame separately
to obtain frame-specific features which are concatenated as
input of the second sub-network with three residual blocks.

We use four anchor scales 642, 1282, 2562, and 5122

with three aspect ratios 1:1, 1:2, and 2:1, resulting in 12
anchors at each location in total. The length K of each
video segment will be studied in our experiments. The loss
function is the same as that in the standard RPN [5]: the
cross-entropy loss for classification and the smoothed L1
loss for regression. The training targets are the ground truth

cuboids as defined in Eq. (1). The NMS threshold 0.7 is
chosen and at most 300 proposals are kept for the detection
network training/testing. In the testing stage, if the number
of frames in the last segment is smaller than K , we pad the
segment by some frames copied from the last frame.
Short Tubelet Detection. The base network is the same
as it for cuboid proposal. We use RoI pooling to extract
7 × 7 response maps from the layer Res5c, followed by two
fully-connected + ReLU layers (1024 neurons). We use one
fully-connected layer for classification and another fully-
connected layer for bounding box regression. Following the
Fast R-CNN [1], we train the network with online hard
example mining [33]. The difference between our short
tubelet detection training and the Fast R-CNN training is
in the ground truth matching. In particular, we match a
cuboid proposal to a ground truth box if the IoU between
the cuboid proposal and a ground truth cuboid is larger
than a threshold (typically 0.5). This is because the CPN is
trained for cuboids, which makes cuboid proposals hard to
match ground truth boxes directly. This matching strategy
also ensures that a cuboid proposal corresponds to the
same object in different frames. The training targets are
still ground truth boxes (rather than ground truth cuboids)
because we want to get accurate object locations in each
frame. During testing, the T-NMS threshold is set to 0.4.
Training. We use SGD to train the cuboid proposal network
and the short tubelet detection network. We initialize the
weights of the newly added layers by a zero-mean Gaussian
distribution whose std is 0.01. Images are resized to shorter
side 600 pixels for both training and testing. We set the mini-
batch size to 8, the learning rate to 1× 10−3 for the first 40K
iterations and 1 × 10−4 for the next 20K iterations, and the
momentum to 0.9. We do not find the gain from sharing
the base networks for the cuboid proposal network and the
short tubelet detection network, so we simply train them
separately. Our implementation is based on the Caffe [34]
deep learning framework on a TitanX (Pascal) GPU.

3.5 Discussions
Action Detection. The tasks of spatio-temporal action detec-
tion [35] and object detection in videos are similar to some
extent. The purpose of spatio-temporal action detection is to
localize and classify actions in each video frame. Some solu-
tions [35], [36], [37], [38], [39], [40] to action becomes similar
to video object detection and some of them can also be
cast into the object/action linking framework. For instance,
linking through neighboring frames, which is studied in
video object detection [12], [13], [15], [16], is also explored
in [35], [36], [37], [38], [39]. We find that only the contem-
porary work [40] in action detection adopts the scheme
of linking through temporally-overlapping frames, and its
short tubelet detection scheme, similar to [16], is different
from our cuboid proposal based method. It should be noted
that although the solution frameworks of the two problems
are similar in high level, the research focuses are different:
action detection is more about capturing the motion from
the temporal signals and understanding an action from a
single frame can be ambiguous (e.g. sitting down or standing
up) [40], whereas video object detection can be done in a
single frame and the temporal information is introduced to
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Fig. 4. Recall vs. IoU threshold on the VID validation set. We show
the results when keeping 50, 150, and 300 cuboid proposals for IoU
threshold 0.5 to 0.7.

improve results in some frames of degraded image qualities.
As validated in the later empirical results, the state-of-art
action detection method [40], whose framework is similar to
our method, performs poor in video object detection.

Multi-object Issue. It is possible that one cuboid contains
multiple objects, because a cuboid tends to occupy a larger
region than the object. However, as observed in our ex-
periments, this problem has almost negligible influence on
the detection performance. This is because our overlapping-
based short tubelet linking can be accomplished when a
video segment only has two frames. In this case, each
cuboid, in most cases, contains only one object. It is worth
noting that it is not necessary to use video segments longer
than two frames, because short two-frame segments already
support overlapping-based short tubelet linking.

Boundary Issue. It is possible that in some frames an object
may appear or disappear. As a result, the boundary issue
occurs in the short tubelet detection stage. More precisely, in
short tubelet detection, K successive frames share the same
proposals and proposal classification scores. Take K = 2
as an example, there are two boundary frames, i.e. the one
frame before an object appears and the one frame after the
object disappears. The proposal classification scores of the
two boundary frames will be enhanced according to Eq. (2),
which will result in false positives in these two frames.
This problem does not occur in the short tubelet linking
stage because we allow broken links for long range linking.
Actually in real applications, the sequence where the object
continuously appears is not short in most cases, and then
the two boundary frames will not affect the performance
that much. We investigate the VID dataset and find that this
boundary issue only leads to small performance drop (up to
0.57%).

4 EXPERIMENTS

4.1 Dataset and Evaluation Metric

We use the ImageNet VID dataset [22] which was intro-
duced in the ILSVRC 2015 challenge. The dataset contains
30 object classes which cover different movement types

Fig. 5. Visualization of some cuboid proposal results. Each column
corresponds to a short video segment. The green boxes are the ground
truths and the rest are the cuboid proposals. Boxes with the same color
belong to the same cuboid proposals. For each video segment, we only
show five proposals with the highest objectness scores for simplicity.

and different levels of clutterness. The dataset has 5354
videos which are divided into training, validation, and
testing subsets with 3862, 555, and 937 videos, respectively.
Each video has about 300 frames on average. The dataset
provides ground truth object locations, labels, and object
identifications for each frame. Since the annotations for the
testing subset has been reserved for the challenge and the
evaluation server has been closed, we test on the validation
subset as most of the other works.

We use the classical detection evaluation metric for the
VID dataset, i.e. the Average Precision (AP) and mean of AP
(mAP) over all classes, following the previous works tested
on VID [13], [14], [15], [16], [17], [18].

4.2 Ablation Studies
We first conduct detailed ablation experiments to study the
effectiveness of different components in our method. For fair
comparisons, the static image detector baseline mentioned
below is a Faster R-CNN network [5] that uses the same
settings as we referred to in Section 3.4 except for treating
all frames as static images without considering temporal
information.
Cuboid Proposal Recall. We first evaluate the recall of
proposals by CPN. To do this, we generate a collection of
cuboid proposals for each video segment and compute their
recall at different IoU thresholds (0.5 to 0.7) with ground
truth cuboids. Fig. 4 shows the quantitative results on the
validation set. Firstly, we can see that keeping as few as
50 proposals already gives reasonably good performance:
more than 96.46% of the ground truths are recalled for IoU
0.5. Secondly, increasing the number of proposals brings
only marginal gains for lower IoU thresholds (e.g. 0.5) and
gives larger gains for higher IoU thresholds (e.g. 0.7). The
results show that choosing 300 proposals already achieves
satisfactory recall. Thus we only use 300 proposals for
following experiments.

We also show several qualitative results in Fig. 5. The
green boxes are the ground truth cuboids and the rest are the
proposals generated by CPN. In most cases, there is at least
one proposal that has sufficient overlap with the ground
truth cuboids, which shows that the CPN can generate
reliable cuboid proposals and deals well with videos having
single/multiple, small/large, fast/slow moving objects.
Short Tubelet Detection. We then investigate whether the
boxes in the short tubelets for short video segments corre-
spond to the same objects. For a testing video, our method
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Fig. 7. Detection results for NMS/T-NMS and different short video seg-
ment lengths. Video segment length 1 means the static image detector.

first generates a set of short tubelets. Then if all boxes in
the short tubelet localize object accurately and correspond
to the same object, the tubelet is classified as true positive,
and otherwise it is a false positive. After that we compute
the mAP. It is obvious that this is a more strict evaluation
criterion than the one used for video object detection. Fig. 6
shows the results. We can see that using the strict evaluation
protocol only slightly decreases the performance (e.g. from
70.5% to 69.8% or from 70.1% to 68.7%), which justifies that
the linking results of short tubelets are reasonably accurate.

The Influence of Short Video Segment Length. We discuss
the influence of short video segment length. From Fig. 7, we
can see that using video segment lengths of 2, 3, and 5 (with
T-NMS) all improves over the static baseline. The largest
improvement (1.4% mAP) is obtained when the video seg-
ment length is 2. When the video segment length increases,
the performance decreases. In addition, as shown in Fig. 6,
we can see that the short tubelet detection performance for
long video segments is worse than short ones. There are
several reasons explaining this phenomenon. First, longer
segments are more probable to generate oversized proposals
which have smaller overlap with the ground truth boxes in
each frame. Second, the oversized proposals are probable
to overlap with the image regions of other objects, causing

TABLE 1
Detection results (mAP in %) of different methods on the VID validation

set which has four subsets according to the object moving speed or
occlusion. The relative gains over the static image detector baseline (a)
are listed in the subscript. The video segment length is set to 2 for (c-g).

Methods (a) (b) (c) (d) (e) (f) (g)
Union Proposal X

Seq-NMS X X
CPN X X X X

T-NMS X X X
Short Tubelet Linking X X

mAP (%) 69.1 70.9↑1.8 69.3↑0.2 70.5↑1.4 72.1↑3.0 72.6↑3.5 74.5↑5.4
mAP (%) (slow) 76.8 78.5↑1.7 76.7↓0.1 77.7↑0.9 78.5↑1.7 78.8↑2.0 80.4↑3.6

mAP (%) (medium) 68.5 70.4↑1.9 68.9↑0.4 70.2↑1.7 72.9↑4.4 72.6↑4.1 74.7↑6.2
mAP (%) (fast) 47.2 49.4↑2.2 47.7↑0.5 49.4↑2.2 53.3↑6.1 54.5↑7.3 56.0↑8.8

mAP (%) (occluded) 65.4 67.6↑2.2 65.2↓0.2 66.4↑1.0 68.3↑2.9 68.7↑3.3 70.4↑5.0

more ambiguities for accurate localization and classification.
Due to the better object/tubelet detection results, we set the
video segment length to 2 in the following if not specified.
In addition, the video segment length larger than 1 ensures
that we can link objects in the same frame.

NMS vs. T-NMS. We study the influence of NMS/T-NMS
for object detection. The NMS is implemented by removing
boxes for each frame independently instead of removing
short tubelets for video segments in the T-NMS. Fig. 7 and
Table 1 show that T-NMS gives better performance than
NMS, which confirms that compared with NMS handling
each frame independently, simply considering short range
temporal contexts contributes to better detection results.

Short Tubelet Linking. Here, we show the improvement by
linking short tubelets. We evaluate the performance on slow,
medium, and fast ones which are formed according to their
speed as done in [18]. We also evaluate the performance
on occluded objects (i.e. parts of objects are occluded),
following [27] to select 87, 195 frames which have more than
half occluded objects. As we can see in Table 1, compared
with the static baseline, considering both short and long
range temporal information boosts the performance. When
linking objects over the whole video to consider long range
temporal context, there is significant improvements (5.4%
to static and 4.0% to without short tubelet linking). Im-
portantly, the performance gains are mainly from the faster
objects (6.2% for medium and 8.8% for fast). It is natural
that faster objects may have more variations, thus detecting
them depends more on temporal context. Our method also
obtains 5.0% performance gains for occluded objects, which
confirms that our method works well for occlusions. As
short tubelet linking performs much better than others, in
the following we only report results by short tubelet linking.

Ours vs. Seq-NMS [12]. We compare our results with
results by the linking in neighboring frames method Seq-
NMS [12]. As shown in Table 1, the Seq-NMS obtains better
performance than the static baseline, which also confirms
the usefulness of temporal contexts. However, the Seq-NMS
performs much worse than our method. In particular, the
performance improvement for fast moving objects by Seq-
NMS is 2.2%, whereas our method obtains 8.8% improve-
ment. This is because the same object in neighboring frames
has different locations and appearances, which influences
the quality of object linking, especially for fast moving
objects. Thus it is better to link objects in the same frame.

We also combine our CPN and the Seq-NMS for object
linking. More precisely, we detect short tubelets from cuboid
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TABLE 2
Average precision (in %) for different methods on the VID dataset. ? indicates models trained on the mixture of VID and DET datasets.

Method aero antelope bear bike bird bus car cattle dog cat elephant fox g panda hamster horse
Kang et al. [16] 84.6 78.1 72.0 67.2 68.0 80.1 54.7 61.2 61.6 78.9 71.6 83.2 78.1 91.5 66.8
Kang et al. [15]? 83.7 85.7 84.4 74.5 73.8 75.7 57.1 58.7 72.3 69.2 80.2 83.4 80.5 93.1 84.2
Lee et al. [41]? 86.3 83.4 88.2 78.9 65.9 90.6 66.3 81.5 72.1 76.8 82.4 88.9 91.3 89.3 66.5
Zhu et al. [18]? - - - - - - - - - - - - - - -
Feichtenhofer et al. [13]? 90.2 82.3 87.9 70.1 73.2 87.7 57.0 80.6 77.3 82.6 83.0 97.8 85.8 96.6 82.1
Wang et al. [27]? 88.7 88.4 86.9 71.4 73.0 78.9 59.3 78.5 77.8 90.6 79.1 96.3 84.8 98.5 77.4
Bertasius et al. [20]? - - - - - - - - - - - - - - -
Xiao and Lee [21]? - - - - - - - - - - - - - - -
Ours 89.9 77.8 81.7 71.6 71.9 85.3 60.0 69.9 69.4 85.7 79.9 90.2 83.4 93.5 67.3
Ours? 90.5 80.1 89.0 75.7 75.5 83.5 64.0 71.4 81.3 92.3 80.0 96.1 87.6 97.8 77.5
Method lion lizard monkey mbike rabbit r panda sheep snake squirrel tiger train turtle boat whale zebra mAP
Kang et al. [16] 21.6 74.4 36.6 76.3 51.4 70.6 64.2 61.2 42.3 84.8 78.1 77.2 61.5 66.9 88.5 68.4
Kang et al. [15]? 67.8 80.3 54.8 80.6 63.7 85.7 60.5 72.9 52.7 89.7 81.3 73.7 69.5 33.5 90.2 73.8
Lee et al. [41]? 38.0 77.1 57.3 88.8 78.2 77.7 40.6 50.3 44.3 91.8 78.2 75.1 81.7 63.1 85.2 74.5
Zhu et al. [18]? - - - - - - - - - - - - - - - 78.4
Feichtenhofer et al. [13]? 66.7 83.4 57.6 86.7 74.2 91.6 59.7 76.4 68.4 92.6 86.1 84.3 69.7 66.3 95.2 79.8
Wang et al. [27]? 75.5 84.8 55.1 85.8 76.7 95.3 76.2 75.7 59.0 91.5 81.7 84.2 69.1 72.9 94.6 80.3
Bertasius et al. [20]? - - - - - - - - - - - - - - - 80.4
Xiao and Lee [21]? - - - - - - - - - - - - - - - 80.5
Ours 46.9 74.7 49.2 81.4 57.0 74.9 65.2 60.0 48.6 91.0 85.1 82.7 74.0 74.9 91.7 74.5
Ours? 73.1 81.5 56.0 85.7 79.9 87.0 68.8 80.7 61.6 91.6 85.5 81.3 73.6 77.4 91.9 80.6

proposals, and link short tubelets in neighboring frames
similar to the Seq-NMS. Results in Table 1 show that the
CPN+Seq-NMS obtains better performance than the method
that combines the static detector and the Seq-NMS. This is
because our short tubelet detection method can obtain better
short tubelets than the Seq-NMS. The CPN+Seq-NMS per-
forms worse than our method, which further demonstrates
the effectiveness of our linking in the same frame strategy.

CPN vs. Union Proposal. Here, we compare our CPN with
a union proposal baseline. Unlike our method that generates
cuboid proposals by CPN, the union proposal method first
generates proposals for each frame separately using the
static detector, then links proposals in every two neighbor-
ing frames according to the proposal IoU, and finally pro-
duces the union of linked proposals as cuboid proposals. As
shown in Table 1 (f), the detection performance by the union
proposal method is worse than our method. This is because
the union proposal method generate cuboid proposals by
linking boxes in neighboring frames similar to the Seq-NMS
[12], which cannot obtain high quality cuboid proposals
as ours. The cuboid proposal recalls also demonstrate this:
95.1% for IoU threshold 0.5 and 84.9% for IoU threshold 0.7
(union proposal) vs. 96.5% for IoU threshold 0.5 and 90.6%
for IoU threshold 0.7 (CPN).

Comparison with the State-of-the-Art Action Detection
Method [40]. Finally, we compare our result with the result
from [40] which is the state-of-the-art solution in video
action detection and adopts the object/action linking frame-
work similar to our method and [13], [15], [16], by deploying
the method on VID. The result by [40] is 60.2% mAP which
is much weaker than our 74.5%. The key point, making
our approach perform better, is that the object detection
schemes are different. More specifically, our method detects
objects for each frame separately, only using the information
for the individual frame (with the same proposal for two
neighboring frames). [40] localizes action boxes for different
frames jointly, thus resulting in poor localization quality.
More precisely, [40] stacks features from neighboring frames
and uses the stacked features to predict the boxes of these
neighboring frames jointly, losing the explicit frame-wise
information for predicting the corresponding action box.
This is also observed in [18], [27].

4.3 Results

We compare our object detection results with the current
state of the arts in Table 2. First, when only training on the
VID dataset, our method obtains the superior result 74.5%
mAP. To pursue the state-of-the-art detection performance,
we follow the previous methods [13], [15], [18] to use the
mixture of ImageNet VID and DET datasets for training
the detection network, and utilize the standard multi-scale
training and testing [42]. As we can see, comparing our
80.6% with other methods using the same ResNet-101 net-
work [13], [18], [21], [27], our method obtains better per-
formance, which confirms the effectiveness of our linking
strategy. Importantly, compared with [13], [15], [16], [18],
[20], [21], [27] that link objects in neighboring frames, our
linking objects in the same frame strategy obtains better per-
formance, which demonstrates that our method can obtain
higher quality object linking results.

In particular, the methods in [18], [20], [21], [27] combine
feature propagation and the score propagation method Seq-
NMS [12] to obtain their results. Feichtenhofer et al. [13]
use more anchor scales to obtain better proposals and add
a tracking loss to learn better features for performance
improvement. There are potential benefits from learning
better features in the proposal and detection stages by
incorporating other methods such as feature propagation
and extra losses into our method.

4.4 Qualitative Results

Fig. 8 visualizes several detection result comparisons be-
tween the static image detector and our method. From the
first two rows, we can see that the static method fails to
detect the red-panda when there are severe motion blurs
and occlusions. This is reasonable because the appearance
features have been severely degraded in this situation. After
applying the object linking and rescoring, our method suc-
cessfully classifies the target in the challenging frames. In
addition, it is common that the static detectors may confuse
with similar classes (e.g., bikes vs. motor-bikes, cats vs.
dogs) especially when a frame has low image quality. This
problem can also be alleviated by rescoring the detections
in the whole video because some frames have correct classi-
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Fig. 8. Example detection results of the static detector and our method (only the top-scoring boxes around objects are shown). Each row shows
the results of sampled successive frames. For the linking results, boxes with the same color belong to the same tubelet in the video. Our method
outperforms the static image detector when there are motion blurs, video defocus, and occlusions in the video. Best viewed in color.

fications and can propagate these scores to the challenging
frames by object linking.

To show that our cuboid proposal network (CPN) en-
abling linking in the same frame leads to better localization
accuracy, Fig. 9 visualizes several object linking result com-
parisons between our method and the baseline approach
of static detector + linking in neighboring frames over two
examples. For (a), we generate per-frame detection results
using static image detector and then link detection boxes in
neighboring frames by Seq-NMS [12]. For (b), the results are
from our approach without later short tubelet linking. One
object in each frame in the second to fourth columns has
two detected boxes. For (c), the final results are from our
approach with short tubelet linking. From the two examples,
we can see that the localization accuracy in (a) is poor be-
cause of linking in neighboring frames. Here are the analy-
ses. In comparison to the per-frame region proposal network
in static detector where the proposals across different frames
are independent, the major benefits from CPN include: (1)
The proposals are associated. A cuboid proposal consists
of two per-frame proposals that are thought to be about
the same object, and the resulting detected boxes (predicted
for each frame separately) are also thought to be about the
same object; and (2) Two nearby cuboid proposals (as well
as the resulting detected boxes), e.g., one corresponds to the
(n − 1)-th and n-th frames, and the other corresponds to

the n-th and (n + 1)-th frames, are spatially-overlapped in
the n-th frame. Consequently, our approach is able to link
the detected boxes in the same frame. The advantage in our
linking in the same frame scheme is that we do not need
to care about the object movement. In contrast, linking the
detected boxes obtained from static detector in neighboring
frames might suffer from the object movement and harms
the localization accuracy.

4.5 Runtime

For the case of two frame segments, our method takes
0.35s per-frame for testing which is comparable to 0.30s
by the static baseline. The small extra cost comes from the
cuboid proposal generation procedure: a small sub-network
processing the two frames separately. The extra time cost is
small for the detection stage due to the shared convolutional
feature map, the computation time of T-NMS is almost the
same as the NMS, and the short tubelet linking is very
efficient (about 10ms per-frame). The speed becomes even
faster than the baseline when the short video segment length
is larger than 2 (e.g. 0.27s and 0.23s for video segment length
3 and 5 respectively), because the CPN generates cuboid
proposals for all the frames in the segment by computing
the features once.
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(a)

(b)

(c)

(a)

(b)

(c)

Fig. 9. Example object linking results of (a) static detector + Seq-NMS [12], (b) short tubelet detection, and (c) short tubelet linking (only the top-
scoring links around objects are shown). Each row shows the results of sampled successive frames. Boxes with the same color belong to the same
tubelet. The results of the baseline approach in (a) are poor in localization accuracy due to linking in neighboring frames. In contrast, our results in
(c) performs better because CPN enables the later linking in the same frame scheme. Best viewed in color.

5 CONCLUSION

In this paper, we explore to link objects in the same frame
for high quality object linking to improve the classification
quality. Our method has three main components to achieve
our goal: (1) cuboid proposal network, (2) short tubelet
detection, and (3) short tubelet linking. Our method obtains
the state-of-the-art video detection performance on the VID
dataset.

In the future, we will extend our method to handle
the two main issues that our approach has: the multi-
object issue and the boundary issue. The potential way
for the first issue is to generate multiple detection boxes
from one proposal. The potential way for the second issue
is to recheck the boxes in boundary frames separately. In
addition, considering that feature propagation and score

propagation are complementary to each other as pointed
out in [18], [20], [21], [27], we will explore how to incorpo-
rate feature propagation and score propagation for further
performance improvement.
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