PANOPLY: Low-TCB Linux Applications
with SGX Enclaves

Shweta Shinde Dat Le Tien'

Shruti Tople Prateek Saxena

National University of Singapore University of Oslo National University of Singapore National University of Singapore

shweta24@comp.nus.edu.sg dattl@ifi.uio.no

Abstract—Intel SGX, a new security capability in emerging
CPUs, allows user-level application code to execute in hardware-
isolated enclaves. Enclave memory is isolated from all other
software on the system, even from the privileged OS or hypervi-
sor. While being a promising hardware-rooted building block,
enclaves have severely limited capabilities, such as no native
access to system calls and standard OS abstractions. These OS
abstractions are used ubiquitously in real-world applications.

In this paper, we present a new system called PANOPLY which
bridges the gap between the SGX-native abstractions and the
standard OS abstractions which feature-rich, commodity Linux
applications require. PANOPLY provides a new abstraction called a
micro-container (or a “micron”), which is a unit of code and data
isolated in SGX enclaves. Microns expose the standard POSIX
abstractions to application logic, including access to filesystems,
network, multi-threading, multi-processing and thread synchro-
nization primitives. Further, PANOPLY enforces a strong integrity
property for the inter-enclave interactions, ensuring that the
execution of the application follows the legitimate control and
data-flow even if the OS misbehaves. Thus, commodity Linux
applications can enhance security by splitting their application
logic in one or more microns, or by importing micron-libraries,
with little effort. In contrast to previous systems that enable
comparable richness, PANOPLY offers two orders of magnitude
lower TCB (about 20 KLOC in total), more than half of which
is boiler-plate and can be automatically verified in the future.
We demonstrate how PANOPLY enables much stronger security
in 4 real-world applications — including Tor, OpenSSL, and web
services — which can base security on hardware-root of trust.

I. INTRODUCTION

Privilege separation and isolation are cornerstones in de-
sign of secure computer systems. Machine isolation is used
for designing fault-tolerant network services, virtualization
for isolating OSes, library OSes and containers for isolat-
ing applications. However, these primitives trust a privileged
software component (e.g. a hypervisor or OS) for ensuring
their claimed security guarantees. For several decades, malware

TThis work was done while the author was a visiting graduate intern at
National University of Singapore.

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.

NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA

Copyright 2017 Internet Society, ISBN 1-1891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23500

shruti90@ comp.nus.edu.sg

prateeks @comp.nus.edu.sg

has been a threat to privileged software layer, often targeting
vulnerabilities in privileged code such as the OS. In this paper,
we envision providing the benefits of privilege separation and
isolation based on a strong line of defense against OS-resident
malware. Such a defense is based on a new trusted computing
primitive, which can isolate a sensitive user-level application
from a compromised OS. Hardware support for this primitive
has become available in commodity CPUs in the form of
Intel SGX, which can run such hardware-isolated application
instances in enclaves [40]. Intel SGX provides a hardware-
isolated memory region which can be remotely attested. SGX
hardware supports execution of many enclaves simultaneously.

Recent research has demonstrated how to enforce useful
low-level guarantees using SGX — for instance, protection
of certain cryptographic keys in memory [30], [32], [42],
[44], [47], verifiable execution of code snippets [51], and
authenticated data delivery [56]. While these properties are
useful, their applicability has been limited to small, selected
pieces of application logic rather than end-to-end applications.
For larger, richer applications, the best known approache has
been to use library OSes [21], [52]. In such architectures, the
application is bundled together with a large TCB of millions
of lines of code, emulating the OS logic inside the enclave.

In this paper, we propose a new system called PANOPLY,
designed with an eye towards minimizing TCB and yet offering
rich OS abstractions to enclaved code. PANOPLY introduces
a new abstraction we call a micro-container (or “micron”
for short). A micron is a unit of application logic which
runs on the Intel SGX hardware enclaves — thus it offers
a strong isolation against an adversarial OS. Microns expose
the rich gamut of standard Linux abstractions to application
logic, much more expressiveness in enclave-bound code than
several previous systems (e.g. Haven). For instance, micron-
enabled logic can readily use multi-processing (fork—exec),
multi-threading, event registration / callbacks (e.g. signals), in
addition to supporting the standard Linux system calls.

PANOPLY prioritizes a minimal TCB over performance
as a goal. It uses a simple design philosophy of delegate-
rather-than-emulate that contrasts previous systems (e.g. li-
brary OSes). PANOPLY delegates the implementation of OS
abstractions to the underlying OS itself, rather than emulating
it inside the enclave. PANOPLY microns implement a small
set of checks which enables them to detect malicious re-
sponse from the OS, and abort if so. In line with this design
choice, unlike library OSes, PANOPLY does not “virtualize”
microns by giving them each their own namespace. This choice
eliminates a massive amount of namespace management logic

that emulates the underlying OS from the enclave TCB. With
these simple design principles, we show that the total TCB
of PANOPLY can be about 20 KLOC (apart from the original
application logic), which is 2 orders of magnitude smaller than
previous LibraryOS systems. We believe such TCB is within
realm of automated verification in the near future.

A second feature of PANOPLY is that it enables a plug-
and-play architecture, wherein security architects can create
as many microns as needed and host them across multiple
OS processes. Such a design keeps compatibility with multi-
process and multi-threaded application designs — several
applications such as servers inherently use multiple processes
for security (e.g. for privilege separation), performance, as well
as for isolating crash failures (better availability). Security
architects can split monolithic applications across multiple
microns easily, or import security-sensitive libraries that are
implemented as microns. The PANOPLY architecture allows
analysts to partition application by adding modest amount
of annotation to source code and compiling with PANOPLY’s
infrastructure. PANOPLY instruments each micron to ensure
that all inter-micron control and data-flow interactions are
secured against the OS. In effect, PANOPLY ensures that an
application partitioned into multiple microns will either exe-
cute with the same control and data-flow as the unpartitioned
original application, even under adversarial influence, or abort.
To achieve such a guarantee, we propose defenses that extend
beyond simple data tampering attacks (e.g. Iago attacks [26])
— our defenses enforce control and data-flow integrity for
inter-enclave transitions, with freshness and authentication
guarantees built-in.

PANOPLY microns expose expressive OS abstractions to ap-
plication logic. To support these, we make several conceptual
advances in its design that are not offered by off-the-shelf Intel
SDKs for SGX [8]. First, microns expose the POSIX abstrac-
tion of creating threads on demand, dynamically requesting
as many threads as the application needs. Previous systems
have limited this design to a pre-determined number of static
threads executable in an enclave. PANOPLY runtime library
multiplexes a dynamic number of threads over multiple under-
lying enclaves. Second, PANOPLY proposes several designs for
supporting the semantics of fork—-exec. PANOPLY allows
microns to be hosted across multiple OS processes. Third,
PANOPLY supports the pthreads synchronization interfaces,
which includes mutexes, barriers, and so on using SGX-
specific abstractions. Finally, as explained earlier, PANOPLY
automatically embeds checks at the micron interfaces, ensuring
that inter-enclave control and data-flow conforms to that of the
original code.

Results. We show 4 case studies of real applications that
use expressive features. The first case study is Tor, a popular
distributed anonymous communication service [11]. We show
how Tor can leverage PANOPLY micron to provide a strong
security for its directory service protocol, basing security on
the SGX hardware-root-of-trust. The second case study is on
a web-server called H20, which can self-attest the correctness
/ integrity of the served content (e.g., such as in CDNs,
serving static content over HTTPS). We also support two case
studies of popular libraries, OpenSSL and FreeTDS, that can
be imported as microns in other host application. The libraries
can be secured to protect secret keys and provide higher-

level protocol guarantees for their host application beyond
key-protection. In all of our case studies, the porting effort
is modest, incurring average 905 lines of code changes.

We have compared PANOPLY application to a state-of-
the-art Linux library-OS called Graphene-SGX [3], [52] that
supports SGX hardware. First, PANOPLY applications have two
order of magnitude smaller TCB. Second, we find that the
performance of the two on our case studies is comparable. We
provide a detailed breakdown of the performance overheads
on real hardware in both systems. We find that most source
of overhead is from the Intel’s SDK, incurred for creating and
initializing empty enclaves. PANOPLY-specific code introduces
an additional average CPU overhead of 24%.

Contributions. In summary, we make the following contribu-
tions in this paper:

e PANOPLY System. PANOPLY is the first system which
supports applications with multi-threading, multi-
processing, event management in enclaves. Our inter-
micron flow integrity ensures that the applications
preserve the high-level guarantees.

o Usage in real-world Applications. We retrofit 4 appli-
cations into PANOPLY architecture that require on an
average 905 lines of code changes.

e FEvaluation. After porting to PANOPLY, we report a
performance overhead of 24% and an average TCB in-
crease of 19.62 KLOC per application. In comparison
to previous systems, PANOPLY reduces the TCB by 2
orders of magnitude while lowering the performance
overhead by 5 — 10%.

II. PROBLEM
A. Background: Intel SGX Enclaves

Existing hardware-based / hypervisor-based defenses
against compromised OSes provide an isolated execution space
for executing user-level applications. In the case of SGX,
these are referred to as enclaves, and a single application
process can comprise of one or more enclaves. SGX assures
the confidentiality and integrity of all the sensitive code and
data contained within an enclave. The Intel SGX SDK provides
a function call mechanism for SGX applications via ECALL
and OCALL. Specifically, an ECALL is a trusted function call
that enters an enclave and OCALL is an untrusted function call
that leaves an enclave [17]. Thus, a user-level application can
invoke code inside an enclave via an Enclave Call (ECALL)
and get the return values. The enclave can invoke an Outer
Call (OCALL) to execute a function in the untrusted portion of
the application and receive a return value. The enclave code
can access all the application memory outside whereas, the
non-enclave code cannot access the enclave’s memory. SGX
CPU supports local and remote attestation, so as to check if
the enclave has loaded the correct code. To this end, the CPU
computes a measurement by securely hashing the enclaves
initial state. Thus an entity can attest the measurement to verify
the initial state of the enclave confirming that the initial state
is “clean” [18], [23]. The enclave is created and loaded as
expected without OS tampering.

lsession_t session;

2certificate_credentials_t xcred;

3/* Specify the callback function to be usedx/
44#begin privilege_enclave

5 certificate_set_verify_function (xcred, _callback);
6#end privilege_enclave

7/*% Initialize TLS session x/

8init (&session, TLS_CLIENT) ;

9/* Set non-default priorities x/

10if (non-default)

Il #begin privilege_enclave

12 priority_set_direct (session, "$UNSAFE_RENEGO");
13 #end privilege_enclave

l4err = handshake (session);

I5... }

16

17static int _callback (session_t session) {

18 x509_crt_t cert;

19 const char xhostname;

20 ...
21 #begin privilege_enclave
22 ret = x509_crt_check_hostname (cert, hostname);

23 #end privilege_enclave
24 if (!ret)
25 return CERTIFICATE_ERROR;

27 /% Validation successful, continue handshake */
28 return 0;

33 tds_mutex_lock (&tls_mutex);
34 if (!'tls_dinitialized) {

35 SSL_library_init () ;

36 tls_initialized = 1;

37 }

38 tds_mutex_unlock (&tls_mutex) ;

39...}

Fig. 1. Code snippet from FreeTDS application for certificate validating of

remote database server’s certificate using OpenSSL. The #pragmas are added
while porting the application to PANOPLY.

B. Attacks & Challenges

To enable end-to-end security guarantees in real applica-
tions, we aim to address three main challenges: (1) support for
rich OS abstractions, (2) secure interactions between multiple
enclaves, and (3) a minimal additional TCB. We demonstrate
the gap in existing abstractions to meet these challenges with
an example, for ensuring higher-level security properties.

Example. Consider FreeTDS [2], an application that imple-
ments a streaming protocol (TDS [9]) for remote databases.
Figure 1 shows a FreeTDS code snippet, which shows that the
application uses the OpenSSL SSL/TLS library to establish a
secure channel with a remote database. Each time it connects
to a remote database, FreeTDS checks if the remote database
is an authorized service and has a valid SSL certificate, by
connecting to trusted certificate manager service. Our goal is
to fortify the FreeTDS application against a compromised OS,
ensuring a key end-to-end security property — the FreeTDS
application accepts a certificate as valid if and only if the
original application would have accepted it as is valid. The
assumption is that the original application is bug-free, but the
system administrators wish to secure it against the hosting
service provider’s infrastructure, which may be infected. We
can achieve such a defense by using Intel SGX enclaves.

In this example, we wish to run the FreeTDS application
and the trusted certificate manager, each in their own separate

Unprivileged
Enclave

Privileged
Enclave

certificate_set_verify_function()

N

x509_crt_check_hostname()

: . x509_crt_check_hostname() .

®):

__________________ ! false

. . priority_set_direct
(c) . : (“UNSAFE_RENEGOTIATION”)

Fig. 2. (a) Call dropping, b) call spoofing and c) call replay attacks perpetrated
by the OS during inter-enclave interactions.

SGX enclaves. The trusted certificate manager service is shared
across many applications, and by principle of least privilege,
is the only service with access to the “root certificate”. As
can be seen in Figure 1, the FreeTDS application validates a
presented certificate by invoking the trusted certificate manager
via standard OpenSSL interfaces. Specifically, the FreeTDS
application does this in 3 steps: it registers a callback with
the trusted certificate manager (Line 5), passes configuration
options (Line 12), and invokes the certificate check (Line 22).

Attacks on Inter-Enclave Interactions. Note that the
FreeTDS application enclave invokes the certificate manager
enclave several times, passing rich data. Such communication
necessarily goes through an adversarial channel under the OS
control (e.g. an IPC call or control transfer in unprotected
code). The OS knows the standard OpenSSL interfaces and
the semantics of its interfaces. If enclaves use the standard
interfaces of the Intel SDK, the OS can subvert the ap-
plication’s guarantee by causing FreeTDS to accept invalid
certificates. We show concrete attacks on this interface in
Figure 2. First, the OS can drop the call on Line 5, thereby
disallowing the application to register a callback. The attack
is powerful because abort fails silently, with the effect that
the certificate validity checks on Line 22 never execute. A
second attack opportunity is to effect a session downgrade
attack, by forcing the certificate manager to re-negotiate weak
SSL parameters [12], [13]. The SSL protocol has a known flaw
called a session re-negotiation vulnerability, which is patched
by the call on Line 12. However, the OS can abort this message
and this causes the certificate validation to proceed with unsafe
defaults silently. As a third example, the OS can perform
a session downgrade by replaying a call from a different
(previous) session. Specifically, the OS can record the inter-
enclave message transcript from a different session consisting
of a invalid certificate with weaker parameters (requesting
UNSAFE_RENEGOTIATION). The previous session would
have failed; however, the OS can replay one recorded message
from that transcript in a session with a strong certificate to
cause it to downgrade. A final and fourth attack is on Line 22.
This is a data replay attack wherein the certificate manager
returns false (signaling an invalid certificate), but the OS
drops the message and replays a true return value from a
previous execution run.

These attacks highlight that applications that aren’t de-
signed with the objective of running on enclaved-abstraction

TABLE 1. COMPARISON OF PROGRAMMING CONSTRUCT SUPPORT AND
SECURITY PROPERTIES OF PANOPLY AND OTHER EXISTING SYSTEMS

Multi Thread
Abstr Sys Threading Synch Fork STI Low
actions Calls Stat Dyn Mutex | All Exec TCB
Intel SDK X v X v X X X v
Haven v v v v v X X X
SGX Graphene NV v v v v v X X
PANOPLY v v v v v v v 4

will be susceptible to subtle vulnerabilities. Further, there is
gap between the SGX-native low-level guarantees (of remote
attestation and memory isolation) and those needed to ensure
safe end-to-end execution of applications. Several previous
works have enforced confidentiality of private keys and au-
thenticated data delivery, while our emphasis is on securing
the end-to-end application semantics.

Supporting Rich OS Abstractions With Low TCB. The
example highlights an even more basic challenge in supporting
real-world applications. The FreeTDS code snippet makes
extensive use of OS abstractions. The code is multi-threaded,
where a new thread of execution is dynamically created for
each request to initiate connection with a new server. Line
33—38 in Figure 1 shows that all threads use mutex objects for
synchronizing operations such as initializing the TLS library.
The original application is not designed to be executed in
multiple enclaves, which do not share any address space
(unlike threads). The application assumes it can create an
arbitrary number of threads at runtime on-demand. FreeTDS
uses standard system calls, such as gethostname () and
poll () (implicitly for callback registrations). However,
SGX and Intel SDK do not provide native support for any
of these abstractions. Table I shows the gap between the
expressiveness offered by the Intel SDK, library OSes and the
requirements of real-world applications. The research question
is how to enable support for such abstractions with minimal
effort, enabling security architects to quickly experiment with
ways to privilege-separate their applications.

The state-of-the-art solutions for offering rich expressive-
ness rely on library OSes (such as Haven [21] and Graphene-
SGX [52]). Library OSes provide an abstraction of a vir-
tualized process namespace to application code. Namespace
virtualization requires emulating much of the OS logic within
enclaves. This approach offers good compatibility with existing
code; however, it comes at the peril of bloating the enclave
TCB. Library OSes have reported TCB sizes in millions of
lines code. Systems which have been formally verified have
been smaller by orders of magnitude [37]; thus, library OSes
are not within the realm of practical verification in the near
future.

III. SOLUTION
A. PANOPLY Overview

PANOPLY provides a new design point in systems that
enable rich Linux applications on SGX enclaves. PANOPLY
provides the abstraction of a micro-container or micron, which
is a unit of application logic that is enclave-bound.

A Linux process can import or host one or more microns.
Microns do not get their own virtualized namespace, but
instead share it with their host Linux process; that is, they

TABLE II. POSIX API SUPPORT IN PANOPLY. COLUMN 3 DENOTES

NUMBER OF APIS FOR SUB-CLASSES OF SERVICES. COLUMN 4 LISTS IF

THE PANOPLY CAN GUARANTEE TO PRESERVE THE SEMANTICS OF THE
SERVICE (SAFE) OR NOT (WILD).

POSIX Service Description # of API
Standard APIs | Type
Process Creation and Control 5 Safe
Signals 6 wild
Core Timers 5 wild
Servi File and Directory Operations 37 Safe
ervices -
Pipes 4 Safe
C Library (Standard C) 66 wild
I/0O Port Interface and Control 40 wild
Real-Time Signals 4 wild
Clocks and Timers 1 wild
Real-time §$maph0res _ 2 Safe
Extensions N ge Passing 7 Safe
Shared Memory 6 Safe
Asynchronous and Synchronous I/0 29 wild
Memory Locking Interface 6 wild
Thread Creation, Control & Cleanup 17 Safe
Threads Thread Scheduling'] 4 wild
Extensions Thread Synchronlzatlon 10 Safe
Signal Delivery 2 wild
Signal Handling 3 Safe
Total Total 254

invoke system calls (e.g. filesystem, network, and so on)
just as non-enclave code in the same Linux process would.
Microns do have their private address space, which is isolated
in enclaves, and can share an arbitrary amount of public
address space with the host process. By default, the code and
data of the micron-based logic is allocated in private memory.
There exists an explicit PANOPLY API by which micron can
communicate with code outside.

Micron code has access to a rich subset of the POSIX v1.3
API, listed in Table II which PANOPLY supports. The exposed
API includes system calls for filesystems, network, multi-
processing, multi-threading, synchronization primitives (via
pthreads), signals and event management (via libenv).
The service API’s are classified as SAFE or WILD based on
whether PANOPLY guarantees to preserve their semantics or
not. Specifically, for SAFE API’s PANOPLY guarantees POSIX
semantics and application can assume that semantic correct-
ness (barring aborts). The API design choice is intentionally
chosen so as to eliminate much of shared libraries (e.g. 1ibc)
from the TCB of the enclave-enabled micron code. Figure 3
shows parts of a standard Linux application that would be in
the TCB (shaded grey) in our architecture. PANOPLY embeds
a thin shim library which interfaces with the PANOPLY APIL.
The shim library is added to each enclave at compile-time, and
is largely transparent to the developer.

Compiled micron code includes PANOPLY’s shim library,
which plays a key role in protecting against a malicious
OS. First, the shim library acts as controller or manager and
provides micron management functionalities such as support
to create / destroy microns and providing identity management
for microns, using SGX-specific features. More importantly,
the shim code enforces a stronger integrity property across all
microns in an application — it ensures that control and data-
flows between microns conforms to the control and data-flow
of the original application. We call this the inter-micron flow
integrity property. The shim ensures inter-micron flow integrity
by establishing an authenticated secure-channel protocol be-
tween microns automatically. To assert the importance of this

Micron

I Enclave-bound Logic I Enclave

I Panoply Shim Lib ”TrustedSDKlei

Non-enclave libc.so Untrusted
: Logic ’ SDK Lib :

Linux User-level Process

Linux Kernel SGX Driver

Fig. 3. Overview of codename architecture. All the regions within an enclave
are trusted, the regions shaded as black are untrusted, grey shaded regions are
newly added / modified as a part of codename system.

global property, we demonstrate real attacks on several case
studies similar to those in Section II-B, which succeed even if
memory isolation properties are enforced locally on all of the
enclaves. Second, the shim library performs checks for Iago
attacks [26], safeguarding against low-level data-tampering for
OS services. It acts as an interface to invoke other services such
as threading, synchronization and event management.

To achieve low TCB, PANOPLY chooses a delegate-rather-
than-emulate strategy. First, PANOPLY delegates all the system
calls to the untrusted OS. PANOPLY intercepts the calls to
the glibc API, which allows us to leave the glibc library
outside enclave TCB (Figure 3). Second, PANOPLY re-thinks
the design of threading, forking and other interfaces so as
to not emulate the entire OS logic in the TCB, but instead
delegating it to the OS. PANOPLY delegates the scheduling
logic with the underlying OS. Thus, the application scheduling
is not guaranteed to be same as the original code (hence API
is WILD). However, this trade-off is justified because OS can
anyways launch a DOS attack and is in-charge of enclave
scheduling. As an advantage, it allows us to place minimal
number of checks within the enclave, thus significantly re-
ducing the TCB. Lastly, PANOPLY modularly includes API
calls in the enclave i.e., only the APIs which are used by a
given enclave-bound code are included inside the enclave. This
choice is inspired from micro-kernels to reduce the TCB.

B. Usage Model & Scope

PANOPLY consists of a set of runtime libraries (including
the shim library), and a build toolchain that assists developers
in preparing microns. PANOPLY takes as input the application
program source code and per-function programmer annotations
to specify which micron should execute that function. Thus,
if the analyst wishes to partition the application into multiple
microns, she can annotate different functions with correspond-
ing micron identifiers. Functions that are not marked with
any micron identifiers can be bundled and delegated to one
separate micron by default. In cases that PANOPLY is not
able to identify the micron for a function, it prompts the
analyst for providing additional annotations or sanitization
code. PANOPLY instruments the application, creating multiple
micron binaries, each embedded with its own shim code. Each
micron is compiled as a library package (e.g. micron-A. so).
It consists of 3 libraries internally: PANOPLY shim library, the
Intel SDK library and any other libraries that micron code
uses. Figure 4 shows the schematic view of the PANOPLY

Source 1) Compiler 5) Creating
Code Instrumentation Microns

Enclave-bound

Panoply APl |+> T
Intel
Checks Shim SDK

Panoply

Panoply
Application

Programmer
Annotations

Fig. 4. System Overview. PANOPLY takes in the original program and the
partitioning scheme as input. It first divides the application into enclaves and
then enforces inter-micron flow integrity, to produce PANOPLY application.

system. The compilation phase adds code for inter-micron flow
integrity and PANOPLY APIs.

Out-of-scope Goals. The choice of partitioning scheme is or-
thogonal to our work and is left to the security analyst. Existing
tools for program partitioning could be leveraged here [22],
[24]. Instead, PANOPLY focuses on porting the partitioned code
to enclaves. PANOPLY does not reason about the functional
correctness of original application implementation. Any bugs
or vulnerabilities in the original application would persist in the
micron-based application. PANOPLY cannot prevent denial-of-
service attacks from the OS, since SGX itself does not provide
this guarantee. Our system currently does not take special
measures to thwart enclave side-channels. However, one can
employ orthogonal defenses for enclave side-channels [30],
[44]. Lastly, we blindly trust all analyst-inserted annotations
and instrumentation to be secure and correct. We trust the
SGX hardware, which includes a secure implementation of
(a) isolated memory, (b) cryptographic attestation for enclaves,
and (c¢) random-number generator.

IV. PANOPLY DESIGN & SECURITY

In designing PANOPLY, we aim to support essential UNIX
abstractions as well as provide necessary security guarantees
for single or multi-micron execution of an application. We
implement several checks within each micron, which allows
us to adhere to delegate-rather-than-emulate design decision.
We describe the important design choices in PANOPLY and its
security guarantees.

A. Runtime Micron Management

PANOPLY processes the source code along with user an-
notations to identify how the analyst wishes to separate the
application logic among microns. As done in several other
works [24], [35], PANOPLY partitions the micron application
code accordingly. PANOPLY instruments it to output a micron
binary file (a shared library) at the end. The PANOPLY shim
library ensures that the final micron code supports secure
micron initialization and inter-micron flow integrity.

Micron Initialization and Identity Establishment. PANOPLY
creates an instance of a micron within an enclave via Intel
SGX SDK API which takes the micron binary file as an input.
PANOPLY generates the micron binary file based on the devel-
oper annotations provided in the source code. If the micron is
created successfully, the hardware returns an identifier which
is a unique value for that instance of micron. The OS assigns a

Micron A Micron B Micron C
[]
Call foo) :
i N
M Execute .
' 00() Call barj() .
Wait for Wait for Execute
Ack_foo] ACkJ’a"j . . bar()
if o : .
j=jr = =g
: Execute Send Ackj)alrj :
. foo()
i=i+l . Send Ack_foo Dizitl
. i .

@ o ®

Fig. 5. (a) Micron A is a sender micron that makes a call to foo function
in micron B. (b) Micron B is both a sender as well as receiver micron that
executes function foo and invokes function bar in micron C. (¢) Micron C is
a receiver micron that executes function bar.

handle for this identifier, however PANOPLY does not trust the
OS handles. Instead, PANOPLY shim library assigns a micron-
identity for each micron instance and internally maintains a
mapping of this name and the hardware identifier returned
by SGX. PANOPLY uses this micron-identity for all further
inter-micron interactions. Before starting any interactions, the
PANOPLY shim code attests other microns by the processor
for an attestation quote and verifies the measurement from the
public attestation service [33].

Inter-micron Flow Integrity. Inter-micron flow integrity en-
sures that the application exhibits the same control and data
flow across multi-micron execution, as intended in the orig-
inal application. In our design, we consider the interaction
between multiple microns as a communication protocol where
the adversarial OS acts as a mediator between the microns.
PANOPLY guarantees that micron execution is protected against
attacks such as silent aborts or message replay from the
underlying OS. For this purpose, PANOPLY enforces a secure
and authenticated inter-micron protocol with the following
design.

Confidentiality & Integrity: During inter-micron commu-
nication, the (mediator) OS can observe all the information
that is exchanged between the microns. Moreover, it can
change the values of the incoming and outgoing messages from
the microns. To block this capability of the OS, PANOPLY
performs authenticated encryption of every incoming and
outgoing message of the micron.

Sender / Receiver Authentication: When a micron is ex-
ecuting, the OS can impersonate to be a sender micron and
spoof spurious calls to a receiver micron (for e.g., Line 13 in
Figure 1). It can also impersonate to be a receiver and hijack all
the micron-bound calls. To prevent such spurious messaging
from the OS, PANOPLY ensures that only a pre-defined set of
authorized microns included in the application interact with
each other. For this, it makes use of the secure mapping of
micron identities to its instance which is established during
the micron initialization phase. PANOPLY shim code checks the
authenticity of each micron-identity for all call-rets points
— only legitimate call sites can invoke the respective functions
and return back. Further, it also checks if a particular micron is
authorized to perform a given interaction. PANOPLY discards
messages from unauthorized microns and aborts execution.

Message Freshness: The OS can replay a previously cap-
tured message to arbitrarily invoke functions of the receiver
microns (for e.g., line 25 in Figure 1). To prevent against
replay attacks, PANOPLY ensures that every call message
from one micron to another is distinctly identifiable. This
allows us to maintain the freshness guarantees for every valid
message exchanged between microns. To achieve this, the
sender micron generates a 128-bit fresh nonce using Intel
SGX’s random number generator (RDRAND)' at the start of
session with each micron, as a session-id between a pair of
microns. The nonce is incremented as a counter / sequence
number in all the subsequent messages and authenticated-
encrypted to prevent the OS from tampering it. Each micron
stores a mapping of micron-id +— session-id for ev-
ery micron it communicates with. Figure 5 shows the protocol
for communicating between three microns. The sender attaches
this nonce in the first call message. The receiver verifies if the
incoming message is from an authorized sender. On validating
the authenticity of the sender, it checks if it is the first message
from the particular sender during the application execution.
If it is the first message of a session, the receiver sets the
nonce value as the session-id for communicating with the
sender micron. For other subsequent messages, the receiver
micron checks if the session-id is in the expected sequence.
For all valid incoming call messages, the receiver micron
executes the requested function and increments the session-id
on successful execution of the function (Figure 5 (b), (c)). The
sender micron waits for the receiver micron to complete the
execution and return (Figure 5 (a), (b)). Thus, the application
executes sequentially and proceeds in lock steps.

Reliable Delivery: When delivering a message from one
micron to another, the OS can arbitrarily drop the call messages
(for e.g., line 4 in Figure 1). This results in silent abort / failure
of the communication between two microns. To avoid this,
PANOPLY introduces an acknowledgment message similar to
ACK in the TCP protocol. After the receiver micron executes
the requested function in the call message, it appends the
session-id with an ACK message to the sender micron and
increments the session-id. The sender micron checks whether
the session-id attached with the ACK is valid. If the check
is successful, the sender micron increments its own session-id
and is ready to make the next call message to the receiver
micron (Figure 5 (a), (b)). If the sender fails to receive
an acknowledgment, it successfully detects that the OS has
silently dropped its messages. The sender micron aborts its
execution if the ACK is either not received or contains an
invalid session-id.

B. Expressiveness with Low TCB

Enclaves are limited in terms of the programming ex-
pressiveness they support. Specifically, standard C primitives
such as system calls, networking APIs, file system operations,
multi-threading, multi-processing and event handling do not
work out-of-the-box within enclaves. As a recourse, PANOPLY
addresses each of these limitations by creating microns.

System Calls. Enclave code cannot directly make a system
call to the OS. Therefore, PANOPLY redirects all the system

I'This number is passed through an extractor to generate a cryptographically
secure random number.

calls from the enclave code to our custom wrappers in the
PANOPLY shim library. The shim library is responsible to make
the correct OCALL and ECALL to invoke these calls in the
OS. It is in-charge of exiting out of the enclave, executing the
system call in the untrusted component and relaying the return
values back to the enclave.

Inside the shim, PANOPLY performs custom checks on
the system call return values inside the enclave to defend
against well-known class of lago attacks [26]. Nearly two third
(205/309) of the system calls return O or error, and another one
third (104/309) return an integer. In addition to return values,
system calls can also return data via parameters passed by
reference. Most of the parameters are data structures which
contain control fields. After checking the specifications of
all the system calls, we identify 50 system calls (16%) that
write information into 20 distinct structures. Most of them
(18 structures) only have integer field types, similar to return
values. Other structures contain structure pointers or function
pointers. Specifically, we add sanitization code to ensure that
return values are consistent with the POSIX semantics.

For return values that have static data types such as integer
fields with O or error calls, PANOPLY compares the return value
with 0 and a set of valid error numbers per system call. If it
detects return values such as invalid error numbers, then the
check reports failure. For return values that lie within a range,
PANOPLY checks that the return value conforms to a valid
range depending on the return type. For e.g., the read system
call in Linux has an integer return type as shown below.

size_t read(int fd, wvoid xbuf, size_t len);

The shim code knows the input length (1en) requested
by the application to read. Thus, it checks that the system call
return value and pass-by-reference parameter (buf) is less than
or equal to the requested length. This check limits the return
value within a much smaller range than the original range of
variable type. Similar to return values, PANOPLY sanitization
logic checks all the structures with integer fields returned by
the system call. The policy is similar to the check on return
values — based on the field type, the code ensures that the
value is within a valid range.

Few of the system calls return structure pointers or function
pointers which are handled specially in our system. For e.g.,
connect system call returns a pointer to a structure of
sockaddr type as shown below. For such dynamic data types,
PANOPLY library needs developer assistanace for performing
deep checks for such structures. For example, PANOPLY can
check the fields of sa_family_t structure which itself is a
field of sockaddr that is returned by the connect system
call with developer annotations for the correct bounds.

int connect (int sockfd,
const struct sockaddr *serv_addr,
socklen_t addrlen);

struct sockaddr {
sa_family t sa_family;
char sa_data[1l4]; }

Note that PANOPLY’s checks do not protect against any
vulnerabilities such as buffer overflow that are present within
the original application. For example, in the read call if the
len is not provided, then a check for the buf variable is

Virtual Threads

A

TCS
1

TCS
2

Micron A

| Panoply Shim Lib |

TCS
3

TCS
4

TCS
1

TCS
2

Micron A’

TCS
3

TCS
4

| Panoply Shim Lib |

Shared Variables

Thread Control
Manager

Fig. 6. Design for on demand multi-threading in PANOPLY.

not performed by PANOPLY since the buffer size is not known
statically. The developer can provide an upper bound based
on the maximum file size. However, since there is no concrete
check on the size of buf, the original code itself is susceptible
to buffer overflow attacks.

Multi-threading. Enclaves have a limited support for thread-
ing — there is a gap between program abstractions in UNIX
and that provided by SGX. In SGX SDK, the application
has to statically determine how many and where the threads
are initialized. Intel SGX ensures that all the thread-local
memory (such as thread stack) is isolated from each other.
It also provides a Thread Control Structure (TCS), a data
structure to hold thread-specific information such as program
counter, stack pointer, register values, and execution context
state of the thread. Since the enclave has to know the total
size to be allocated for saving TCS structures, the enclave
has a statically pre-specified number (say, k) of TCS data
structures. Thus, it can only support maximum & concurrent
threads during the entire execution of the enclave. Thus, SGX
does not allow to dynamically execute arbitrary threads on-
demand. Although the application can create threads outside
the enclave, the number of concurrent threads executing in the
enclave at a given time is limited to the pre-determined value.
Many applications do not fit in this regime of thread usage.
For instance, number of concurrent threads in a web server is
a function of number of requests that the server has to serve.

On-demand Threading: PANOPLY gives the abstraction of
arbitrary number of threads by supporting POSIX threading
(pthread) APL Applications can dynamically create threads
by calling the standard pthread API. To support this abstrac-
tion, PANOPLY realizes the notion of virtual threads for the
applications. Figure 6 shows an overview of PANOPLY design
to support on-demand multi-threading. Under the hood, it
multiplexes these virtual threads on the underlying enclave
threads and uses the TCS structure and SGX threading APIs.
Specifically, PANOPLY threading API creates TCS structures
for a pre-determined pool of threads per micron (say k).
When a specific thread wants to enter an enclave, PANOPLY
first checks if the host-enclave can accommodate the thread
concurrently. If so, PANOPLY sets the correct micron id, thread
arguments, and redirects the thread execution to enter the
micron. The challenge is when a micron has already reached
its maximum concurrent thread limit. At this point, there are
two design choices: (a) evict an executing thread and schedule

the execution of the new thread (b) spawn a new micron to
cater to the £+ 1 thread. Although eviction is a clean solution,
it incurs additional operations of save-restore and scheduling
inside the enclave. PANOPLY does not adopt this design and
instead spawns a host enclave on-demand. Specifically, if the
micron reaches its maximum capacity of concurrent threads,
PANOPLY launches a new micron thus increasing the size of
threads from & to 2k. This design choice comes with a caveat
that all the shared memory between threads has to be accessible
across the two microns. To this end, PANOPLY introduces a
thread control manager for such global thread memory that
acts as a reference monitor. For supporting (k + 1) thread,
PANOPLY launches a new micron and all the shared memory
operations are performed via the thread control manager, as
done in a write-through cache. The PANOPLY shim library
is responsible for redirecting the micron code to this thread
control manager if the total number of concurrent threads
running is greater than k. When the threads are less than k,
they access the local copy via shim within the host enclave.

Synchronization: SGX SDK only supports basic thread syn-
chronization primitives — spin locks and mutexes. However,
higher level synchronization primitives such as semaphores,
conditional variables, barriers, and read / write locks are not yet
supported in SGX. Thus, the programmer has to realize these
constructs by using mutexes available with the limited SGX
threading support. Instead, PANOPLY exposes the full suite
of pthread synchronization primitives inside the enclave.
It implements these operations using the SGX’s mutex syn-
chronization support. PANOPLY supports the POSIX threading
API pthread for semaphores, conditional variables, barriers,
and read / write locks operations based on SDK-supported
mutexes. For all synchronization operations which are local to
a micron’s code, PANOPLY keeps the synchronization objects
inside the micron. For global synchronizations across microns,
PANOPLY creates a notion of inter-micron locks. The thread
control manager micron holds and manages all such shared
objects and all global changes are synchronized via this
micron. Specifically, to either release or get hold of a lock,
a micron has to invoke the thread control manager. The value
of the global objects can only be changed by a well-defined
set of microns, thus enforcing the right semantics of mutexes
for the objects.

Multi-processing. PANOPLY supports applications which use
the UNIX fork and exec APIs. For a fork system call,
PANOPLY library instructs the OS to launch a new untrusted
child process. This child process then creates a new micron
with the same code as the parent micron. The PANOPLY
shim library performs micron initialization step and assigns
a micron-identity to this micron instance. Next, PANOPLY
establishes a communication channel between the parent and
all the children microns for maintaining the inter-micron flow
integrity. As per the POSIX fork semantics, the child must
replicate the data memory state of the parent micron. There
are three possible strategies to ensure that the child micron
has access to the parent’s data.

Strategy 1. A straightforward way is to do a full replica of
parent micron’s data and communicate it to the child micron
over a secure communication channel at the fork call. This
approach involves excessive micron-micron data copy and
slows down the application needlessly, even when the child

does not use all the parent data.

Strategy 2. A second alternative is a copy-on-demand
strategy, similar to copy-on-write optimization for fork calls
in model Linux implementations. To achieve this for microns,
we can implement a page-fault based on-demand data passing
from parent to child micron. Specifically, the parent replicates
and communicates its data to the child if and only if the
child accesses it. To achieve this, PANOPLY can mark all
the parent micron’s pages as read-only (copy-on-write) and
register custom page-fault handlers 2 inside both the microns.
Whenever the child faults on a data page, the custom handler
can request the parent to communicate the data. We point
out that the support for registering page fault handling within
enclaves is not currently enabled in the SGX hardware. To
overcome this limitation, we can modify the OS to notify the
micron on faults. The OS is not trusted to reliably uplift the
fault to the user level. However, even if the OS suppresses
faults, it does not weaken the security as the parent’s pages
will still be sealed.

Strategy 3. A final strategy is to statically identify what data
is accessed by the forked child micron. When the application
performs a fork, the parent micron can replicate / communicate
these statically identified data values to the child micron. To
reason about the incompleteness of the static analysis, the
system can raise a run-time error to flag any data values which
were not replicated. This way, the developer can add custom
code to replicate these values. In our experiment applications,
we observe that most of the data that is required by the
child micron is small and does not need full data space
replication. Thus, PANOPLY can statically identify the variables
and communicate their values at fork and replicate them in
the child micron. Developer can additionally annotate data
variables that are shared between parent and children microns.
In many cases, strategy 3 is cleaner.

PANOPLY provides a generic implementation using strategy
1, such that any application which uses fork can continue to
execute without excessive developer efforts. In Section IV-D,
we discuss the details for implementing strategy 1 in existing
SGX SDK. In the future when the SGX2 hardware is available,
strategy 2 can also be integrated in PANOPLY, subject to
specific design details of the SGX hardware. Currently for
cases where performance is critical, developers can chose to
resort to strategy 3.

In the case of exec, PANOPLY requests the OS to create
a new untrusted process which launches a new micron for
the exec-ed code. This micron code is attested by using the
SGX hardware primitive before the execution begins. The shim
library assigns a micron identity to this micron for further
interactions with other microns. For exec, static identification
and copy-on-demand strategy saves a lot of redundant copy
operations, since the child micron doesn’t need access to parent
data. For cases where strategy 3 is not sufficient, PANOPLY
resorts to using strategy 2.

Shared Memory. To support shared memory between two or
more microns, PANOPLY establishes a shared secret between

2With SGX2 extensions, the hardware can directly notify the enclave when
the enclave code incurs a page fault along with the faulting virtual address,
page permissions, fault type and the register context [16], [39].

these microns using secure inter-micron protocol. The microns
then use a public page as their shared memory resource.
Every microns seals the content and writes to the public page.
Rest of the microns unseal the page content within their own
address space. The sealing is standard authenticated encryption
with version control for preventing replay attacks [46]. This
mechanism creates a notion of shared memory, such that each
micron internally maintains a private copy of the memory and
all changes are synchronized and broadcasted by writing sealed
data to the public page.

Event Management. PANOPLY applies the delegate strategy
to support event based-programming inside the enclaves. SGX
hardware natively supports synchronous and asynchronous
exits from the enclave. For synchronous and asynchronous
exits, the hardware saves the execution state before exiting
the enclave, and restores it back when the enclave resumes.
For example, if the enclave receives an interrupt, the hardware
performs an Asynchronous Enclave Exit (AEX), saves the cur-
rent processor state into enclave memory, enters the Interrupt
Service Routine (ISR) and then finally restores the processor
state for resuming the enclave execution. In this case, the OS
is responsible for executing the ISR and scheduling back the
enclave execution. The hardware ensures that the OS cannot
tamper any context registers during the exits. Thus, it is safe
to delegate the event listening and notification tasks to the OS.

PANOPLY uses the OS primitives of signals and interrupts
to register event listeners, callbacks and add dispatch handlers.
Internally, PANOPLY hooks the underlying OS APIs and inter-
faces via OCALLs. Thus, PANOPLY enables event wait/notify
mechanism, polling, event buffering, signal handling for en-
claves which are necessary for event management. Our API
is expressive to support event libraries such as libevent,
libev, in addition to hand-coded event loops.

C. The PANOPLY Infrastructure

To use PANOPLY, akin to several partitioning tools [22],
[24], [35], the developer marks all functions to denote which
micron executes these functions. In case of our example in
Section II, the functions called on Line 5, 13, and 25 are
marked to be executed in a priviledged micron by annotations.
Rest of the functions in the program are explicitly marked to
be executed in a non-priviledged mircon.

After establishing the set of all such micron-bound func-
tions, PANOPLY analysis identifies the inter-micron interaction
boundaries. Specifically, it constructs the program dependence
graph consisting of control flow and data flow. The control
flow graph comprises of micron function nodes connected by
call edges. Data flow graph comprises of all the parameters
passed between microns and any shared memory such as global
variables. For cases where PANOPLY cannot precisely identify
the control and data-flow graph, it prompts the user to specify
the intended flows by adding annotations.

PANOPLY instruments all the boundaries of the micron i.e.,
the entry and exit points of the micron wherein the control
starts or ends the micron-bound execution. Each ECALL to be
executed inside the micron is mapped to an entry point and a
return point. For all such entry points in the micron, PANOPLY
adds code to check the caller’s identity as well as the caller’s
state. At all the exit point from the micron, PANOPLY adds the

correct target function to be executed in another micron, along
with the its current state. Hence, the adversary cannot tamper
the caller (checked at the entry) or forge the callee (created
at the exit). PANOPLY replaces all calls to non-micron code
(such as system library APIs) with OCALLs. Further, each
OCALL interface is instrumented with a set of checks on input
and output call parameters as discussed in Section IV. These
checks are best-effort, and the developer can add call-specific
sanitization logic at any of these interfaces.

For supporting multi-threading, PANOPLY needs to know
the set of memory that is concurrently accessed by multiple
threads. The developer can annotate all the such variables
which are subject to operations from multiple threads. In
our current implementation, we manually identified concurrent
memory accesses for our case studies. In the future, PANOPLY
can perform precise pointer analysis to aid the developer
in identifying the complete set of corresponding operations
on shared memory addresses. Once the shared variables and
operations are identified, PANOPLY redirects the access to all
the shared variables, via the shim. The shim code is responsible
for deciding if the operations on shared variables are to be
performed locally to the micron or are to be carried out as
global operations in tandem with threads in other microns. We
follow similar strategy to mark and mediate access to shared
memory and fork-exec process memory semantics.

D. Implementation

We implement PANOPLY on top of the Intel SDK [8] 1.5
Open Source Beta shipped for Linux Kernel v3.13. PANOPLY
comprises of a set of API libraries and build extensions. For
our case-studies, we annotate the application code to mark
which functions should execute in which micron. Then we
modify the application Makefile to use PANOPLY extensions
and library. We add the interface file (. ed1) for specifying all
the enclave entry-exit points. The Intel SDK edger8r tool
uses these files to generate boiler-plate code stubs for enclave.
PANOPLY then adds specific checks to each of these stubs.

We implement the support for multi-processing (specifi-
cally, fork and exec) by patching the SGX SDK [6] and
the corresponding SGX linux driver [7]. By default, when a
new process is created by fork, the SGX kernel driver data
structures which map the enclave virtual addresses to the EPC
physical addresses for the parent process are copied over to
the child process. Hence, when the child process spawns its
enclave, the driver reads the data structures and assumes that
the VA space and the EPC PA addresses are already taken
up. However, in reality these are stale mappings from the
parent enclave. If left unmodified, the SDK driver spawns the
child enclave in a new VA space, which does not overlap
with the existing mapping. This leads to a mismatch in the
child and parent’s VA layout. To work around this, our driver
code ensures that the start virtual addresses of all the children
enclaves is same as that of the parent enclave. Specifically,
when spawning a child enclave, PANOPLY ignores the VA-PA
mapping inherited from the parents enclave. Further, we ensure
that the child’s enclave starts at the same virtual address as
the parent’s enclave. Once the address layouts are identical,
PANOPLY shim code in the child enclave reads the sealed
contents (BSS, data, heap and stack sections) saved by parent
enclave and updates its own corresponding sections.

V. EVALUATION

In this section, we show the effectiveness of PANOPLY
by porting popular real-world applications to microns and
testing them against a suite of application-specific benchmarks.
Specifically, we aim to evaluate PANOPLY for the following:

e Expressiveness. Is PANOPLY successful in supporting
expressive programming constructs inside microns?

e Stronger Security. Does PANOPLY enable stronger
security guarantees for applications?

e TCB. How much TCB reduction does
achieve over Library OSes?

e Performance. How does PANOPLY perform compared
to Library OSes?

PANOPLY

All our experiments are measured on Inspiron-13-7359
machine with 6th Generation Intel(R) Core(TM) i7-6500U
processor and 8GB RAM. We configure the BIOS to use
128 MB memory for SGX EPC. We use Linux 1.5 Open
Source Beta version of Intel Software Guard Extensions SDK,
Intel SGX Platform Software (PSW), and driver on Ubuntu
Desktop-14.04-LTS 64-bits with Linux kernel version 3.13.
All our applications are compiled with GCC v4.8 and built
for SGX hardware pre-release mode (HW_PRERELEASE) with
default optimization flags and debug symbols. To measure
various statistics at run-time, we use Intel VTune Amplifier
with SGX Hotspots analysis which is configured with the
standard parameters for SGX. All performance measurements
are reported over an average of 5 runs.

A. Case Studies

We select 4 application case-studies which highlight the
advantages of multi-micron architecture in applications. We
successfully demonstrate that PANOPLY can enable end-to-end
guarantees rooted on SGX primitives as building blocks and
support expressive programming constructs. The case studies
include:

e Tor v0.2.5.11, where multiple directory servers form
a distributed network

e H20 v2.0.0 webserver, with privilege separated sup-
port for Neverbleed [5]

e OpenSSL v1.0.1m library-as-a-service which can be
imported by any application

e FreeTDS v0.95.81 database client application

1) Stronger Security Property — Tor: Tor is an anony-
mous communication system that routes the client request
through a circuit of (three or more) nodes. Tor is an open
distributed network which uses a directory protocol to maintain
a global view of “good” (or non-blacklisted) nodes in its
network. All the routers in the network periodically send their
status to a directory authority server (DA). Each DA collects
these status reports to generate its local view of the network.
DA servers then run a form of consensus protocol to agree
upon the set of global network nodes, wherein each DA sends
a signed network status vote object to peer DA servers. Various
real-world attacks have targeted DAs by compromising either
their private keys or forging status votes to create a dishonest
view of the network, thereby causing malicious or blacklisted
Tor nodes to be accepted in the network [10].

Goal: Our goal is to secure the Tor DA protocol against
a malicious OS on the DA servers. Specifically, we want to

10

ensure that even if 8 out of 9 DA servers are compromised, a
blacklisted node is not accepted in the network’s “good” view.
The attacker can only shut down the network. This high level
property is hard to achieve without the use of byzantine fault
tolerance protocol [25], [27], which are bandwidth hogging and
thus are not used in this application. Previous work by Jain et
al. has only looked at a low-level property of protecting the
DA server’s private keys using SGX [32]. They port only the
key related operations to enclaves, and execute the rest of the
code outside the enclave. While this ensures that the attacker
does not get direct access to the key, it does not guarantee that
Tor will always maintain the true state of the network.

The Tor DA servers act as nodes and the messages they
exchange act as control and data flow edges of the blacklisting
consensus protocol. Even though each DA server’s secrets
are secured by enclaves, it does not ensure the integrity
of interactions between the DA servers. Specifically, in our
extended technical report [45], we demonstrate 4 concrete
attacks, similar to our running example in Section II. The
attacks use the following strategies to disrupt the consensus
protocol between DA servers:

Call tampering to change the network status votes
Force silent failures, leading to vote withholding
Replace messages to allow compromised certificates
Replay compromised public keys

On the other hand, if we view the protocol amongst
these distributed nodes as a single process executing in a
single contiguous isolated memory, then the correctness of the
consensus follows directly. In this case, all the messages (such
as votes, and status objects) are generated and passed without
any tampering from the byzantine adversary. There are only
two things that the adversary can do — abort the process or
proceed. This property holds true because the adversary cannot
tamper the execution flow inside the isolated memory.

If we move the entire logic of each DA server to a separate
micron (i.e., 9 microns for 9 DA servers), then all the messages
generated inside the micron are ensured to be untampered,
they are executed in an isolated memory. Further, by the
virtue of inter-micron flow integrity, PANOPLY ensures that
the control and data flow of inter-micron interactions (inter-DA
interaction in this case) is preserved. Thus, PANOPLY allows us
to achieve the same security guarantee as executing the entire
Tor blacklisting consensus protocol in a single contiguous
isolated memory. As discussed above, this ensures that the
byzantine adversary can only abort the consensus, it cannot
bias it. We implement this architecture for Tor with the help
of PANOPLY, as discussed in Section V-B.

2) Supporting Privilege-separation — H20: In 2014, the
Heartbleed bug in OpenSSL’s implementation of TLS protocol
lead to leaking server’s private key due to a buffer over-read.
Webserver implementations such as H20 HTTP2 server have
taken precautionary measures by separating the RSA private
key operations in a privilege separated process since version
1.5.0-beta4 [5]. This minimizes the risk of private key leakage
in case of vulnerability such as Heartbleed. In PANOPLY
design, the RSA key operations are moved to a separate micron
(RSA micron) whereas the rest of the webserver code executes
in another micron (H20 micron). The RSA micron comprises
of functions to load the private key and to use it for encrypting

/ decrypting a given buffer and to sign the contents of a
buffer. The H20 micron invokes the RSA micron functions
to perform functions such as rsa_sign, rsa_priv_enc
and rsa_priv_dec. PANOPLY ensures that the RSA keys
are safe in one micron different from the rest of the application.
The application micron invokes the key-storage micron via
PANOPLY’s interface.

3) Supporting Enclaved-libraries FreeTDS &
OpenSSL: FreeTDS is an open source implementation of the
TDS (Tabular Data Stream) protocol which allows programs to
natively talk to Microsoft SQL Server and Sybase databases.
It links to OpenSSL library to support SSL/TLS for its traffic.
The running example in Section IT demonstrates how PANOPLY
enables to split the FreeTDS logic inside two microns.

OpenSSL is a widely used open-source library for SS-
L/TLS protocols. It provides client and server-side imple-
mentations for SSLv3, TLS along with the X.509 support
needed by SSL/TLS (1ibssl). Further, the core library also
implements basic cryptographic functions (Libcrypto). Sev-
eral large-scale real life applications require SSL/TLS support
for networking with clients, servers or peers. Hence, we use
PANOPLY to execute OpenSSL inside a single micron. This
allows large scale applications to use OpenSSL library by
executing it inside the micron. It is up to the application’s
security architect to decide if the application code executes
in the same micron as OpenSSL or as in a separate micron.
For our case study we take a sample certificate verification
application shipped with Intel SGX SDK [8]. The application
comprises of two parts: (a) IO operations to read a list of
certificates from an input file and display the results (b) X.509
certificate verification by using the root-certificate. We separate
the application into two microns — one for IO and one for
OpenSSL library. The OpenSSL micron uses programming
constructs such as threading and network APIs. The IO micron
uses file system and standard IO APIs. Further, the attacker can
attack the micron-micron interactions by replaying or dropping
the messages as outlined in our running example in Section II.
These attacks trick the application to accept invalid certificates,
thus violating the higher level guarantee of accepting only valid
certificates. PANOPLY enforces inter-micron flow integrity and
ensures that all such attacks are thwarted.

B. Porting Effort

We make an average change of 905 lines of code per
application to port it to PANOPLY [54]. We test our applications
with their regression test suite to ensure that our porting does
not break the application.

Tor. Tor code uses 4 libraries — OpenSSL’s libcrypto
and libssl for SSL/TLS protocol, 1ibevent for event
handling, and 1ibz for compression. We port all 4 libraries
along with Tor code to microns. In doing so, we make use of
PANOPLY’s threading, multi-process and networking APIs. We
create two microns as per the design discussed in Section V-A.
We make a total of 2685 LOC changes to the complete code-
base with the help of PANOPLY. To test for correctness, we
ensure that micron-code passes all the 32 tests in the regression
suite shipped with Tor code. We evaluate Tor with a private
network comprising of 3 DA servers and 3 routers using
Chutney [1]. All the nodes execute on a single machine and use

11

local attestation. We chose the same configuration as evaluated
by previous works [32], [36]. We observe a maximum of 2
threads executing in parallel for our configuration.

H20. We configure H20 web server with Neverbleed plug-
in, YAML parser and the in-built event-loop implemented by
H20. We further statically link H20 with OpenSSL library
which executes inside the webserver micron and includes
the networking and multi-threading module of PANOPLY. We
make 154 LOC changes to the code to achieve this. The
application exposes 3 functions for inter-micron invocation.
Further, we evaluate H20 performance with h21oad which
is a benchmarking tool for HTTP/2 [4]. We observe a total
of 2 inter-micron messages and 128 PANOPLY API calls at
run-time for H20.

FreeTDS. Our FreeTDS application uses OpenSSL library,
along with threading and network support from PANOPLY.
We make 473 LOC changes to the application to compile
it with PANOPLY. We configure FreeTDS client application
with a remote Microsoft SQL database server. Our benchmark
makes 48 queries (1 create, 46 insert and 1 select) to the
remote database server and collects the response time. For this
workload, FreeTDS makes 3 inter-micron calls.

OpenSSL. We port the OpenSSL library including the crypto-
graphic utilities (1ibcrypto) and the TLS/SSL implementa-
tion (1ibssl). We re-use the partially ported OpenSSL code
available with the Intel SDK which only ports 1ibcrypto.
Specifically, we enable the SSL protocol and the support for
executing OpenSSL engines inside the micron. We use the
PANOPLY networking and file system APIs to achieve this
and change 307 LOC. We test the OpenSSL library with
its regression suite, and use the speed and tspeed utility
to benchmark the performance of our OpenSSL library. We
observe a total of 8 PANOPLY API calls at run-time along
with 1 inter-micron call.

Comparison to Graphene-SGX. We attempted to port our
4 case-studies to Graphene-SGX, by following the public
instructions [3] available at the time we performed our ex-
periments. We report that we were not able to port 3 out
of 4 applications to Graphene-SGX— the applications either
crash or suspend during execution. Since there is no public
companion report, but only a large-scale system, it is hard to
evaluate the design reasons of why the applications crash. After
further investigation of the Graphene-SGX source-code, we
were able to narrow down 2 cases which are problematic: (1)
the fork semantics break in H20 which launches neverbleed
in a separate process (2) the epoll call does not receive the
socket events, thus the applications such as Tor and FreeTDS
never progress. Thus, our evaluation comparisons are best-
effort. We have informed the authors to implement possible
mitigations in their system for these issues.

C. Reduction in TCB

PANOPLY achieves 2 orders of magnitude lower TCB
as compared to state-of-art approaches such as Graphene-
SGX [52] and Haven [21]. The size of compiled microns in
MB is an orders of magnitude smaller than Graphene-SGX.

PANOPLY TCB. PANOPLY adds an average of 19.62 KLOC
per application which is 5.8% of the original application code.

TABLE III

TCB EVALUATION. THE TABLE SUMMARISES THE TCB COMPONENTS OF PANOPLY AND GRAPHENE-SGX IN TERMS OF LOC AND SIZE OF COMPILED

ENCLAVE BINARIES. COLUMNS 2-5 REPORT THE BREAK-DOWN FOR THE LOC OF EACH COMPONENT INCLUDED IN THE MICRON, AND COLUMN 6 HIGHLIGHTS THE PERCENTAGE
INCREASE IN THE TCB DUE TO PANOPLY. COLUMNS 7-13 REPORT THE LIBRARIES INCLUDED (v') IN THE COMPILED ENCLAVE BINARY, AND A XDENOTES THAT THE MICRONS
DO NOT REQUIRE THE LIBRARY. COLUMN 14 DENOTES THE TOTAL SIZE OF COMPILED MICRONS. COLUMNS 15-18 DENOTE THE COMPILED SIZE OF VARIOUS COMPONENTS
INCLUDED BY GRAPHENE-SGX TCB. COLUMN 19 REPORTS THE TOTAL SIZE OF COMPILED ENCLAVES FOR GRAPHENE-SGX.

Case Stud PaNoprLY TCB in LOC Split-up for PANOPLY TCB (in MB) Graphene (in MB)
Y [Endave Boilerplate PANOPLY Total % 1 Tibssl liberypto libz libyrmeds | libyaml | libevent SDK Enclave PAL | Encl Trusted SDK Enclave
Logic Code Logic o v e | (0765 (37 0.137) (0.06) 0.185) | (0579) | (0.05) | Size neave | Libs Size
OpenSSL 256987 9004 10425 276416 | 7.56 % % X X X X % 588 | 1.84 0.067 | 6458 0.05 64.69
H20 414918 9189 10425 134532 | 472 % % X % % X % 798 | 184 16 | 6470 0.05 80.75
FreeTDS 297108 9788 10425 317321 | 6.80 % %4 X X X X % 6.08 | 1.84 12 | 6458 0.05 65.83
Tor 436385 8817 10425 455627 | 441 v v % X X v % 1318 | 1.84 70 | 63.94 0.05 70.99
TABLE IV. PERFORMANCE EVALUATION. COLUMNS 2-5 REPORT THE STATISTICS ABOUT PANOPLY MICRONS. COLUMNS 6-9 DENOTE THE CPU CYCLES CONSUMED BY
PANOPLY. COLUMNS 10-12 DENOTE THE EXECUTION TIME FOR EACH CASE STUDY AND THE CONTRIBUTION OF PANOPLY TO THE TOTAL TIME.
Case No. of Inter- No. of No. of Split-up of CPU Cycles (in billions) CPU Time (in seconds)
Study Microns Micron | OCALLs ECALLs Non-Micron Create Enclave Total Empty PANOPLY %
APIs / SDK Delete Logic Enclave Increase
OpenSSL 2 1 23695 1 0.25 6.06 0.11 6.43 2.79 3.16 13
H20 2 1 124287 5 0.35 17.08 6.11 23.54 6.56 8.79 34
FreeTDS 2 1 86198 1 0.47 22.31 0.07 22.64 8.60 8.74 1
Tor 6 30 286459 5 6.65 11.77 2.58 17.41 4.54 6.72 48
Average 24
TABLE V. BREAKDOWN OF LOC AND TCB SIZES OF GRAPHENE-SGX

COMPONENTS. GLIBC LOC AND SIZE COMPUTATION ACCOUNTS FOR THE WHOLE
CODEBASE COMPRISING OF ALL LIBRARIES AND PLATFORM-SPECIFIC CODE.

Component LOC Size (in MB)
glibc 1156740 56.9
libPAL-LinuxSGX 16901 0.9
libPAL-enclave 33103 0.2
SGX SDK 119234 0.5
Total 1325978 58.5

Columns 2-5 in Table IIT shows the LOC split-up for each
case-study. Out of the total LOC included by PANOPLY in
each micron, 9.2 KLOC (46.3%) of code is automatically
generated boilerplate code to facilitate OCALLs and ECALLs
mechanism. This code is generated by the Intel edger8r
tool, which takes in a .edl interface file and creates stubs
for passing parameters across micron boundaries. We believe
that this code is easy to automatically verify in the future. In
terms of compiled code size, each micron binary includes the
original application logic, corresponding application libraries,
the trusted libraries added by Intel SDK and PANOPLY shim
library. Columns 7-14 in Table III show the split-up for the
micron binary size. Note that PANOPLY selectively adds a
library to a micron, if-and-only-if the micron code needs it.
More importantly, PANOPLY does not include system libraries
such as 1ibc, 1ibdl, libpthread in the micron.
Comparison to Graphene-SGX TCB. We refer to the public
release of Graphene-SGX [3] to compute the total LOC
of system. Table V shows the LOC of each component in
Graphene-SGX, and the corresponding binary size. Graphene-
SGX library comprises of a Platform Adaptation Layer, Linux
library, and system libraries required to support a pico-process.
In terms of LOC, this amounts to an increase of 1.326 MLOC.
When compared with PANOPLY, this amounts to 2 orders of
magnitude (127.19x) larger TCB. Note that the TCB and
binary sizes are dependent on the application. We port our
four case studies to Graphene-SGX and measure the total
size of the binaries, since counting per-binary LoC is more
complicated. Columns 15-19 in Table III lists the breakdown of
size of each component. On an average, Graphene-SGX pico-
process binaries are an order of magnitude larger as compared
to PANOPLY microns. Haven reports a TCB of millions of lines
of code in the paper [21], however we do not have access to
the system to directly compare with PANOPLY.

12

D. PANOPLY Performance

PANOPLY adds a 24% CPU overhead to the application’s
execution time (Table IV) on an average, over the baseline
cost of creating empty enclaves. It achieves comparable perfor-
mance as Graphene-SGX, with PANOPLY’s overheads higher
by 5-10%. PANOPLY strictly prioritizes TCB over perfor-
mance, and does not include any optimizations such as buffer-
ing. However, future systems can improve over PANOPLY by
incrementally adding optimization with careful considerations
for TCB bloat.

Performance Breakdown. We measure the micron execution
bottlenecks as well as the breakdown for the total number of
CPU cycles it consumes. (Table IV) Column 6-9 present the
average number CPU cycles that each application consumes for
various operations during its entire execution. Our preliminary
performance measurements identified that bulk of the CPU
cycles are spent in the Intel SDK. On further investigation, we
identified three main factors which contribute to this.

First, the operation of creating and destroying enclaves
takes up 6-7 billion CPU cycles for various sizes of enclaves.
We launch each of the application enclaves and destroy them
without executing any logic inside the enclave. Column 7 in
Table IV denotes the number of cycles to do this for each
specific case-study. These operations are performed by the Intel
SDK, and are not an artifact of PANOPLY’s design. Thus, 96%
of the CPU cycles are due to enclave launch and tear-down
(Column 7 vs Column 9 in Table IV). Taking this cost as a
baseline, PANOPLY has a 24% overhead.

Second, copying enclave data to-and-from non-enclave
memory contributes to significant fraction of CPU cycles
consumed by the application. Specifically, these operations
involve encryption-decryption of data entering/leaving the en-
clave memory, which consumes CPU cycles. For example, in
the H20 application, the number and volume of such a copy
operation is directly proportional to the size of the served web-
page. To test this aspect, we measure the throughput of H20
webserver by serving two sizes of web-pages: 200 Bytes, 1
KB, and 6 KB for a total of 100, 000 requests from 100 clients.
As shown in Figure 7, the webserver throughput decreases
as we increase the size of the web-pages. The shaded-region

100000 | 94933.2
90000
80000
70000
60000
50000
40000
30000
20000
10000

0

& Baseline H20
82480.69

Panoply H20

66042.22

48490.84
42293.46

200 Bytes 1KB 6KB
Size of served static web-page

12818.84

Throughput in Requests/second

Fig. 7. PANOPLY Performance for 100000 requests of various page sizes.
® Baseline —&— Graphene-SGX -~ ' Panoply
a i
g
17
=] 4
£
8
>
2]
E]
=
)
< 4
£
&
<
k i
70
Fig. 8. LMBench Latency Performance of PANOPLY & Graphene-SGX.

of the bar-graph denotes the fraction of execution time spent
in the SDK routine for OCALLs. Thus, larger the number of
OCALLs, the more is the overhead. As we can also see from
Table IV, applications which have less number of OCALLs,
exhibit lower overheads.

Third, all of our case studies use OpenSSL routines for
various operations ranging from SSL connections to cryp-
tographic operations. The OpenSSL library first checks if
the underlying hardware supports AES-NI via cpuid. If it
detects that the hardware supports, it uses the hardware AES
instructions for its cryptographic operations, otherwise it falls
back to a software implementation. In our experiments, we
observe that the OpenSSL library executing inside the enclave
fails to detect that our hardware has AES-NI support. Thus, it
uses a slower AES routine which adds latency by consuming
more CPU cycles. We suspect that the SDK has not rolled out
support for executing cpuid instruction inside the enclave.
This change was also proposed by previous work [21].

We point out that the Linux SDK itself does not use hard-
ware AES-NI instructions for encryption-decryption. Instead it
uses software implementation of AES routine, as was pointed
out by recent public disclosures [34]. In our case studies,
this further amplifies the slow-down of each encrypt / decrypt
operation inside microns by 20% of the total execution.

Comparison to Graphene-SGX. Our design does not sig-
nificantly degrade the performance as compared to Graphene-
SGX. We compare the performance of two systems for execut-
ing OpenSSL. Specifically, we test varied sizes and frequencies
of data written out of the micron-enclave, since it is the main
factor for PANOPLY overheads. To this end, we configure

13

i
~

Graphene-SGX
Panoply

10.13
8.84

10.18
4

=
o

Time (second)
= ()] 00

)

1 0.9 1.02
0.1 0.109 0.1 0.109

(512,100 (512,100) (512,1000) (1024,10)

(Bytes, Connections)

(1024,100) (1024,1000)

Fig. 9. OpenSSL Throughput Performance of PANOPLY & Graphene-SGX.

120

100 ‘ B Graphene-SGX Panoply ‘
<80
3
3
360
c
& 40
0 I N mn m W
e & O & D 2 D D D> DD <& & ©
& &8 e’z’& & bo"' & (}09_ é\z_%z_%z_ °§z & e?b q\(\" & q\«\(‘ &
SO N IR N NN N
K FFLFITINIETFSL L F
&S KPRV R X QS @S R
& S ¥ K K KN VQE QP
S & & & o F & QA &
NN & PR
&7 R N & 2 @vz & Q
@ﬁ(\ «0\ 2 W ¢
RIS &
N <
(0
&

Fig. 10. LMBench Bandwidth Performance of PANOPLY & Graphene-SGX.

a SSL client-server setup and measure the CPU execution
time for 6 configurations of number of requests and size of
payloads: 512 / 2014 bytes of data for each of the 10 / 100
/ 1000 client connections. Figure 9 depicts the performance
of Graphene-SGX and PANOPLY. For these configurations,
PANOPLY has 5-10% higher overheads than Graphene-SGX.

Since comparison of a single user-application may not be a
conclusive evidence for the overall performance of PANOPLY,
we present a fair comparison of these two systems. Specifi-
cally, we port the LMBench benchmark to PANOPLY, which
is supported * by Graphene-SGX as well. Figures 8 and 10
present the latency and bandwidth performance of PANOPLY
and Graphene-SGX. Our first observation is that the perfor-
mance overheads of both the systems are significant over the
absolute baseline of a native application executing without any
enclave infrastructure. This re-iterates our earlier findings that
the slow-down due to enclave life-cycle operations (create and
destroy) are common to any system that uses SGX. Secondly,
the memory latencies exhibited by PANOPLY and Graphene-
SGX are comparable. As shown in Figure 8, the PANOPLY
latency is almost-always lower than Graphene-SGX, whereas
both the systems exhibit similar overheads over an absolute
baseline. Finally, we measure the bandwidth for various types
of operations including network, memory, file IO for the two
systems. PANOPLY performs comparable to Graphene-SGX for
memory and network operations (Figure 10). For file-backed
mmap operations, the overhead for PANOPLY is observably

3The Graphene-SGX system is not stable when executing the full LMBench
benchmark suite, and crashes non-deterministically with segmentation faults.
The results presented here are assimilated over 24 attempted runs to gather a
full set of evaluation.

larger than Graphene-SGX. Since PANOPLY performs these
operations via libc interface, the number of enclave entry and
exits per operation is larger. On the other hand, Graphene-SGX
uses a narrower interface and hence for file IO, it incurs a lower
number of enclave transitions. This is one of the factors which
causes the bandwidth variation for this subset of 10 operations.

VI. RELATED WORK

PANOPLY is a new design point in SGX enclave design
space that achieves low TCB while maintaining expressiveness
for enclave-bound code. PANOPLY’s inter-micron flow integrity
guarantees a higher level security property, unlike previous
systems which target low-level confidentiality primitives [47],
[48]. We discuss how PANOPLY differs from existing systems
in terms of TCB, design goals, scope and end-to-end guaran-
tees.

TCB. PANOPLY design is driven by the delegate-rather-than-
emulate philosophy, which is the key for lowering the TCB.
Specifically, we do not perform namespace management inside
the enclave, which is common approach for library OS designs.
The goal of library OSes is to achieve a narrow ABI [21], [41],
[52], so as to maintain compatibility and portability. Hence,
these systems implement bulk of the system logic inside the
library OS to map the system call APIs to their narrow ABI
interface. In PANOPLY, we are not limited by these design
choices. We expose a larger POSIX API to microns, and
delegate all the system logic to underlying operating system.
This is a reasonable choice because the OS can perpetrate the
same set of attacks even with a narrow interface. Thus, our
design choice allows us to keep system libraries such as 1ibc
outside of TCB, while achieving the same level of security.

Security of Single Enclave. PANOPLY is the first system to
demonstrate control and data-flow attacks on enclave-enclave
interactions. It prevents such attacks by ensuring inter-micron
flow integrity. Recent works have pointed out that enclaves
are susceptible to side channel attacks via page faults [55] and
cache [28]. Currently, PANOPLY does not guarantee defenses
against such side-channels. However, applications can employ
off-the-shelf defenses proposed recently [29], [38], [43], [44].
Weichbrodt et al. [53] recently showed that if the enclave
logic has use-after-free or TOCTOU bugs, then the OS can
exacerbate the effect of these bugs to perpetrate control-flow
attacks inside the enclave code. PANOPLY assumes that the
enclave is free of any logic or memory bugs. Strackx et al.
highlight that the adversary can shut down enclaves and abuse
the execution by doing a hardware state-replay attack [49],
[50]. PANOPLY can use their proposed solution to ensure
hardware state contiguity in the future.

Partitioning Applications for SGX. PANOPLY enables ex-
pressive enclave-bound code with a low TCB. Thus, it can
execute maximum application logic inside one or more mi-
crons while ensuring that the PANOPLY application maintains
the security guarantee. However, PANOPLY leaves the choice
of partition design to the security architect [22], [24], [35].
Jain et al. [32] propose the use of enclaves to protect Tor
DA server keys inside enclaves to protect against well-known
attacks [14], [15]. Kim et al. [36] propose designs to use SGX
for networking applications such as SDN-based inter-domain
routing, Tor directory servers and ORs. Atamli-Reineh et

14

al. [20] propose four partitioning schemes ranging from coarse-
grained partitioning (single enclave for whole application) to
ultra-fine partitioning (one enclave per application secret) for
executing OpenSSL library in enclaves.

SGX Containers & Sandboxes using Enclaves. Scone [19]
is a concurrent system which uses Intel SGX enclaves to
isolate docker containers running in a public cloud setting.
We summarise the key design differences between Scone and
PANOPLY. Firstly, the interface exposed by PANOPLY is at
POSIX level, whereas Scone exposes a system call interface
to the enclaves. As an artifact of this design choice, PANOPLY
does not execute any libc library inside the enclave. On the
other hand, Scone executes the libc library (specifically musl
libc) inside the enclave. Secondly, PANOPLY does a syn-
chronous exit for executing code outside the enclave, whereas
Scone does an asynchronous exit. These two variations lead to
a different design in terms of TCB, performance and system
challenges. Thirdly, the on-demand threading model proposed
by PANOPLY spawns new microns in separate enclaves to scale
the number of threads. This way, each thread in the application
is associated with a unique thread in the enclave. Scone uses
a M:N threading model. Hence, when the application scales
it threads, it is forced to multiplex on a limited number
of existing threads in a single enclave. Lastly, PANOPLY
is designed for multi-process applications, which comprise
of multiple micron containers and user processes. Hence its
design comprises of in-built support for fork, exec, clone and
a secure communication interface between multiple microns
and processes. Scone only supports applications with a single-
container process running inside a single-enclave, which is a
subset of PANOPLY.

Ryoan [31] is a concurrent work for executing distributed
SGX native client (NaCl) sandboxes. PANOPLY’s execution
model of multi-micron applications varies from Ryoan, since in
PANOPLY, all microns that belong to the same application trust
each other. Ryoan introduces a request-oriented data model
where each enclave is in-charge of processing the input only
once. Ryoan ensures that each service sandbox confines the
user-data to itself, while allowing mutually distrustful parties
to compute over sensitive data. In Ryoan, the NaCl executes
the system calls and all the buffer and file IO operations are
backed by in-enclave memory.

VII.

PANOPLY bridges the gap between expressiveness of
the SGX-native abstractions and requirements of feature-rich
Linux applications. PANOPLY offers a new design point, prior-
itizing TCB over performance, without sacrificing compatibil-
ity. It achieves 2 orders of magnitude lower TCB than previous
systems.

CONCLUSION

ACKNOWLEDGMENTS

We thank Mona Vij and Simon Johnson from Intel for
their feedback. Thanks to Chia-Che Tsai and Donald Porter
for releasing code and discussions on Graphene-SGX. This
research was partially supported by a grant from the National
Research Foundation, Prime Ministers Office, Singapore under
its National Cybersecurity R&D Program (TSUNAMI project,
No. NRF2014NCR-NCRO001-21) and administered by the Na-
tional Cybersecurity R&D Directorate.

[2]
[3]

[5]

[6]
[7]
[8]

[9]
[10]

[11]
[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

REFERENCES

“Chutney - The Chutney tool for testing and automating Tor network
setup,” https://gitweb.torproject.org/chutney. git.

“FreeTDS: Making the leap to SQL Server,” http://www.freetds.org/.

“Graphene-SGX Library OS - A Library OS for Linux Multi-process
Applications, with Intel SGX support,” https://github.com/oscarlab/
graphene, (Accessed on 12/06/2016, Commit 9958214).

“h2load - HTTP/2 Benchmarking Tool,” https://nghttp2.org/
documentation/h2load-howto.html.

“H20 Neverbleed: Privilege Separation Engine for OpenSSL / Li-
breSSL,” https://github.com/h2o/neverbleed.

“Intel SGX for Linux,” https://github.com/01org/linux-sgx.
“Intel SGX Linux Driver,” https://github.com/01org/linux-sgx-driver.

“Intel Software Guard Extensions SDK - Documentation — Intel
Software,” https://software.intel.com/en-us/sgx-sdk/documentation.
“[MS-TDS]: Tabular Data Stream Protocol,” https://

msdn.microsoft.com/en-us/library/dd304523.aspx.

“Tor Network Is Under Attack through Directory Authority Servers
Seizures,” http://thehackernews.com/2014/12/tor-network-hacked.html.
“Tor Project: Anonymity Online,” https://www.torproject.org/.
“CVE-2009-3555 TLS Session Renegotiation Vulnerability,” https://
cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3555, 2009.
“RFC 5746 - Transport Layer Security (TLS) Renegotiation Indication
Extension,” https://tools.ietf.org/html/rfc5746, February 2010.

“Tor Project Infrastructure Updates in Response to Security Breach,”
http://archives.seul.org/or/talk/Jan-2010/msg00161.html, 01 2010.

“Possible Upcoming Attempts to Disable the Tor Network — The
Tor Blog,” https://blog.torproject.org/blog/possible-upcoming- attempts-
disable-tor-network, 12 2014.

“Software Guard Extensions Programming Reference Rev. 2.”
software.intel.com/sites/default/files/329298-002.pdf, Oct 2014.
“Intel Software Guard Extensions Enclave Writer’'s Guide,”

https://software.intel.com/sites/default/files/managed/ae/48/Software-
Guard- Extensions-Enclave- Writers-Guide.pdf, 2015.

1. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata, “Innovative
Technology for CPU Based Attestation and Sealing,” in HASP 2013.
S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche,
D. Eyers, R. Kapitza, P. Pietzuch, and C. Fetzer, “SCONE: Secure Linux
Containers with Intel SGX,” in OSDI 2016.

A. Atamli-Reineh and A. Martin, ch. Securing Application with Soft-
ware Partitioning: A Case Study Using SGX.

A. Baumann, M. Peinado, and G. Hunt, “Shielding Applications from
an Untrusted Cloud with Haven,” in OSDI 2014.

A. Bittau, P. Marchenko, M. Handley, and B. Karp, “Wedge: Splitting
Applications into Reduced-privilege Compartments,” in NSDI 2008.
E. Brickell, J. Camenisch, and L. Chen, “Direct Anonymous Attesta-
tion,” in CCS 2004.

D. Brumley and D. X. Song, “Privtrans: Automatically Partitioning
Programs for Privilege Separation,” in USENIX Security 2004.

M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance,” in
OSDI 1999.

S. Checkoway and H. Shacham, “lago Attacks: Why the System Call
API is a Bad Untrusted RPC Interface,” in ASPLOS 2013.

A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti, “Making
Byzantine Fault Tolerant Systems Tolerate Byzantine Faults,” in NSDI
2009.

V. Costan and S. Devadas, “Intel SGX Explained,” Cryptology ePrint
Archive, Report 2016/086, 2016, http://eprint.iacr.org/2016/086.

V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal Hardware
Extensions for Strong Software Isolation,” in USENIX Security 2016.
T. T. A. Dinh, P. Saxena, E.-C. Chang, B. C. Ooi, and C. Zhang, “M2R:
Enabling Stronger Privacy in MapReduce Computation,” in USENIX
Security ’15.

T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A Distributed
Sandbox for Untrusted Computation on Secret Data,” in OSDI 2016.

15

[32]

[33]

[34]

[35]

[36]

[37]

[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]
[55]

[56]

P. Jain, S. Desai, S. Kim, M.-W. Shih, J. Lee, C. Choi, Y. Shin,
T. Kim, B. Kang, and D. Han, “OpenSGX: An Open Platform for SGX
Research,” in NDSS 2016.

S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mckeen, “Intel
Software Guard Extensions: EPID Provisioning and Attestation Ser-
vices,” ser. Intel Corporation.

L. M. JP Aumasson, “SGX Secure Enclaves in Practice: Security and
Crypto Review — Kudelski Security,” Black Hat USA, 2016.

D. Kilpatrick, “Privman: A Library for Partitioning Applications,” in
USENIX ATC 2003.

S. Kim, Y. Shin, J. Ha, T. Kim, and D. Han, “A First Step Towards
Leveraging Commodity Trusted Execution Environments for Network
Applications,” in HotNets 2015.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “seLL4: Formal Verification of an OS Kernel,”
in SOSP 2009.

S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, “Inferring
fine-grained control flow inside SGX enclaves with branch shadowing,”
2016. [Online]. Available: http://arxiv.org/abs/1611.06952

F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson, R. Leslie-
Hurd, and C. Rozas, “Intel Software Guard Extensions Support for
Dynamic Memory Management Inside an Enclave,” in HASP 2016.

F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative Instructions and
Software Model for Isolated Execution,” in HASP 2013.

D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt,
“Rethinking the Library OS from the Top Down,” in ASPLOS 2011.
F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado,
G. Mainar-Ruiz, and M. Russinovich, “VC3: Trustworthy Data Analyt-
ics in the Cloud,” in IEEE Symposium on Security and Privacy 2015.
M.-W. Shih, S. Lee, T. Kim, and M. Peinado., “T-SGX: Eradicating
Controlled-Channel Attacks Against Enclave Programs,” in NDSS 2017.
S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, “Preventing page
faults from telling your secrets,” in AsiaCCS 2016.

Shweta Shinde and Dat Le Tien and Shruti Tople and Prateek Saxena,
“Panoply: Low-TCB Linux Applications With SGX Enclaves,” National
University of Singapore, Tech. Rep., Dec 2016.

Shweta Shinde and Shruti Tople and Deepak Kathayat and Prateek Sax-
ena, “PodArch: Protecting Legacy Applications with a Purely Hardware
TCB,” National University of Singapore, Tech. Rep., Feb 2015.

R. Sinha, M. Costa, A. Lal, N. P. Lopes, S. Rajamani, S. A. Seshia,
and K. Vaswani, “A Design and Verification Methodology for Secure
Isolated Regions,” in PLDI 2016.

R. Sinha, S. Rajamani, S. Seshia, and K. Vaswani, “Moat: Verifying
Confidentiality of Enclave Programs,” in CCS 2015.

R. Strackx, B. Jacobs, and F. Piessens, “ICE: A Passive, High-speed,
State-continuity Scheme,” in ACSAC 2014.

R. Strackx and F. Piessens, “Ariadne: A Minimal Approach to State
Continuity,” in USENIX Security 2016.

F. Tramer, F. Zhang, H. Lin, J.-P. Hubaux, A. Juels, and E. Shi,
“Sealed-Glass Proofs: Using Transparent Enclaves to Prove and Sell
Knowledge,” Cryptology ePrint Archive, Report 2016/635, 2016.
C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J. John, H. A.
Kalodner, V. Kulkarni, D. Oliveira, and D. E. Porter, “Cooperation and
Security Isolation of Library OSes for Multi-Process Applications,” in
EuroSys 2014.

N. Weichbrodt, A. Kurmus, P. Pietzuch, and R. Kapitza, “AsyncShock:
Exploiting Synchronisation Bugs in Intel SGX Enclaves,” in ESORICS
2016.

D. Wheeler, “SLOCcount,” http://www.dwheeler.com/sloccount/.

Y. Xu, W. Cui, and M. Peinado, “Controlled-Channel Attacks: De-
terministic Side Channels for Untrusted Operating Systems,” in IEEE
Symposium on Security and Privacy 2015.

F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town Crier:
An Authenticated Data Feed for Smart Contracts,” Cryptology ePrint
Archive, Report 2016/168, 2016, http://eprint.iacr.org/2016/168.

