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ABSTRACT
Natural language interfaces (NLIs) that aim to understand arbitrary language are not only difficult
to engineer; they can also create unrealistic expectations of the capabilities of the system, resulting
in user confusion and disappointment. We use an interactive language learning game in a 3D blocks
world to examine whether limiting a user’s communication to a small set of artificial utterances is an
acceptable alternative to the much harder task of accepting unrestricted language. We find that such
a restricted language interface provides same or better performance on this task while improving user
experience indices. This suggests that some NLIs can restrict user languages without sacrificing user
experience and highlights the importance of conveying NLI limitations to users.

INTRODUCTION
Due to recent advances in natural language processing, machine learning, and speech recognition [8],
natural language interfaces (NLIs) have become a major medium of human-computer interaction (HCI).
As voice assistants such as Siri and Alexa master simple one-shot commands (e.g. what’s the weather?),
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the next frontier of NLIs is more complex, multi-step domains such as analyzing and visualizing data
[4], text [10], and images [11], querying databases [2], and controlling robots [14]. These NLIs must
learn to map ambiguous human language to precise computer actions in a collaborative dialog where
the user’s goal is continuously updated and expanded.
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Figure 1: SHRDLURN. A: Game with start
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Figure 2: Example SHRDLURN levels. Ear-
lier levels (top row) are substantially eas-
ier than later levels (bottom row), which
rely on abstractions learned earlier.

Arguably, not a single NLI today has achieved human-level abilities in these settings, as natural
language understanding is a notoriously difficult problem [8]. However, little existing work in HCI
examines whether such broad-coverage language interfaces for these domains are actually desirable
from a user experience perspective. While NLIs are thought to have several benefits prima facie, such
as familiarity and flexibility [7, 16], several studies have demonstrated worrying user experience
issues with current-generation personal assistants due to mismatches between user expectations and
system capabilities [3, 12]. These problems could be compounded in the aforementioned domains
where quickly understanding the underlying logic of the system is crucial for productivity.

For complex, multi-step domains, is it possible to preserve the advantages of language interaction
while better guiding user behavior (and freeing researchers from the burden of handling unrestricted
language)? In this work, we explore whether users prefer true NLIs compared to a simpler, “restricted”
language interface. We study an interactive language learning game [15] (Figure 1) where a user and a
state-of-the-art natural language processing system jointly develop a language from scratch to build
structures in a toy blocks world, and either (1) freely develop their own language or (2) are restricted
to a small quasi-language of well-defined utterances which mirror the computer action space.

We find that restricting user languages to be artificially simple results in same or even better task
performance, and even unrestricted users tend to organically prefer simpler languages and perform
better as a result. Crucially, restricted languages also significantly improve user experiences in the task,
reducing cognitive load and perceived effort while increasing perceived performance. These results
suggest that for some well-specified domains, guiding users towards consistent, artificial languages
can improve user experience while simultaneously making NLI design and engineering far easier.

RELATEDWORK
Research into user experiences of voice- and natural language-based interfaces has been historically
scarce [1]. Studies have assessed experiences and expectations with commercial products such as
Alexa and Siri [3, 12, 13] and so are limited by the relatively simple services they currently provide.

NLIs for more complex, domain-specific tasks have often assumed various advantages of natural
language interaction: they eliminate the need to learn a specialized programming language [4, 10] or
advanced GUI [11] and can more succinctly convey abstract behavior [14]. Some user studies have
demonstrated increased satisfaction with NLIs compared to a non-linguistic baseline [11].



The evidence for the benefits of NLIs in these domains compared to specialized programming
languages or GUIs is strong. However, we aim to formally examine whether truly “natural” language
is desirable. In doing so, we build on previous work designing effective dialogue systems [5, 9].

Table 1: SHRDLURN logical prim-
itives. Primitives are recursively
composed into candidate ac-
tions zi (e.g. add(red, cyan),
remove(except(brown))).

Primitive Description

all all blocks
cyan, red,
brown, orange colors
except(B) all blocks except B
leftmost(B) leftmost block of B
rightmost(B) rightmost block of B
add(B,C) add color C to B
remove(B) remove B

SHRDLURN: INTERACTIVE LANGUAGE LEARNING GAME
Our testbed is SHRDLURN [15], an interactive language learning game where a human and computer
develop a language to manipulate blocks from start to goal configurations in an artificial world
(Figure 1). The game is inspired by classic work on language interfaces and interaction (SHRDLU;
[16]). Following Wang et al. [15], we study this game as it shares the complex and compositional
nature of many real-world tasks. Additionally, the underlying logical language of the computer is
hidden from the user, which mimics current NLIs where users are encouraged to give [any] command.1

1Amazon Echo launch trailer; youtube.com/
watch?v=FQn6aFQwBQU

• Effort: How hard did you have to work
(mentally and physically) to accomplish
your level of performance?

• Frustration: How irritated, stressed,
and annoyed versus content, relaxed,
and complacent did you feel during the
task?

• Mental Demand: How much mental
and perceptual activity was required?
Was the task easy or demanding, simple
or complex?

• Performance: How successful were you
in performing the task? How satisfied
were you with your performance?

Figure 3: NASA-TLX Scale Descriptions

Formalization
Formally, let Y be the set of possible configurations of blocks. In each SHRDLURN level, human
and computer are presented with a start state s ∈ Y, while only the human observes a goal state
t ∈ Y. The task of the human is to transform the start configuration into the goal configuration with
a sequence of language commands [x1, . . . ,xn].
For each utterance xi , the computer constructs a set of possible actions corresponding to the

meaning of the utterance, Z = [z1, . . . , zk ] ⊆ Z, ranked by their plausibility, where Z is the set
of actions in the game. It then computes the set of successor states Y = [y1, . . . ,yk ] ∈ Y, where
yi = zi (s) is the result of applying action zi to the current state s . The human chooses the successor
state yi corresponding to the meaning of the utterance xi . The state then updates s = yi and the
computer updates its parameters with the known utterance-state pair (xi ,yi ). The level ends when
s = t . Note that the human never observes the actions Z and instead must build a mental model of the
system’s capabilities, similar to existing natural language interfaces whose underlying mechanisms
are hidden to the user. Figure 1 depicts the user interface for this process.

The action space Z is defined by a simple grammar corresponding to adding and removing blocks
of colorC ∈ {red, orange, cyan, brown} to the top of a set of stacks of blocks B, where B is recursively
specified with operators such as all, leftmost(B), and except(B) (Table 1).
The semantic parser in SHRDLURN is a simple log-linear model over logical forms given lexical

features of an utterance (e.g. bigrams, trigrams). It initially knows nothing, but is designed to learn
quickly via efficient gradient descent updates. Generally, the system only needs one or two uses of
an utterance such as remove the red blocks to learn the mapping to remove(red). Thus, users are
generally much quicker at completing later levels of a stage than earlier levels, and consistent and
efficient use of language can greatly increase task performance. There are 27 levels in the game, with

youtube.com/watch?v=FQn6aFQwBQU
youtube.com/watch?v=FQn6aFQwBQU


later levels depending on abstractions learned in the earlier levels (examples in Figure 2). For full
details, see Wang et al. [15].
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Figure 4: Unique tokens used by partici-
pants in restricted and unrestricted condi-
tions. Size indicates frequency.

METHOD
We recruited 16 participants (14 male; 2 female), all graduate students and recent college graduates
from the US and UK. We evenly divided these participants into two conditions:

• In the unrestricted setting, users were instructed to communicate to the system using any
language of their choice;

• In the restricted setting, user utterances were restricted to contain only combinations of the
11 tokens corresponding to the logical SHRDLURN primitives: all, cyan, red, brown, orange,
except, leftmost, rightmost, add, remove, plus the connective to. Utterances with other
tokens were rejected and users were asked to try again via the prompt in Figure 1.

Measures
For each utterance, the computer produces a list of possible interpretations ordered by likelihood, and
the user must scroll through interpretations to find the correct state (the computer is correct if the
user does not have to scroll at all). We thus used the number of positions scrolled as a performance
metric: the fewer positions scrolled, the smaller the gap between the user’s intended meanings and
the computers’ inferred interpretations. This serves as a proxy for the surprisal of the system [15].2

2Defined as the negative log likelihood of the
logical forms given utterances under the model.

To measure subjective experiences in the task, we use the Raw NASA-TLX survey post-experiment
[6], using the Effort, Frustration,Mental Demand, and Performance scales (Figure 3), dropping
the Temporal and Physical scales as they were unrelated to the task.

RESULTS
Participants played all 27 levels of SHRDLURN, taking 15 minutes on average. Across all participants,
we collected 585 utterances, averaging 36.6 ± 4.18 utterances per participant.

Unsurprisingly, the languages developed in the restricted setting were simpler, with a mean length
of 3.36 ± 1.10 tokens versus 5.12 ± 1.80 (t(497.6) = −14.3,p < 0.0001). Each restricted participant
used all 11 tokens available, compared to the average 28.8 ± 7.17 distinct tokens used by unrestricted
participants (Figure 4). These simpler languages seemed to translate to same or better task performance
(Figure 5): restricted participants needed an average of 7.63 ± 4.11 scrolls per utterance, compared to
unrestricted users’ 12.9± 7.98 scrolls, but the difference was not significant (t(10.5) = −1.66,p = 0.13).
Figure 6 depicts the distribution of NASA-TLX question responses for users in the restricted and

unrestricted conditions. For many questions, significant differences were seen in user responses:
restricted users reported less required effort (48.8 ± 17.5 vs. 72.5 ± 15.4; Mann-WhitneyU = 9,n1 =



n2 = 8,p = 0.014)3 and perceived their task performance to be higher (66.9 ± 20.3 vs. 39.4 ± 16.6;3Ties broken with the mid-rank method.
U = 57,p = 0.005). Mental demand also appeared to be lower, though the difference was not quite
significant (54.4 ± 20.8 vs. 75.6 ± 13.5;U = 14,p = 0.06). There was no significant difference between
reported task frustration (49.4 ± 15.7 vs. 52.5 ± 19.5;U = 29,p = 0.78).
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Figure 5: Mean scrolls/utterance for users
in restricted and unrestricted conditions.
Lower scores indicates less model sur-
prisal and thus higher task performance.
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Figure 6: NASA-TLX scores for users in re-
stricted and unrestricted conditions.

Finally, we qualitatively analyze the communication strategies (in the unrestricted setting) that lead
to good task performance. Table 2 displays utterances made by the most and least successful players
in the unrestricted condition, with a restricted player for reference. The best player uses consistent
language and logical specifiers remarkably similar to the restricted language setting. Although the
player does not use the exact tokens corresponding to the logical language, the system still comfortably
learns, for instance, to map first to leftmost and last to rightmost. The low-performance player uses
nonsensical utterances (move nothing) and multiple specification systems (e.g. all except blue vs. fifth).

DISCUSSION
We investigated users playing an interactive language learning game in a toy blocks world. By imposing
restrictions on how users communicate, we found that artificial languages tend to result in same or
better task performance (Figure 5) without detriment to user experience: in fact, participants reported
less effort and higher performance in the restricted condition (Figure 6). Qualitatively, we also showed
that users that organically developed simpler languages tended to perform better (Table 2).
These results are partially unsurprising, since players in the restricted condition are forced to be

perfectly consistent, which improves model learning. However, we also hypothesize that a guided,
consistent language helps users understand the limitations of the system and, within these constraints,
infer the abstractions needed to succeed in the task.
These preliminary results come with some limitations. First, these experiments are more relevant

for text-based NLIs, since text input is more amenable to restriction and shorthand than voice
communication. Second, they are limited to well-specified domains with finite action spaces, unlike
open-ended tasks such as unrestricted question answering.

Indeed, our intent is not to suggest that full human-level language capabilities will never be desired
in future NLIs. We instead argue that given the capabilities of current NLIs, we will see diminishing
returns in user experience and performance by attempting to accommodate arbitrary natural language
input, especially for repetitive, compositional tasks like SHRDLURN. More generally, rather than
considering only two extremes—a specialized programming language or GUI versus a human-level
language understanding system—designers should consider “restricted” language interfaces which
trade off full expressivity for simplicity, learnability, and consistency. We have not fully explored the
range of options in this work, but as our initial results show, such systems may not only be easier to
build: they may even preserve the benefits of natural language interaction while helping users better
understand the system, improving user experience as result.
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Player 1/8 (Mean scrolls/utterance: 4.08)
add blue blocks to blue blocks
add red block on the last orange stack
remove last red block
remove top orange blocks
remove first red block

Player 8/8 (Mean scrolls/utterance: 28.9)
move nothing
move all but blue
move all but red
remove 5th
remove first

Restricted Player (Reference)
remove brown
add brown to cyan
remove all except leftmost brown
add rightmost red
add leftmost red
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