Learning to Update for Object Tracking with
Recurrent Meta-learner

Bi Li, Wenxuan Xie, Wenjun Zeng, Fellow, IEEE, and Wenyu Liu, Senior Member, IEEE

Abstract—Model update lies at the heart of object tracking.
Generally, model update is formulated as an online learning
problem where a target model is learned over the online train-
ing set. Our key innovation is to formulate the model update
problem in the meta-learning framework and learn the online
learning algorithm itself using large numbers of offline videos,
i.e., learning to update. The learned updater takes as input the
online training set and outputs an updated target model. As a
first attempt, we design the learned updater based on recurrent
neural networks (RNNs) and demonstrate its application in a
template-based tracker and a correlation filter-based tracker.
Our learned updater consistently improves the base trackers and
runs faster than realtime on GPU while requiring small memory
footprint during testing. Experiments on standard benchmarks
demonstrate that our learned updater outperforms commonly
used update baselines including the efficient exponential moving
average (EMA)-based update and the well-designed stochastic
gradient descent (SGD)-based update. Equipped with our learned
updater, the template-based tracker achieves state-of-the-art
performance among realtime trackers on GPU.

Index Terms—model update, meta-learning, recurrent neural
network, object tracking.

I. INTRODUCTION

BJECT tracking is a crucial task in computer vision that

deals with the problem of localizing one arbitrary target
object in a video, given only the target position in the first
frame. Typically, bounding boxes are used for representing the
target position. Arbitrary target object implies that a dedicated
target model' is needed for each target during testing. This
is typically accomplished through online learning where the
online training set® is extracted from the test video and a target
model is initialized and updated on the fly.

In this work, we tackle the problem of model update: after
an initial target model is built using reliable supervision in
the first frame, how to exploit information in subsequent
frames and update the initial model along with tracking?
Model update is challenging because of unreliable and highly
correlated online training set. The only reliable supervision

B. Li and W. Liu are with the School of Electronic Information and
Communications, Huazhong University of Science and Technology, Wuhan
430074, China. (e-mail: libi@hust.edu.cn; liuwy @hust.edu.cn)

W. Xie and W. Zeng are with the Microsoft Research Asia, Beijing 100080,
China.(e-mail: wenxie@microsoft.com; wezeng @microsoft.com)

'In this work, we only consider scoring-based target model that outputs the
confidence of an image patch being the target. Note there are also position-
regression based target models that, given an image patch, directly regress the
target position.

>The framework of learning to update contains an offline phase and an
online phase. The offline phase is referred to as training the updater with
offline videos, whereas the online phase refers to tracking a new sequence.
The term “(online) training set” means the set of image patches collected for
updating the target model (during the online phase).

for building a target model is the information in the first
frame. After that, the online training set is collected based on
predicted target position, which is not always reliable. When
small errors in the training samples accumulate, model update
can cause the drifting problem. Moreover, the extracted online
training set is highly correlated since most of the training
samples are simply the translated and scaled version of a base
sample. Correlated samples are easy to fit and do not help
much with the generalization to hard samples.

Recent works [1], [2] have investigated the possibility of
no model update at all, and achieved remarkable tracking
performance. These approaches can be interpreted as learning
an invariant and discriminative feature extractor such that the
target remains stable in the feature space and is separable
from the background. However, learning a representation
that is both invariant and discriminative for a long time is
intrinsically difficult, as with time evolves, features that once
are discriminative may become irrelevant and vice versa.
Consider that when a red car drives into a dark tunnel, the red
color becomes irrelevant, although it is discriminative before
entering the tunnel. Instead of striving to construct a perfect
model at the first frame, model update tries to keep up with
the current target appearance along with tracking by constantly
incorporating the new target information, and therefore eases
the burden of feature representation. Moreover, by gradually
adapting to the current video context, the tracking problem
can be considerably simplified [3]. In scenarios where target
exhibits multi-modality, model update is indispensable.

Generally, model update can be formulated as an online
learning problem with two stages. First, an online training set
is collected along with tracking. Then, the target model is
learned on the training set using algorithms like stochastic
gradient descent (SGD). Existing update methods typically
suffer from the problem of large training set and slow con-
vergence thus being too slow for practical use. Moreover,
due to unreliable training data, regularizations and rules are
carefully designed based on expertise in the field to avoid
model drifting.

In this work, we advocate the paradigm for object tracking
that eases the heavy burdens of online learning by offline
learning. Offline learning is performed before the actual
tracking takes place and the learned model is shared among all
test videos. Online learning, in contrast, is conducted during
tracking and the learned model is specific to each test video.
Our key innovation is to formulate the model update problem
in the meta-learning framework and learn the online learning
algorithm itself using large numbers of offline videos, i.e.,
learning to update. The offline-learned update method, which

wﬁi

Online tramlng set

u
g meemm———— Learnin
iy -m

design

; 'I' + * _Target_rnodel
2 Online + o, - -

@x

Online training set

- i = E) (M) : 4
" Learned |a
- updater |3

: ¥

.

. Target model
Offline training tasks . + L J & [

.

+ -
: + \ =
.

Fig. 1: A general introduction of learning to update. Top: Typ-
ically, a learning algorithm (e.g., SGD) is manually designed
for online learning of the target model. Bottom: Contrarily, a
learned updater is adopted for online learning, which is offline-
trained using large numbers of videos. All figures are best
viewed in color.

Offline

Learned
updater

- (ol o)} (g&n)

we call the learned updater, takes in the online training set
and outputs the updated target model. Please refer to Fig. 1
for visual illustrations.

The benefit of learning to update is threefold: 1) After
seeing all kinds of target variations in the offline training
phase, the learned updater is able to capture target variation
patterns among videos. These learned patterns are implicitly
used during testing to avoid unlikely update (e.g., update to
background) and thus can be seen as a form of regularization,
which enables our learned updater to handle the unreliable
online training set. 2) The learned updater is able to update
the target model based on not only the online training set,
but also rules learned from the offline dataset. Therefore, the
learned updater is able to see beyond the highly correlated
online training set and makes the updated model capable of
generalizing to more challenging scenarios. 3) The learned
patterns enable fast inference of the learned updater. As a
result, our learned updater improves the performance of base
trackers while running faster than realtime on GPU with a
single forward pass of the neural network per frame.

In this paper, we formulate model update as a meta-
learning problem (a.k.a learning to learn) [4], [5] and learn a
model updater. Specifically, our learned updater is embodied
as a RNN, which is well known for its ability to model
sequential/temporal variations. Previous efforts to model target
variations based on RNNs mostly fail to deliver satisfactory
tracking performance due to inadequate offline training videos.
In this work, we contribute several techniques to overcome
data deficiencies and train RNNs effectively. With a properly
trained updater, our tracker achieves state-of-the-art perfor-
mance among realtime trackers.

As a first attempt of learning to update for object track-
ing, we demonstrate its application on two base trackers:
a template-based tracker for its simplicity and a correlation

filter-based tracker for its wide adoption. Our learned updater
considerably improves the base trackers and outperforms rele-
vant model update baselines including the exponential moving
average (EMA)- and the SGD-based update method.

In summary, our contributions are threefold: 1) We propose
a novel model update method for object tracking that (i) is
formulated as a meta-learning problem, capable of learning
target variation patterns and facilitating effective tracking, and
(ii) runs faster than realtime (82 fps with SiamFC tracker
and 70 fps with CFNet tracker) while requiring small mem-
ory footprint, thus being suitable for practical applications;
2) We propose several techniques to train our RNN-based
updater effectively; 3) We validate our method in common
object tracking benchmarks and show that it (i) consistently
outperforms relevant model update baselines, and (ii) obtains
state-of-the-art performance among realtime trackers.

II. RELATED WORK

Handcrafted Update Methods. In general, target variation
can be decomposed as short- and long-term variation. [6]
proposes a probabilistic mixture model, which has a stable
component to account for the long-term variation, a wandering
component and a loss component for the short-term variation.
Inspired by the Atkinson-Shiffrin Memory Model, [7] uses
short- and long-term memory to handle target variations.
Correlation filter and keypoint matching are employed for
short- and long-term memory, respectively. Instead of using
two separate components, we design a single component based
on RNN and learn to process short- and long-term information
in a data-driven manner.

One critical problem in model update is related to the
stability-plasticity dilemma [8]. On one hand, model update
should be stable to avoid the drifting problem where small
errors accumulate and the model gets adapted to other objects.
On the other hand, it also needs plasticity to effectively
assimilate new information derived during tracking. [9] coined
it the template update problem. They adopt a conservative
update strategy which keeps the target model in the first frame
(i.e., initial model), and updates the latest model only if its
predicted locations are close to those of the initial model.
Similar techniques are adopted in [10] which learns a ridge
regression based on the first and the last target model. Inspired
by this, we design an anchor loss that uses the first target
model as an anchor point. We find it particularly useful in our
learning based updater and will elaborate on it in Section IV.

Another strategy to handle the model drifting problem is
being more careful about the derived training samples. Instead
of making hard decisions about labeling training samples as
target or background, [3] proposes a semi-supervised approach
where only samples from the first frame are labeled and
training samples from subsequent frames remain unlabeled.
[11] proposes an occlusion detector and updates the model
only if the occlusion level is low. [12] uses multiple-instance
learning to update model with bags of samples, where positive
bag contains at least one positive sample (without knowing
which one), and negative bag contains only negative samples.
[13] estimates the training sample qualities by optimizing the

target model loss with respect to both the target model and the
sample qualities. We facilitate training information selection
by adopting a gating mechanism in our learned updater.

A popular model update method for correlation filter-based
trackers [14], [15] is exponential moving average (EMA),
which performs linear interpolation from the newly trained
model (using only training samples in the current frame) and
the previous target model. This method is attractive because
1) the update process is highly efficient without iterative
optimization and 2) training samples are processed on the fly
without the need to be stored. However, it is unlikely that linear
combination can capture all of the complex target variations.
Our model update method outperforms EMA-based update
while preserving all the practical benefits mentioned above.

Meta-learning. In this work, model update is formulated
as a meta-learning problem. Essentially, meta-learning models
a learning problem in two scales: learning for specific tasks,
and learning for general patterns that rule specific tasks. In
our case, updating target model for a specific target (e.g., an
airplane) is a specific task. We aim to learn a model update
method that is applicable to any specific tasks. [4], [5] learn
to solve the optimization problem of neural networks based
on RNNs. Their methods mainly focus on fast convergence
and are not readily applicable for model update due to the
unreliable training samples.

RNN-based trackers. RNNs are well known for their
ability to model temporal variations. Given the importance
of modeling temporal variations of target in object tracking,
it is natural to consider taking advantage of RNNs. [16] is
among the first to use RNN for object tracking, but has only
shown to work on simple synthetic datasets. RATM [17] and
HART [18] develop attention mechanisms based on RNNs and
demonstrate success on natural image datasets KTH [19] and
KITTI [20]. Re3 [21] models both appearance and motion
variations using RNNs and achieves comparable results on
several object tracking benchmarks [22]-[24]. However, Re3
[21] only models short-term variations and requires manual
resetting of RNN states every 32 frames. RFL [25] proposes
a filter generation method based on RNNs and resembles our
method applied to the template-based tracker. Nevertheless, we
tackle a more general model update problem and formulate our
method in the meta-learning framework. RFL fails to deliver
satisfactory tracking performance due to aggressive updating
which is common in RNN-based trackers. By formulating the
model update in the meta-learning framework, we focus on the
generalization ability of the online-learned target model. With
the proposed anchor loss, our approach outperforms RFL by
a large margin. To the best of our knowledge, we propose the
first RNN-based tracker that achieves state-of-the-art tracking
performance among GPU-based realtime trackers.

III. BASE TRACKERS AND BASE UPDATE METHODS

In this work, we focus on the update of linear target model
due to its simplicity and wide adoption.

Basically, a target model is a scoring function that outputs
the confidence of an input image patch being the target.
Importantly, the target model should have parameters 6 that

is updatable. By model update, we mean updating 6 such that
it accommodates the target variations during tracking.

For a linear target model, the confidence ¢ of an image
patch with feature z is the inner product between 6 and z,
ie,c=0Tx.

During tracking, a tracker gathers a training set 7' for
updating the target model parameters 6. Since the dataset is
gathered online, it is called the online training set. Let 7} be
the online training set at time ¢, the target model is updated
by an update function u, i.e., ; = u(7T}). This work is about
learning an update function w,(-) with parameters ¢ using
large numbers of offline videos.

Before diving into the proposed learned updater, we intro-
duce two base trackers with linear target model as well as two
baseline model update methods in this section.

A. Template-Based Tracker: SiamFC

A template-based tracker simply uses the target feature (i.e.,
the feature of the target) as its target model. Intuitively, it
means that the confidence of the test patch being the target
is high when it is similar to the target feature and low
otherwise. Due to the simplicity of the target model and the
learning algorithm (i.e., an identity function), the performance
of template-based tracker depends heavily on its features.

SiamFC [2] is a template-based tracker which achieves
good performance with an offline learned feature extractor.
The feature extractor is learned under a two branch structure
with millions of image pairs sampled from videos. Each
image pair contains a target patch and a test patch. The
feature of the target patch is computed as the linear target
model. The learning objective is that the confidence of a test
patch containing the target is high while the confidence of
background being low.

Interestingly, SiamFC does not have a model update module.
In other words, given the target feature in the first frame z;
(we will use z for target feature and x for the feature of any
image patch), the online training set contains only the target
feature T; = {Z;} and the learning algorithm simply takes the
target feature as the target model 0;11 = u(T}) = ;.

The detection process of SiamFC is equivalent to computing
the similarity by sliding the target model 6 over the search
feature z and then outputting the position with the largest
response. To facilitate fast detection, the feature extractor is
designed to be fully convolutional and the similarity metric is
simply inner product. Therefore, the detection process can be
readily implemented via cross-correlation % (or convolution in
the neural network literature):

p:argmlz)ixe*z . (1)

B. Correlation Filter-Based Tracker: CFNet

Correlation filters are one representative example of linear
target model that have shown superior performance and gained
a lot of popularity. The key factor behind the success of
correlation filters is an efficient learning algorithm that is
able to handle tens of thousands of circulant training samples.
Correlation filter-based trackers have been improved in various

aspects since the seminal work of [14]. For simplicity, we use
the basic formulation and follow the setup in CFNet [26].

In correlation filter-based tracker, given one base sample
of the target feature Z, various virtual samples are obtained
by cyclic shifts. The label of the base sample is 1 while
the labels of the virtual samples follow a Gaussian function
depending on the shifted distance. Given the samples and the
corresponding labels, a ridge regression problem is solved
efficiently in the Fourier domain making use of the property of
circulant matrix [27]. In this work, we will simply use CF(-)
to denote the algorithm of learning the correlation filter from
one base sample with multiple feature channels. Please refer
to [14], [15] for more details about CF(-).

The detection of correlation filter-based tracker is typically
conducted in the Fourier domain. However, we convert the
learned filter back to the spatial domain following CFNet. In
this way, the detection process is the same as the SiamFC
tracker. Moreover, it frees the learned updater from dealing
with complex values.

C. Two Baseline Model Update Methods

For linear target model based trackers, there are two com-
monly used model update methods. We briefly introduce these
two baseline methods in this subsection.

EMA-based model update. Let ¢ : X — © be the
algorithm of learning a linear target model using a single target
feature. For template-based tracker, it is the identity function.
For correlation filter-based tracker, it is CF(-). Typically, the
online training set contains the target feature at each frame,
ie., Ty = {Z1,Ta, ..., T4 }. It is clear that Ty = Ty U {Z}.
Given the online training set 7}, the updated target model via
EMA is

Ory1 = u(Ty) (2a)
=1 - a)u(Ti—1) + ag(z:) (2b)
= (1—a)b; + ab, (2c)

where « is the learning rate that controls the rate of adaptation,
0, = g(z:) is the candidate target model at time ¢. Note
that this update method only requires the last target model
0; and the current target feature Z;. Hence, there is no need
to explicitly collect a large online training set.

EMA-based update is widely adopted in correlation filter-
based trackers because it is easy to implement and efficient
in terms of both memory consumption and computational
complexity. Moreover, EMA-based update is the update rules
of correlation filters derived for the multiple base samples with
single channel case [14] and can be quite effective even for
samples with multiple channels. However, in general, EMA-
based update is ad hoc and only marginally improves the
template-based tracker as shown in our experiments (Sec-
tion V).

SGD-based model update. Besides EMA, another up-
date method is to collect the online training set using
samples from the search space of detection, ie., T} =
{(z1,91), (22,Y2), ..., (zt,y¢)} where z; is the feature of the

S PR ptly 2 S

Tramlng‘set T3
Fig. 2: Tasks for learning the model updater during offline
training. Each task consists of a training set and a test set. The
model updater should learn from the training set and generate
a target model which is tested on the test set.

TABLE I. Correspondence between the meta-learning and
learning to update. Best viewed by zooming in the electronic
version.

meta-learning
meta-training
meta-test
meta-learner

learn to update
offline training
online training
model updater

Explanation

The process of learning a meta-learner (model updater)
The process of applying the meta-learner (model updater)
The model that takes as input an training set and

outputs a learner (target model)

a task a task An example used for meta-training (offline training)
the meta-learner (model updater),
consisting of a training set and a test set
training set training set The dataset for learning a learner (target model)
test set test set The dataset for testing the learner (target model)
learner target model The model learned from the training set

search image at frame ¢ and y; is the corresponding label
map. The update process based on SGD is
Olpp (0)

9t+1 =0; — QT 3)

where I (0) is a differentiable objective function with vari-
ables 0 over a batch of samples 7 from the online training
set, and « is the learning rate.

Typically, a fixed size of online training set is maintained by
dropping the earliest samples when the capacity is exceeded.
However, it still contains thousands of samples. Moreover,
we show only one iteration of SGD update for brevity while
it generally requires dozens of iterations to take effects.
These computational burdens of the SGD-based update method
hinder its practical usage.

IV. LEARNING TO UPDATE

In this section, we first formulate the model update prob-
lem in the meta-learning framework and then introduce the
proposed model updater.

A. Model Update as Meta-Learning

Meta-learning is about learning from large numbers of tasks
during meta-training to quickly learn a new task at meta-test
time. Each task consists of a training set and a test set. The
meta-learner (i.e. the model to be obtained via meta-training)

Model updater

ConvGRU

Candidate
Target model

9@

f f
A
B

CNN

Training set T

Target
model 6,

1
iAnchor loss
A\
VA
Target
model 6 I *+ Response

ﬂearch

1

1

1

1

1

1

1

1

1
t feature z v
(Classification
| loss
1
1
1
1
1
1
1
1
1
1
1
1

Test set Q

Fig. 3: The framework of learning to update during offline training. Given the training set 7" with image patches of a car, the
target model 6 is updated by the recurrent model updater. The target model is tested on the test set () to obtain the classification
loss. An anchor loss is also added to improve generalization. The model updater is learned by optimizing the anchor loss and
the classification loss. During tracking, the model updater is fixed. An online training set is gathered along with tracking as T’
and the target model is updated by the model updater and applied to subsequent frames.

takes as input the training set of a task and outputs a learner
which should perform well on the corresponding test set. The
aim of meta-learning is to learn a meta-learner during meta-
training such that the meta-learner can quickly learn a good
learner at meta-test time, so meta-learning is also known as
learning to learn.

The uniqueness of meta-learning is that, at meta-test time,
the meta-learner should quickly learn a new concept using
examples from the training set of the concept. An example is
to learn a classifier to differentiate “Apple” and ‘“Pear” based
on examples of each category where these two categories never
appear during meta-training. This resembles model update for
object tracking since the tracker should quickly update the
target model to accommodate an object that does not appear
during offline training?.

In the context of meta-learning for target model update,
we aim to learn a meta-learner (model updater) from large
numbers of offline videos during meta-training (offline train-
ing). Each task is to learn the learner (target model) from the
training set to locate the target at test set. The correspondence
between learning to update and meta-learning is summarized
at Table I.

During offline training, given the training set 1" and the test
set @) of a task constructed from the offline videos (T, Q) € V,
the model updater computes target model 6 = uy(T). Let
1(0,Q) be the loss of the target model on the test set () of
a task. The model updater ¢ is learned by minimizing the

3In fact, during offline training, the “human” category never appears
whereas humans appear often in the tracking benchmarks.

following loss:

L(¢) = Z ug(T), Q) @)

(T,Q)ev

B. The Training Set and the Test Set

We now describe how to construct the training set and the
test set of a task for learning to update.

Given a video from the offline videos and the corresponding
target positions (width, height, center position) at each frame,
we first normalize the scale variations of targets by scaling
the image with factor s such that s(w + 2p) x s(h+2p) = A
where w, h are the width and height of the target in the image,
p = “F is the context margin and A = 127 x 127 is the
desired target size after scaling.

A subset of N image frames are sampled from the scaled
images while keeping the temporal order. The first N — 1
frames are cropped at the center of the target, with size 127 x
127, and used as the training set of the target. The last frame
is also cropped at the center of the target, with size 255 x 255,
and used as the test set. Note that we use a larger image patch
in the test set since both of our base trackers are translation
equivalent and the 255 x 255 image can be seen as a set of
127 x 127 images. Please refer to Fig. 2 for several examples
of training set and test set.

Cropped images are then embedded by the feature extractor.
Finally, we have the training set T = {Z1,Z2,...,Tn_1}
where 7 € R™*™*d is the feature of the target. The test
set @ = {(z,y)} where z € R"*"*? ig the feature of the
search image and y € {—1,+1}(n—m+Dx(n=m+1) j5 the

corresponding label map. Features have spatial size m or n
and channel size d.

C. Instantiation of The Learned Updater

A model updater takes as input a training set T =
{Z1,To,...,Tn—1} and outputs the updated target model 6,
ie., 8 = u(T). The design of the updater includes several
preferable properties: 1) supporting training set with variable
size; 2) incremental update, i.e., during tracking, the target
model is updated based on existing values instead of learning
from scratch; 3) memory and computational efficiency.

In this work, we propose a RNN-based updater that satisfies
all these properties. Concretely, our updater follows a three-
step procedure.

Step 1: Project from feature space to model space. We
first project each target feature in the training set into the
model space by 0/ = g(z), where §' € R™*™*d ig the
candidate target model and g(+) is the algorithm of learning a
linear target model using a single target feature. In particular,
g(+) is the identity function for SiamFC and is the CF()
function followed by a center cropping function for CFNet.

Step 2: Aggregate target information. We use RNN to
summarize the training set into a single tensor. For sim-
plicity, gated recurrent unit (GRU) is adopted [28]. We find
GRU achieves better performance than the Long-short term
memory (LSTM [29]) in the ablation study. To preserve the
spatial dimension, we extend the original GRU formulation
to Convolutional GRU (ConvGRU) by replacing all matrix
multiplications with convolutions.

Step 3: Generate target model. Given the last hidden state
of the ConvGRU, one convolutional layer is used to generate
the target model.

By adopting RNN, our updater is able to handle training set
with variable size. Moreover, the target model is updated in
an incremental manner. To make things clear, during tracking,
denote Ty = {Z1,Z2,...,Tt—1} as the online training set
at time ¢ — 1. After model update, we obtain the hidden
state h;_1. At time ¢, the online training set is updated with
a new example Z;, i.e., T; = T;_1 U {Z;}. Since the first
t — 1 examples are unchanged, we can simply reuse h;_; and
get hy = ConvGRU(h¢_1,Z:). Moreover, with incremental
update, we can avoid explicitly storing and manipulating a
large online training set during tracking since our updater
only needs h;—_; to generate h; which saves a large amount
of memory.

Until now, the updater is restricted to use N — 1 target
features as the training set and one search image feature as the
test set. Note that given a sequence of N — 1 target features,
our updater can readily compute N — 1 target models at each
time step. Therefore, given a video with N images, we can
construct various training sets with length 1,2,..., N — 1 and
the computation for model update can be shared.

D. The Learning Objective

Given the updated target model 6, we need a “goodness”
measurement of the target model which in turn indicates how
good the updater is and thus enables optimization.

Classification Loss. Following the meta-learning frame-
work, the updated model is evaluated on the test set () =
{(#,¥)}. Using the normalized logistic loss for classification,
we have
y(=Ino(0+2) + (1= y)(—In(1 = o(6 % 2)))
lc(g; Q) =
(n=m+1)-(n—m+1)

4)

Anchor Loss. At a first glance, it would seem that classifi-
cation loss is all we need to train the updater. However, model
update faces the intrinsic problem: the stability-plasticity
dilemma, i.e., model update should be stable with respect to
noise and flexible to assimilate new information. With only
classification loss, since z is close to Zy_1, the updater will
adopt an aggressive update strategy and store new information
brought by Zx_1 as much as possible. The problem is that
Tn—1 is not always reliable during tracking and thus the
updater trained with only classification loss is prone to small
errors.

One effective method that is validated by the literature is
to use the target model at the first frame as an anchor point
[9], [10]. Given inadequate training data, such an anchor point
is hard to learn without regularization. Therefore, we design
an anchor loss, which penalizes the updater when the updated
target model drifts away from the initial target model:

1
m-m-d
where the loss is normalized by the number of target model
parameters m - m - d.

Total Loss. Classification loss and anchor loss are linearly
combined for measuring a target model:

1(0;Q) = (1 = N)e(6; Q) + Ala(6;01) (7

where A is the combination factor. Successful learning of
the updater should maintain a good balance between the
classification loss and the anchor loss.

The total loss of the updater u(-) with learnable parameters
¢ is then the loss of the target model in the offline training
set by inserting Eq. 7 into Eq. 4.

1o(0;01) = 16— 613 . (©6)

E. Practical Techniques for Effective Learning

Our learned updater collects target information based
on RNNs, which are well known for modeling sequen-
tial/temporal variations. However, the problem of limited of-
fline training videos has to be addressed before it unleashes
the power. We describe several techniques based on the nature
of model update that turn out to be effective.

Modeling long-term variation by truncated backpropa-
gation. Typically, a subset of N frames are sampled from the
original video for RNN training. For convenience, we define
maximum modeling length of an algorithm to be the largest
length of all sampled sequences during training, where the
length of a sampled sequence stands for the distance counted
by #(frames) in the original video between the first and the
last sampled frame. Since videos have hundreds of frames to
track, it is desirable for RNN-based models to learn long-term
dependency with a large maximum modeling length. However,
training with long sequences is computationally demanding

and may incur the vanishing gradient problem. To avoid such
a problem, existing RNN-based trackers sample relatively few
frames sparsely from the original video. For example, [25]
samples training sequences with 10 frames and large frame
interval (30 frames on average). Such a sparse sampling strat-
egy, however, enlarges the target variations between sampled
frames, which is more difficult to learn. We conjecture that
these trackers are disadvantaged by such limitations.

Contrarily, to train our learned updater, we sample training
sequences with as many as 150 frames and small frame interval
(< 2 frames)*. To handle the aforementioned problem of
training with long sequences, instead of backpropagating all
the way to the first frame, we adopt truncated backpropagation.
This method processes training frames one timestep at a time,
and every H timesteps, it runs backpropagation through time
(BPTT) for H timesteps. H is called the unroll length.

Matching training and testing behavior by estimated
target position. During offline training of the learned updater,
training set 7" of the training video needs to be generated. In
our case, the online training set contains the target features
at each frame Ty = {Z1,Z2,...,T¢}. The extraction of the
target features depends on the target position which can only
be estimated during tracking. RNNs often take as input the
groundtruth during training, which is known as teacher forcing.
However, as noted in [30], this causes discrepancy between
training and testing and hampers the performance of RNNs.
In this work, we always use the target position during training
that is inferred by the target model to keep in line with testing.

Reducing overfitting by interval update. As noted in [31],
instead of updating the target model in every frame, it is
beneficial to apply a sparser update scheme. We adopt this
simple strategy by updating the target model every M frames.
Note that the hidden state of RNN is updated in every frame
though. The reason for the improved performance is that by
updating after a certain timesteps, the learned updater can
make more informed update decision, and therefore reduces
the risk of overfitting to current training samples.

V. EXPERIMENTS
A. Implementation Details

Training data. The feature extractor and learned updater are
trained offline on the ILSVRC 2015 Object Detection from
Video dataset (Imagenet VID) [32]. Imagenet VID contains
4417 videos and each video has about 2 object tracks on
average, adding up to 9220 tracks. Tracks are annotated with
bounding boxes in each frame and contain about 230 frames
on average. This differs from another large-scale video dataset,
namely Youtube-BB [33] where objects are annotated every 30
frames and each track has about 15 annotated frames. We find
that small frame interval is important for training the learned
updater, and thus, we use Imagenet VID instead of the much
larger Youtube-BB. However, it is worth investigating effective
ways to make use of Youtube-BB for object tracking.

Image sequences are sampled from tracks as training sam-
ples for the learned updater. We use bucketing [34] (i.e., an

4In this sense, the maximum modeling length of our method here is 300
frames.

RNN training technique which batch together sequences of
similar lengths for efficiency) to handle sequences of different
length. Multiples of the RNN unroll length are used as the
bucket sizes. For example, bucket sizes of 25, 50, ..., 125, 150
are used for fast experimentation where 25 is the RNN unroll
length. For tracks that are longer than the largest bucket size
(e.g., 150), we sample a portion of the tracks with small frame
interval (e.g., 1 or 2). For short tracks, we lengthen these tracks
by duplicating frames or simply drop these tracks according to
probabilities that are proportional to the track length. Images
are preprocessed according to its base tracker SiamFC [2] and
CFNet [26]. Particularly, these two base trackers use the same
preprocessing procedures to crop and resize images such that
targets are at the image center and take up 127 x 127 pixels
together with context.

Architecture. For template-based tracker, we use the same
modified Alexnet architecture in [2] for the feature extrac-
tor. For correlation filter-based tracker, we use the 3 layer
CNN feature extractor in [26], which is trained following
the procedures in [2]. All of our experiments stack two
convolutional GRU layers, where convolution operations have
kernel size 3 with zero padding to preserve spatial dimension.
For template-based tracker, each convolutional GRU layer has
192 units while for correlation filter-based tracker, each has
64 units®. One convolutional layer with kernel size 3 is used
to generate the updated target model based on the hidden
states, which takes as input the concatenated states of the two
convolutional GRU layers and outputs corresponding target
models. Dropout [35] and layer normalization [36] are added
in each convolutional GRU layer to avoid overfitting.

Optimization. Learned updaters are trained over 60 epochs,
each epoch consists of 8309 image sequences. Gradients are
computed using mini-batches of size 8, which are used by the
Adam optimizer [37]. Learning rate is fixed to be 1e-4. Weight
decay is Se-4.

Hardware and software specifications. The speed mea-
surements of our trackers are performed on a computer with
an Intel Core 17-5930K Haswell-E 6-Core 3.5GHz CPU and
a GeForce GTX 1080 GPU. Our trackers are implemented
in TensorFlow [38], which is compiled with CUDA 8.0 and
cuDNN 6.0.

Postprocessing. We adopt the same strategy as our base
trackers for penalizing large displacement and handling scale
variations. Specifically, a cosine window is added to the
response map to penalize the large displacement. For scale
estimation, three search patches with different scales are
extracted and the current scale is calculated by interpolating
the newly predicted scale with a damping factor.

B. Benchmarks and Evaluation Protocols

OTB. The OTB benchmark contains three subdatasets:
OTB-2013, OTB-50 and OTB-100, each of which consists of
51, 50 and 100 natural image sequences, respectively. The
standard evaluation metric on OTB is the area under curve

3The number of hidden units are set by searching from 32 to 384 with step
size 32. We empirically find that setting the number of hidden units close to
the channel size of the target model performs well.

(AUC) of the threshold-success rate curve which represents
the success rates at different thresholds. For each frame, the
overlap (intersection over union) between the predicted target
bounding box and groundtruth is computed. The success rate
at a given threshold corresponds to the fraction of frames that
has overlap no less than the given threshold.

VOT. The VOT benchmarks are a collection of tracking
challenges held on a yearly basis starting from 2013. We
use three recent benchmarks: VOT-2015, VOT-2016 and VOT-
2017. Unlike OTB, which lets the tracker run until the end of
the image sequence, VOT focuses on short-term tracking (no
redetection is required) and resets the tracker once it drifts
away from the target. The primary measure is the expected
average overlap (EAO), which reflects the similar property as
AUC. VOT-2017 also introduces a new “realtime challenge”,
where a tracker is constantly receiving images in realtime
speed and if the tracker does not respond after a new frame
becomes available, the last bounding box predicted by the
tracker is reported for the current frame.

C. Ablation Study

We validate the effectiveness of various designs of our
learned updater based on the template-based tracker. OTB-
2013 is used for ablation study. All experiments use the
same configurations except the components that are examined.
Although larger unroll length typically gets better results, in
the ablation study section, we use unroll length 25 for fast
experimentation which is also the default configuration unless
larger unroll length is needed. Moreover, only color images are
adopted during offline training to prevent benchmark-specific
choices®. All models are trained using our implementation
including SiamFC. Results are summarized in Table II.

Anchor loss is crucial for successful learning. To over-
come the stability-plasticity dilemma, we propose the anchor
loss which penalizes large variations of the updated target
model. To minimize the anchor loss, one straightforward
strategy would be no update at all. However, besides the
anchor loss, the learned updater is also constrained by the
classification loss which encourages the update of the target
model to keep up with target variations. It is of interest to
investigate how the interplay between these two losses affects
the performance of the learned updater.

Our learned updaters trained with different combination
factors \ are shown in Table II(d). We also include the results
of the no-update baseline (i.e., the setup in SiamFC [2]) for
reference. When A = 0 (i.e., no anchor loss), our learned
updater is not constrained to generate target models that are
consistent with the initial target model and can quickly drift
away. The performance is even worse than not updating at all.
As X increases, the learned updater gets better and reaches
the peak at 0.2. Further increasing the anchor loss weight
diminishes the possible target model choices of the learned
updater and the performance drops. Note that even without the
classification loss (i.e., A = 1), our learned updater outperforms

60TB-2013 contains both color and grayscale videos. Therefore, models
trained with both color and grayscale images typically perform better in this
benchmark.

the baseline with no update. The reason is that the learned
updater is given the initial target model only once. After that,
it constantly receives new target model information and the
hidden states of RNN inevitably stores new information due
to the soft store operations. It is this new information that
helps tracking.

Learned updater is orthogonal to feature extractor. Our
template-based tracker is based on [2], which aims to learn an
invariant and discriminative feature extractor such that model
update is not necessary. Two interesting questions are: 1)
how much variation the Siamese network is able to learn,
and 2) how the learned feature extractor affects our learned
updater. We answer these questions from the perspective of
training samples of feature extractor. Every training sample
of the Siamese network contains two image patches from two
frames of a video. These two patches are both centered on
the target and at most K frames apart, and therefore the
maximum modeling length is K according to the definition
in Section I'V-E. We investigate the effects of different K, and
train an updater based on each feature extractor. Results are
shown in Table II(e).

As can be seen, 1) Siamese network is able to capture
the variations of target within 100 frames, but has difficulties
learning beyond this limit. 2) Although the feature extractor is
trained with the objective of invariance and does not require
model update, our learned updater consistently improves the
base trackers. Moreover, the improvement is positively corre-
lated with the performance of the feature extractor.

Train longer, generalize better. Model update is a process
that typically spans hundreds of frames. We investigate the
effects of training with long image sequences (large maximum
modeling length). Table II(f) shows the tracking results of
the learned updater trained with different maximum modeling
length and unroll lengths. By increasing the maximum model-
ing length from 100 to 300, the learned updater monotonically
gets better results. Since modeling long term dependencies is
still a challenge for RNN, the performance degenerates when it
reaches 400. In conclusion, 1) large maximum modeling length
helps the learned updater to generalize better if it is within the
modeling capabilities of RNN; 2) large unroll length is still
helpful under truncated backpropagation to model long term
dependencies.

Moreover, it is worth mentioning that the performance
of the Siamese network decays as the maximum modeling
length is over 100 (as shown in Table II(e)). We have tried
to increase the number of neurons in Siamese network, but
it does not help. Contrarily, our learned updater can handle
longer sequences (e.g., 300 frames). It can be inferred that
it is difficult to extract invariant features to handle long-term
target variation, whereas learning an updater to adapt the target
model gradually is relatively easier.

Practical techniques are helpful. We demonstrate the
effectiveness of the various practical techniques introduced
in Section IV-E by removing one component at a time.
Note that small unroll length is used by default instead of
large unroll length for fast experimentation. The results are
summarized in Table II(a). As shown in the table, every
component has contributed to the final performance. Among

TABLE II: Ablations on the OTB-2013 dataset using template-based tracker. Only color images are adopted during offline

training. RNNs are unrolled 25 steps by default.

(a) Effective techniques: Cross mark means the technique is removed.
RNNs are unrolled 25 steps by default unless large unroll length (50)
is adopted. Image sequence are sampled by default with small frame
interval (< 2). By removing the technique, we use large frame interval
(= 10).

(b) RNN configurations: For exam-
ple, ConvGRU-192x2 denotes stack-
ing 2 layers of ConvGRU, each with
hidden size 192.

(c) Joint training: F: feature extractor, M:
model updater, F + M: joint training of feature
extractor and model updater.

interval update? X configuration AUC (%) Description AUC (%)
estimated target position? X ConvGRU-192x1 62.1 scheme 1 | stage 1: F + M 51.5
small frame interval? X ConvGRU-192x2 63.6 stage 1: F
large unroll length? X X X X ConvGRU-192x3 63.3 scheme 2| ee 2 FaM | 002
AUC (%) | 644 636 630 626 ©61.7 ConvGRU-128x2 62.8 stage 1: F
ConvGRU-192x2 63.6 scheme 3 | stage 2: M 63.1
ConvGRU-256x2 63.4 stage 3: F + M
ConvLSTM-128x2 62.2 o stage 1: F 63.6
ConvLSTM-192x2 62.8 urs stage 2: M -
ConvLSTM-256x2 62.6

(e) Maximum modeling length of feature extrac-
tor: Tracker accuracy as the maximum modeling
length of the feature extractor varies during offline
training, with and without the learned updater.

(d) Anchor loss: Tracker accuracy as the combi-
nation factor X varies during updater training. “lu”
is our learned updater.

(f) Maximum modeling length of model up-
dater: Tracker accuracy with varied maximum
modeling length and unroll length of the model
updater during offline training.

64

62 M 63

62

AUC(%) on OTB-2013
AUC(%) on OTB-2013

—e— SiamFC-lu

60
62.0
SiamFC 59

64.5
SiamFC-lu

—e— SiamFC 64.0

63.5

6301 T

62.5

AUC(%) on OTB-2013

SiamFC-lu-unroll50
—o— SiamFC-lu-unroll25

61.5

00 01 02 03 04 05 06 07 08 09 1.0 50 100

A Maximum modeling length of the feature extractor

these techniques, interval update plays such an important role
that the performance drops about 2% once removed. This is
in accordance with the findings in [31].

Ablation on the RNN. Table II(b) shows the results of
RNNs with different configurations of cell unit (ConvGRU or
ConvLSTM), number of stacked RNN layers and the hidden
state size. As can be seen, ConvGRU consistently outperforms
ConvLSTM which may be related to the observation that
the best performing cell unit is task-dependent [39]. We also
observe that the AUC largely increases from 62.1% to 63.6%
by stacking two layers of ConvGRU. The performance is not
sensitive to the size of the hidden state as long as it is in a
reasonable range (1927256).

Joint training is difficult. The whole system (including
feature extractor and model updater) can be trained jointly.
We have tried several schemes for joint training, of which the
results are summarized in Table II(c). Interestingly, it is best to
train feature extractor and model updater separately - first train
the feature extractor without model updater, and then fix the
feature extractor and train the model updater. Scheme 3 jointly
trains feature extractor and model updater after separately
learning these two components. However, the performance still
degrades. The reason is arguably that the ability of the feature
extractor for modeling appearance invariance is hampered
during joint training since the frame interval between selected
images is small.

150 200 50 100 150 200 250 300 350 400
Maximum modeling length of the learned updater

TABLE III: Comparisons with three representative baselines:
no update, EMA-based update and SGD-based update. The
AUC and EAO metric (higher is better) are reported for OTB
and VOT, respectively. For OTB only, the feature extractors
are trained with both color and grayscale images.

OTB-2013 OTB-100 OTB-50 VOT-2015 VOT-2016 VOT-2017 Speed(FPS)

SiamFC-no-update 0.608 0.582 0.516 0.290 0.235 0.188 117
SiamFC-ema 0.618 0.597 0.538 0.286 0.259 0.216 91
SiamFC-sgd 0.644 0.614 0.563 0.306 0.278 0.248 13
SiamFC-lu (Ours) 0.657 0.620 0.577 0.318 0.295 0.263 82
CFNet-no-update 0.568 0.541 0.501 0.219 0.201 0.173 134
CFNet-ema 0.608 0.580 0.550 0.237 0.229 0.189 79
CFNet-sgd 0.613 0.590 0.555 0.235 0.212 0.182 9

CFNet-lu (Ours) 0.621 0.599 0.565 0.242 0.230 0.208 70

D. Baseline Comparisons

We consider three relevant baselines: no update, EMA-based
update and SGD-based update. Please refer to Section III for
an introduction of the EMA-based and SGD-based update.

o No update: the target model is initialized in the first

frame and then remains fixed.

o EMA-based update: the last target model and the current
candidate target model are linearly interpolated. The
learning rate « is searched on OTB-2013 from 0.01 to
0.2 with step size 0.01.

o SGD-based update: we adopt the short-term update and
long-term update following MDNet’ [40]. Short-term
update is triggered when the tracker has low confidence

7Unlike MDNet which updates the last 3 layers, we only update the linear
target model, i.e., the last layer for meaningful comparison.

TABLE IV: Comparisons with state-of-the-art trackers.

(a) OTB and VOT: Trackers are split into two groups: realtime trackers and
non-realtime trackers. The AUC and EAO metric (higher is better) are reported
for OTB and VOT, respectively. Red and blue fonts indicate /st and 2nd best
performance of each group, respectively.

OTB-2013 OTB-100 OTB-50 VOT-2015 VOT-2016 VOT-2017 Speed(FPS)
ECO 0.709 0.694 0.643 - 0.374 0.280 6
MDNet 0.708 0.678 0.645 0.38 - - 1
LSART 0.677 0.672 - - 0.324 0.323 1
CSRDCF - 0.587 - 0.320 0.338 0.222 13
CREST 0.673 0.623 - - 0.283 - 1
RFL - 0.581 - - - 0.222 15

SiamFC-lu (Ours)
EAST

DSiam

CFNet-lu (Ours)
CFNet

SiamFC

0.657
0.638
0.656
0.621
0.610
0.608

0.620 0.577 0.318 0.295
0.629 - 0.34 - -

- 0.293
0.565 0.242
0.538
0.516

0.263 82
159
- 25
0.208 70
79
117

0.599 0.230
0.589

0.582

0.290 0.235 0.188

(b) VOT-2017 realtime challenge: Results of top-performing trackers and
our trackers on the VOT-2017 realtime and non-realtime (also called baseline)
challenge. The EAO metric (higher is better) is reported.

LSART CFCF
0.055 0.059
0.323 0.286

ECO
0.078
0.280

Challenge
realtime
non-realtime

\ SiamFC-lu (Ours) CSRDCF++ CFNet-lu (Ours) SiamFC ECO-HC
0.258 0.212 0.200 0.182 0.177
0.263 0.229 0.208 0.188 0.238

while long-term update is conducted every 10 frames. The
hyperparameters of the SGD-based update (e.g., online
training set size 1000, batch size 8, learning rate 10,
number of iterations, 500 for long-term, 200 for short-
term, etc.) are searched on OTB-2013.

For fair comparison, we retrain the updater using publicly
available feature extractors (SiamFC and CFNet are open-
sourced) with configurations validated in the ablation study. As
it turns out, the publicly available feature extractor of SiamFC
trained with both color and gray images improves the tracker
performance from 0.644 to 0.657 on OTB-2013. This is in
line with our observations that the performance of a tracker
equipped with our learned updater is positively correlated to
that of the feature extractor. The results are summarized in
Table III. Qualitative comparisons are presented in Fig. 4.

Observations: 1) Our learned updater significantly out-
performs the no update and EMA update baselines. 2) A
somewhat surprising yet encouraging result is that our learned
updater achieves better performance than the heavily designed
and tuned SGD update method. 3) It is worth noting that
for correlation filter-based tracker, EMA update is still a
strong baseline. 4) Noticeably, the improvement on SiamFC
is consistently larger than that on CFNet. As noted in [26],
the CF(-) may impose priors that become overly restrictive
when enough modeling capacity and data are available. 5) Our
learned updater outperforms the SGD-based update method
while enjoying comparable efficiency as the EMA-based up-
date method.

E. State-of-the-art Comparison

We compare trackers equipped with our learned updaters
against 10 state-of-the-art trackers: ECO [31], MDNet [40],
LSART [41], CSRDCF [42], CREST [43], RFL [25], EAST
[44], DSiam [10], CENet [26] and SiamFC [2]. The results
are summarized in Table IV(a).

Observations: 1) SiamFC-lu achieves state-of-the-art per-
formance among realtime trackers. 2) SiamFC-lu outperforms
DSiam and RFL, which also focus on improving the update
mechanism of SiamFC.

To evaluate the practicability of different tracking methods,
VOT-2017 introduces a new “realtime challenge” that only
allows the tracker to respond in realtime; otherwise, the last
predicted target position will be used for the current frame.
We compare our method with the state-of-the-art trackers
in this setting: CSRDCF++ (a C++ implementation of the
CSRDCEF [42] tracker), SiamFC [2], ECO-HC (a lightweight
version of ECO [31] that uses HOG feature), LSART [41] and
CFECF [45]. The results are shown in Table IV(b). It can be
observed that our approach achieves state-of-the-art results in
the realtime setting.

VI. DISCUSSION

One interesting question would be why learning to update
actually works? We try to answer this question in three
different perspectives. 1) From the high-level perspective, fast
model update is viable because videos are intrinsically struc-
tured (e.g., temporal dependencies between target features,
target variation patterns). Our learned updater captures these
structures in a data driven manner. 2) As for the functionality,
our learned updater can be seen as a learnable extension of the
EMA-based update. The difference is that, instead of linearly
interpolating the last target model and the current candidate
target model, we adopt the gating mechanism. As a result, the
learned updater inherits the efficiency of EMA-based update
and the effectiveness of learning based method. 3) Empirically
speaking, as shown in Fig. 4, after being trained under the
classification loss and anchor loss, our learned updater is
able to reliably absorb target variations while resisting the
distractors.

As a first attempt, however, there are still many interesting
problems left uninvestigated. One issue of RNN-based updater
is that, the convolutional GRU requires large amount of GPU
memory during offline training and thus being difficult to apply
to target models with large numbers of parameters. How to
scale to large target models would be an interesting research
problem. Moreover, in this work, only linear target models
are considered, how to extend to the non-linear cases such as
MDNet is valuable future work.

VII. CONCLUSION

We propose a learning based framework to tackle the
problem of model update during tracking. As a first attempt,
only the update of linear target model is considered. The
learned updater is parameterized based on RNN and success-
fully learned with several techniques proposed in this work.
Our learned updater outperforms two common model update
baselines including the efficient EMA-based update and the
well-designed SGD-based update. After offline training, our
learned updater can run efficiently during testing; therefore,
our learned updater is able to consistently improve the base
trackers without sacrificing the speed. Notably, the SiamFC
tracker has been improved by nearly 40% in terms of the
EAO on VOT-2017 while running at the speed of 82fps,
which achieves state-of-the-art performance among realtime
counterparts. In the future, we plan to extend the learning to
update paradigm to non-linear target models.

‘Woman

I Learned updater WSS SGD-based update

EMA-based update

No update Groundtruth

Fig. 4: Qualitative results of our learned updater compared with common model update baselines. Bolt: Our learned updater
correctly adapts to the target while others are attracted by distractors. SGD-based update method adapts to part of the target
instead. CarScale: Other methods keep tracking part of the target since only the front of the car is shown in the first frame.
Contrarily, our learned updater gradually adapts to the whole target including both the front and the tail of the car. Matrix:
our learned updater is able to perform equally well compared with the SGD-based update in this challenging sequence. Suv,
Woman: While all other methods fail, our learned updater still successfully tracks the target.

ACKNOWLEDGMENT

This work was supported in part by National Natural
Science Foundation of China (grant No. 61733007, 61572207).

The authors would like to thank Chong Luo and Anfeng He
for helpful discussions.

[1]
[2]

[3]
[4]

[51
[6]

[71

[8]
[91

[10]

REFERENCES

R. Tao, E. Gavves, and A. W. Smeulders, “Siamese instance search for
tracking,” in CVPR, 2016, pp. 1420-1429.

L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. Torr,
“Fully-convolutional siamese networks for object tracking,” in ECCVw,
2016, pp. 850-865.

H. Grabner, C. Leistner, and H. Bischof, “Semi-supervised on-line
boosting for robust tracking,” in ECCV, 2008, pp. 234-247.

M. Andrychowicz, M. Denil, S. G. Colmenarejo, M. W. Hoffman,
D. Pfau, T. Schaul, and N. de Freitas, “Learning to learn by gradient
descent by gradient descent,” in NIPS, 2016.

S. Ravi and H. Larochelle, “Optimization as a model for few-shot
learning,” in ICLR, 2017.

A. D. Jepson, D. J. Fleet, and T. F. El-Maraghi, “Robust online
appearance models for visual tracking,” TPAMI, vol. 25, pp. 1296-1311,
2001.

Z. Hong, Z. Chen, C. Wang, X. Mei, D. V. Prokhorov, and D. Tao,
“Multi-store tracker (muster): A cognitive psychology inspired approach
to object tracking,” in CVPR, 2015, pp. 749-758.

S. Grossberg, “Competitive learning: From interactive activation to
adaptive resonance,” Cognitive Science, vol. 11, pp. 23-63, 1987.

L. Matthews, T. Ishikawa, and S. Baker, “The template update problem,”
TPAMI, vol. 26, no. 6, pp. 810-815, 2004.

Q. Guo, W. Feng, C. Zhou, R. Huang, L. Wan, and S. Wang, “Learning
dynamic siamese network for visual object tracking,” in ICCV, 2017,
pp. 1-9.

(11]

[12]

[13]

[14]

[15]

[16]

(17]
(18]
[19]
[20]
[21]

(22]

[23]

[24]

S. Kwak, W. Nam, B. Han, and J. H. Han, “Learning occlusion with
likelihoods for visual tracking,” in /ICCV. IEEE, 2011, pp. 1551-1558.
B. Babenko, M.-H. Yang, and S. J. Belongie, “Robust object tracking
with online multiple instance learning,” TPAMI, vol. 33, pp. 1619-1632,
2011.

M. Darnelljan, G. Héger, F. S. Khan, and M. Felsberg, “Adaptive decon-
tamination of the training set: A unified formulation for discriminative
visual tracking,” in CVPR, 2016, pp. 1430-1438.

D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual
object tracking using adaptive correlation filters,” in CVPR, 2010, pp.
2544-2550.

J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed
tracking with kernelized correlation filters,” TPAMI, vol. 37, no. 3, pp.
583-596, 2015.

Q. Gan, Q. Guo, Z. Zhang, and K. Cho, “First step toward model-
free, anonymous object tracking with recurrent neural networks,” arXiv
preprint arXiv:1511.06425, 2015.

S. E. Kahou, V. Michalski, and R. Memisevic, “Ratm: recurrent attentive
tracking model,” in CVPRw, 2017.

A. R. Kosiorek, A. Bewley, and I. Posner, “Hierarchical attentive
recurrent tracking,” in NIPS, 2017.

C. Schuldt, I. Laptev, and B. Caputo, “Recognizing human actions: A
local svm approach,” in ICPR, 2004.

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” 1. J. Robotics Res., vol. 32, pp. 1231-1237, 2013.
D. Gordon, A. Farhadi, and D. Fox, “Re3: Real-time recurrent regression
networks for object tracking,” arXiv preprint arXiv:1705.06368, 2017.
M. Kristan, R. P. Pflugfelder, A. Leonardis, J. Matas, and L. Cehovin,
“The visual object tracking vot2014 challenge results,” in ECCVw, 2014,
pp- 191-217.

M. Kristan, A. Leonardis, J. Matas, M. Felsberg, R. P. Pflugfelder, and
L. Cehovin, “The visual object tracking vot2016 challenge results,” in
ECCVw, 2016, pp. 777-823.

Y. Wu, J. Lim, and M.-H. Yang, “Online object tracking: A benchmark,”
in CVPR, 2013, pp. 2411-2418.

[25]

[26]

(271

(28]

[29]

(30]

[31]

(32]

[33]

[34]

[35]
(36]
[37]

[38]

(391

[40]
[41]

[42]

[43]

[44]

[45]

T. Yang and A. B. Chan, “Recurrent filter learning for visual tracking,”
in ICCVw, 2017, pp. 2010-2019.

J. Valmadre, L. Bertinetto, J. F. Henriques, A. Vedaldi, and P. H. Torr,
“End-to-end representation learning for correlation filter based tracking,”
in CVPR, 2017, pp. 2805-2813.

R. M. Gray et al., “Toeplitz and circulant matrices: A review,” Founda-
tions and Trends® in Communications and Information Theory, vol. 2,
no. 3, pp. 155-239, 2006.

K. Cho, B. Van Merriénboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sampling
for sequence prediction with recurrent neural networks,” in NIPS, 2015,
pp. 1171-1179.

M. Danelljan, G. Bhat, F. S. Khan, and M. Felsberg, “Eco: Efficient
convolution operators for tracking,” in CVPR, 2017, pp. 6638-6646.
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” IJCV, vol. 115, no. 3, pp. 211-252,
2015.

E. Real, J. Shlens, S. Mazzocchi, X. Pan, and V. Vanhoucke, “Youtube-
boundingboxes: A large high-precision human-annotated data set for
object detection in video,” in CVPR, 2017, pp. 5296-5305.

V. Khomenko, O. Shyshkov, O. Radyvonenko, and K. Bokhan, “Accel-
erating recurrent neural network training using sequence bucketing and
multi-gpu data parallelization,” in Data Stream Mining & Processing
(DSMP), IEEE First International Conference on. IEEE, 2016, pp.
100-103.

W. Zaremba, 1. Sutskever, and O. Vinyals, “Recurrent neural network
regularization,” arXiv preprint arXiv:1409.2329, 2014.

J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv
preprint arXiv:1607.06450, 2016.

D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR, 2014.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

H. Nam and B. Han, “Learning multi-domain convolutional neural
networks for visual tracking,” in CVPR, 2016, pp. 4293-4302.

C. Sun, H. Lu, and M.-H. Yang, “Learning spatial-aware regressions for
visual tracking,” CVPR, 2018.

A. Lukezic, T. Vojir, L. C. Zajc, J. Matas, and M. Kristan, “Discrim-
inative correlation filter with channel and spatial reliability,” in CVPR,
2017, pp. 4847-4856.

Y. Song, C. Ma, L. Gong, J. Zhang, R. W. Lau, and M.-H. Yang, “Crest:
Convolutional residual learning for visual tracking,” in /ICCV. IEEE,
2017, pp. 2574-2583.

C. Huang, S. Lucey, and D. Ramanan, “Learning policies for adaptive
tracking with deep feature cascades,” in ICCV, 2017, pp. 105-114.

E. Gundogdu and A. A. Alatan, “Good features to correlate for visual
tracking,” IEEE Transactions on Image Processing, vol. 27, no. 5, pp.
2526-2540, 2018.

Bi Li received the B.Sc. degree from Huazhong Uni-
versity of Science and Technology (HUST), Wuhan,
China, in 2014, and is currently a Ph.D. student at
the media and communication lab, HUST, super-
vised by Prof. Wenyu Liu. His research interests
include meta-learning, few-shot learning and object
tracking.

Wenxuan Xie received the B.Sc. degree from
Nanjing University, Nanjing, China, in 2010, and
the Ph.D. degree from Peking University, Beijing,
China, in 2015. He has been working as an associate
researcher in Microsoft Research Asia since 2015.
His research interests include computer vision and
machine learning.

Wenjun (Kevin) Zeng (M’97-SM’03-F’12) is a
Principal Research Manager and a member of the
senior leadership team (SLT) of Microsoft Research
Asia. He has been leading the video analytics re-
search empowering the Microsoft Cognitive Services
and Azure Media Analytics Services since 2014.
He was with Univ. of Missouri (MU) from 2003
to 2016, most recently as a Full Professor. Prior to
that, he had worked for PacketVideo Corp., Sharp
Labs of America, Bell Labs, and Panasonic Tech-
nology. Wenjun has contributed significantly to the
development of international standards (ISO MPEG, JPEG2000, and OMA).
He received his B.E., M.S., and Ph.D. degrees from Tsinghua Univ., the
Univ. of Notre Dame, and Princeton Univ., respectively. His current research
interest includes mobile-cloud media computing, computer vision, social
network/media analysis, and multimedia communications and security.

He was an Associate Editor-in-Chief of IEEE Multimedia Magazine, and
was an AE of IEEE Trans. on Circuits & Systems for Video Technology
(TCSVT), IEEE Trans. on Info. Forensics & Security, and IEEE Trans. on
Multimedia (TMM). He was a Special Issue Guest Editor for the Proceedings
of the IEEE, TMM, ACM TOMCCAP, TCSVT, and IEEE Communications
Magazine. He was on the Steering Committee of IEEE Trans. on Mobile
Computing and IEEE TMM. He served as the Steering Committee Chair
of IEEE ICME in 2010 and 2011, and is serving or has served as the
General Chair or TPC Chair for several IEEE conferences (e.g., ICME’ 2018,
ICIP’2017). He was the recipient of several best paper awards. He is a Fellow
of the IEEE.

Wenyu Liu (M’08-SM’15) received the B.S. degree
in Computer Science from Tsinghua University, Bei-
jing, China, in 1986, and the M.S. and Ph.D. degrees,
both in Electronics and Information Engineering,
from Huazhong University of Science & Technol-
ogy (HUST), Wuhan, China, in 1991 and 2001,
respectively. He is now a professor and associate
dean of the School of Electronic Information and
Communications, HUST. His current research areas
include computer vision, multimedia, and machine
learning. He is a senior member of IEEE.

