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We introduce two new language features, called implicit functions and implicit control. Both generalize implicit
values which are a typed implementation of dynamic binding. Implicit functions are bound dynamically but
evaluated in the lexical scope of their binding. We show how this small generalization from regular implicit

values leads to better abstraction. In particular, implicit functions encapsulate (side) effects at the definition

site, as opposed to leaking them to the call site. Implicit control further generalizes implicit functions by

adding the ability to return into the lexical scope of the binding or to resume to the call-site. We formalize the

new features as an extension to Moreau’s calculus of dynamic binding (1998). Unifying all three language

features in one framework guarantees that the interaction between implicit values, functions, and control

is well-defined. We also show how our semantics correspond to a macro-translation into algebraic effect

handlers.
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1. INTRODUCTION
In this article we introduce two new language features, called implicit functions and implicit control.
These two new features are generalizations of implicit values (or parameters) which are essentially

a typed implementation of dynamic variables. Following Moreau (1998) and Kiselyov, Shan, and

Sabry (2006), a dynamic variable is a variable whose association with its value exist within the

evaluation of an expression and it is not limited to its lexical scope. If several such associations

exist, the innermost definition is used, which is called dynamic binding. Due to the overloaded

meaning of both dynamic and variable, we prefer to use the term implicit value instead to refer

to a typed discipline of dynamic variables – similar to the implicit parameters described Lewis,

Launchbury, Meijer, and Shields (2000).

Implicit values associate values within the current execution context (or “stack”) and can thus

be used to pass extra data to functions and its callees without bloating the function’s interfaces

and manually threading around extra arguments – instead those arguments are bound implicitly.

This is useful in many practical situations, ranging from passing a type environment in a compiler,

maintaining context information like input-positions in parsers, to associating the current request

object in an asynchronous web server.

Dynamic binding has a somewhat bad reputation since in an unrestricted setting (as in the

original Lisp (McCarthy, 1960)) one might bind dynamic variables accidentally. We therefore follow

the discipline of Lewis et al. (2000) where implicit values are dynamically bound but explicitly

typed. In this article we use simple row types to track the used implicit values and ensure they

are always bound. After giving an overview of implicit values in Section 2, we generalize implicit

values in two steps, offering new ways of abstraction:

• Our main contribution are implicit functions: these are bound dynamically but evaluated in
the lexical scope of their binding. We show how this small change from regular implicit values

leads to better abstraction. In particular, we show how implicit functions allow users to

provide precise interfaces without leaking the (side) effects of any particular implementation

(Section 2.2).
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• We then generalize the notion of implicit functions to implicit control. Implicit control allows

us to implement control operations like exceptions and backtracking (Section 2.3). We show

how local mutable state can be expressed in terms of implicit control (Section 2.4).

• We use the calculus of dynamic binding λdb as defined by Moreau (1998) and Kiselyov, Shan,

and Sabry (2006) to formalize the semantics of implicit values (which coincides exactly), and

then extend it further, as the calculus λdb+, with rules for implicit functions and control. We

also define a new type system extended with implicit rows to guarantee that any evaluation

is never bp-stuck (Kiselyov et al., 2006) (Section 3).

• We then show a typed macro translation (Felleisen, 1991) of the extended calculus λdb+ to
a calculus of algebraic effect handlers (Plotkin and Pretnar, 2013; Plotkin and Power, 2003).

The translation preserves typing and semantics, where reduction in the direct semantics

corresponds to an equivalent reduction in the translated semantics (Section 4).

Even though we can translate implicit values and functions to algebraic effect handlers, we

argue that these concepts merit study by themselves. Following the principle of least power,

each of the two new features gradually adds expressiveness to implicit values. Explicitly

distinguishing between implicit values, functions, and control makes it easier to reason

about programs, easier to learn the concepts individually, and can allow for more efficient

implementation strategies. In this view, implicit functions relate to algebraic effect handlers

as while statements relate to goto.

2. PROGRAMMINGWITH IMPLICIT VALUES, FUNCTIONS, AND CONTROL
The ideas in this paper have been fully implemented in the Koka language (Leijen, 2019, 2014) and

we use it to provide concrete code examples in this paper
1
. Koka is a strict functional language with

full (side) effect tracking in the types (including exceptions and divergence). The reason to use Koka

is two-fold: it already has a type system based on row-types which we adapted to track implicit

bindings, and the run-time system supports algebraic effect handlers which we use to implement

implicit control. However, the ideas described in this paper apply to many programming languages

and are not tied to Koka in particular.

2.1. Implicit Values
To motivate the use of implicit values (or parameters), we start with an example of the canonical

paper on implicit parameters by Lewis, Launchbury, Meijer, and Shields (2000). We assume a pretty

printing library that produces pretty strings from documents:

fun pretty( d : doc ) : string

Unfortunately, it has a hard-coded maximum display width deep within the code:

... if (line.length ≤ 40) then ...

To abstract over the maximum display width, there are two choices. We can either make the width

into a global mutable variable, or add an extra explicit width parameter to nearly every function in

the library and thread it around manually. Neither choice is satisfactory. What is especially bad is

that a conceptually small change requires a substantial change to the library.

However, with an implicit value we can solve this cleanly. We can globally declare the type of an
implicit value as:

implicit val width : int

1
Our implementation is available at https://github/koka-lang/koka in the dev branch. Most of the examples in

this paper can be loaded in the Koka interpreter as :l implicits.
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and can refer to it deep inside the library:

... if (line.length ≤ width) then ...

The type system tracks the use of such implicit values in row types denoted between angled

brackets. In particular, the new inferred type of the pretty printing function is:

fun pretty( d : doc ) : ⟨width⟩ string

signifying that pretty can only be used in a context that binds the implicit width value. As illustrated

by this example, being able to infer this type is important for maintainability. Implicit values are

bound with "with val p = e1 in e2" expressions:

fun pretty-thin( d : doc ) : ⟨ ⟩ string {
with val width = 40 in pretty(d)

}

Here the implicit value width is dynamically bound to 40 for the dynamic extent of evaluating the

body expression pretty(d). The scope of the with-binder is thus not limited to its lexical closure.

As we see in the next section, we use the exact same semantics for implicit values as described

by Moreau (1998) and Kiselyov, Shan, and Sabry (2006) for dynamic binding. Note how the inferred

type of pretty-thin now reflects that there are no more dependencies on further implicit values.

There is also a statement form of the with expression that scopes over the rest of the current

lexical block scope. Using this form we can write the previous example as:

fun pretty-thin(d) {
with val width = 40
pretty(d)

}

Of course, we can also re-bind implicit values. For example we might want to pretty print part of a

document with twice the display width:

fun pretty-wide( d : doc ) : ⟨width⟩ string {
with val width = width * 2
pretty(d)

}

Here, the type of pretty-wide reflects that even though it binds width, it also still depends on a width

binding in its own context.

We formalize and fully explain the semantics of implicit values (as dynamic binding) in Section 3,

Figure 1, but peeking ahead, the essential reduction rule is:

with val p = v in E[p] −→ with val p = v in E[v] if p ̸∈ bp(E)

where an implicit binding p finds its bound value v in the dynamic evaluation context E (i.e. the

stack). The innermost binding is used due to the side condition p ̸∈ bp(E) which ensures that p is

not bound in E itself. The unchanged evaluation context is marked in gray .
Implicit values resolve to the closest with-binding that dynamically surrounds the implicit value.

The following example illustrates this scoping of implicit bindings.

fun scope() {
with val width = 40
val g = fun() { with val width = 80 in width + 1 }
val h = with val width = 80 in (fun(){ width + 1 })
g().println
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h().println
}

Here we bind two static functions g and h, and call them. The first g().println prints 81, since during

the evaluation of g() the implicit value width is bound to its innermost binding of 80. However,

h().println prints 41 instead: during evaluation of h(), the width is bound dynamically to 40 – the

binding to 80 was only present during the evaluation of the function value as such. This illustrates

that functions do not close over implicit values.

2.2. Implicit Functions
Of course we can bind functions as an implicit value. For example,

implicit val emit-naive : ((s : string) → ⟨ ⟩ ())

where the pretty printing library functions can use this to emit partial output:

....
match(doc) {

Text(s) → emit-naive(s)
....

Unfortunately, the implicit value declaration has a type signature that severely limits the num-

ber of possible implementations. For example, we might want to use the display width in an

implementation like:

// type error: emit-naive cannot use implicit value ’width’
with val emit-naive = (fun(s : string){ ... s.truncate(width) ... })
...

This leads to a type error since the type signature of emit-naive promises to not use any implicit

values. To work around this restriction, we can of course change the type signature of the value

declaration to:

implicit val emit-naive : ((s : string) → ⟨width⟩ ())

But now the signature exposes accidental details of our particular implementation. Even worse, it

might not be the desired semantics, since the width is dynamically bound at the call site of emit-naive,
while we usually want to bind it at the definition site and encapsulate this implementation detail

2

in the definition of emit-naive.

Not only implicit bindings are resolved at the call-site – the same problem extends to other

side-effects. For example, emit-naive might print the output directly to the console as:

with val emit-naive = (fun(s){ println(s) })

If println happens to throw an exception, it may be accidentally handled by some unintended

exception handler enclosing the call-site of emit-naive. Even though we were able to abstract over

the implementation of emit-naive, the effects and implicit bindings still leak into the calling context.

This is especially a problem for languages that are disciplined about side-effects: in Haskell println

requires the IO monad and functions using emit-naive would need to be lifted into the IO monad.

Similarly, in a language like Koka (Leijen, 2014) that tracks effects in the type system, the functions

using emit-naive would all get an extra console effect.

2
In this particular example, we could also lookup the implicit value once, bind it to an explicit value and close over that

value. However, as we will see, this solution does not scale to implicit control.
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2.2.1. Dynamic binding with Lexical Scoping. What we need instead are implicit functions: such
functions are bound dynamically, but evaluated in the lexical context of their binding. Similar to

implicit values, we can declare an implicit function as:

implicit fun emit( s : string ) : ()

There is no syntactic difference between calling an implicit functions and calling any other function.

However, if we call emit(...) in our pretty printer library, the inferred type of pretty now becomes:

fun pretty( d : doc ) : ⟨width,emit⟩ ()

The type now reflects that the function depends on an implicit binding for both the display width

and an emitter function. Implicit functions are bound like implicit values, and we can change our

implementation of pretty-thin to also provide a binding for emit:

fun pretty-thin(d) {
implicit val width = 40
implicit fun emit(s) { println(s.truncate(width)) }
pretty(d)

}

This definition of emit is very different from the previous binding as an implicit value emit-naive,

since emit’s body executes in the lexical context of pretty-thin and not in its calling context. In

particular, the implicit value width in the body of emit is now always resolved to 40 no matter if

width is rebound inside pretty. Also, any exception thrown by println is handled by the innermost

exception handler around pretty-thin, not by some handler inside pretty.

Again peeking ahead to the formalization in Section 3.2, Figure 4, the essential reduction rule for

implicit functions is:

with fun p(x) = e in E[p(v)] −→ (λy. with fun p(x) = e in E[y])(e[x:=v]) if p ̸∈ bp(E)

In contrast to the implicit value rule, we first evaluate the function body e with x substituted by

v (denoted by e[x:=v]) outside the calling evaluation context E, and only after that resume in the

original context with the result y.

2.2.2. A Novel Abstraction Mechanism. Changing the evaluation context to the defining scope seems

a minor extension with respect to functions bound as values, but it has profound implications for

abstraction. In particular, we are now able to contain implicit bindings and effects to the lexical

context of the implicit function definition. Continuing with our example, we may want to collect

all output using local mutable state:

fun emit-collect(action) {
var out := ""
with fun emit(s) { out := out + s + "\n" } in action()
out

}

The dynamically bound emit function can access the locally scoped mutable variable out from its

body and update it. As we will see in Section 2.4, our local mutable variables are not heap allocated

and cannot be accessed outside of their lexical scope. If the emit function would be bound as an

implicit value, the type checker would not allow a reference to the out variable. In contrast, with

implicit functions this is allowed as the body executes in the lexical context, and action can use

emit as a string → ⟨emit⟩ () function where any effects are isolated to the scope of emit-collect. As

an example, the expression
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emit-collect(fun(){ emit("hello"); emit("world") })

just returns the string "hello\nworld\n" without any observable side-effects.

Languages like C#, JavaScript, and Scala inhabit a middle-ground: lambda expressions can capture

local variables by reference and would thus behave like in our example. However, they still leak

other effects, like throwing an exception, to the calling context. Also, in these languages the local

variables can outlive the lexical scope and are heap allocated which breaks abstraction when

combined with control effects as we show in Section 2.3.1.

2.2.3. Example: Depth-First Traversal. Another nice example of the abstraction power of implicit

functions is illustrated by adapting an example of Lewis, Launchbury, Meijer, and Shields (2000).

The authors describes a depth-first traversal of a graph (King and Launchbury, 1995), where the

auxiliary function dfs-loop is implicitly parameterized by three functions: one to mark vertices, one

to query if a vertex is marked, and one to get the children of a vertex in the (implicit) graph. In the

original example, the authors then use runST (Peyton Jones and Launchbury, 1995) to efficiently

implement the marking with isolated mutable state. With implicit functions we can implement this

as:

alias vertex = int
type graph { ... }
type rose { Rose(v : vertex, sub : list⟨rose⟩ ) }

implicit fun marked( v : vertex ) : bool
implicit fun mark( v : vertex ) : ()
implicit fun children( v : vertex ) : list⟨vertex⟩

fun dfs( g : graph, vs : list⟨vertex⟩ ) : list⟨rose⟩ {
var visited := vector(g.bound,False)
with fun children(v) { g.gchildren(v) }
with fun marked(v) { visited[v] }
with fun mark(v) { visited[v] := True }
dfs-loop(vs)

}

fun dfs-loop( vs : list⟨vertex⟩ ) {
match(vs) {

Nil → Nil
Cons(v,vv) →

if (marked(v)) then dfs-loop(vv) else {
mark(v)
val sub = dfs-loop( children(v) )
Cons( Rose(v,sub), dfs-loop(vv) )

}
}

}

The dfs function completely encapsulates the use of (scoped) mutable state to efficiently implement

the marking of the visited vertices. The type of dfs-loop reflects that it only depends on the declared

implicit functions and has no other side effects:

fun dfs-loop( vs : list⟨vertex⟩ ) : ⟨mark,marked,children⟩ list⟨rose⟩

In contrast, Lewis et al. (2000) bind functions by value and thus leak the side-effects of the particular
implementation that uses mutable state into the dfs-loop function. The loop needs to be written in

a monadic style and has the type:
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dfsLoop :: (?children :: Graph → [Vertex],
?marked :: Vertex → ST s Bool,
?mark :: Vertex → ST s ()) ⇒ [Vertex] → ST s [Rose]

where the ST effect of the operations leaks into the definition of dfsLoop.

Note also how the type of dfsLoop is quite verbose. With implicit parameters the implicit names

do not have a declared type which is more flexible but leads to large type signatures. With explicit

type declarations for implicit values the types are more concise and allow for better type checking

at the use site of an implicit function.

2.3. Implicit Control
Implicit functions are evaluated in the lexical scope of their definition but still return to the calling

context just like regular functions. Implicit control functions are a further extension to implicit

functions that return to lexical scope of their definition instead – similar to how exceptions “return”

to their innermost try block. For example, let’s extend our pretty printing example to stop once a

certain amount of output has been produced
3
:

implicit control stop() : ()

fun pretty-stop(d) {
with control stop() { "" }
with emit-collect
pretty-thin(d)

}

Inside the pretty printing rendering function, we can now add a check to stop pretty printing early

on (assuming an implicit produced function):

... if (produced() ≥ 100) then stop() ...

If stop is called, it returns directly to its definition point with the empty string as the result of

pretty-stop. If we like to return with the output produced up until the point of stopping, we can

switch the binding site with emit-collect:

fun pretty-stop(d) {
with emit-collect
with control stop() { () }
pretty-thin(d)

}

Implicit control also subsumes exception handling, where we can define an implicit function throw

with a try handler implemented as an implicit control binding. For example, here is a function that

transforms an exception throwing action to a maybe result:

3
Here we use an extension of with statement syntax in Koka where we can pass a function expression that receives the rest

of the block as a function argument, and the example desugars to:

fun pretty-stop(d) {
with control stop() { "" }
emit-collect(fun(){pretty-thin(d)})

}
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implicit control throw(msg : string) : ()

fun to-maybe( action : () → ⟨throw⟩ a ) : maybe⟨a⟩ {
with control throw(msg) { Nothing }
Just(action())

}

Peeking ahead to the formalization in Section 3.2, Figure 4, we see that the reduction rule for

implicit control can be simplified to:

with control p(x) r = e in E[p(v)] −→ (λx . e)(v) if p ̸∈ bp(E)

where we ignore the binding for r now. The rule is basically equivalent to the rule for implicit

functions except that we do not continue evaluation in the original context.

2.3.1. Resuming Control. In the previous pretty printing example, we defined a new implicit control

throw in order to stop early. Can we also rephrase the example to implement all of the combined

functionality in the definition of emit itself? To be able to do that, we need to be explicit about

how to return: either resuming to the calling context, or returning to the definition context. To

enable this, a control binding gets passed an extra argument resume that can be used to return to

the calling context instead. We can now extend emit to do the check:

implicit control emit( s : string ): ()
fun emit-collect(action) {

var out := ""
with control emit(s) {

out := out + s + "\n"
if (out.length ≥ 100) then () else resume(())

} in action()
out

}

The resume argument is a first-class function and captures the delimited continuation. The formal-

ization in Section 3.2, Figure 4 shows the full reduction rule for implicit control binding the resume

function to r :

with control p(x) r = e in E[p(v)]
−→ (λx . λr . e)(v)(λy. with control p(x) r = e in E[y]) if p ̸∈ bp(E)

giving us now a choice to resume in the original calling context.

As another example, we can use the resumption to implement backtracking by calling it multiple

times:

implicit control choice() : bool

fun amb( action : () → ⟨choice|e⟩ string ) : e list⟨string⟩ {
with control choice() { resume(True) + resume(False) }
[action()]

}

Now, we can use choice in the pretty printing library to produce all possible layouts. For example, if
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fun f() : list⟨string⟩ {
with amb
with emit-collect
emit("hi")
if (choice()) then emit("world") else emit("universe")

}

then f() returns:

["hi\nworld\n","hi\nuniverse\n"]

Note that the order of binding is important here: because amb is on the outside, each resumption

resumes with all its captured variables reset to their value at capture time, e.g. in our example both

outputs start with the captured "hi\n" output, and the second resumption does not include any
output appended from the first resumption. In other words, local variables are stack-allocated and

not heap-allocated.

2.4. Mutable Variables as Implicit Control
The previous example showed that the interaction between local mutable state and implicit control

is subtle due to the first-class (delimited) continuation captured by resume. This is already remarked

upon by Moreau (1998) who calls for “a single framework integrating continuations, side-effects,

and dynamic binding.” and studied by Kiselyov et al. (2006) in the context of delimited continuations.

However, it turns out we can view local mutable state in terms of implicit control itself and thus

we do not need a special semantic treatment. In particular, we can use the same translation as by

Kammar and Pretnar (2017) (Figure 7) where they show how to express mutable dynamic variables

in term of algebraic effect handlers. We reuse their translation, except that we use implicit control

instead of general effect handlers.

First we α-rename such that local variables are uniquely named. Every binding of a local variable

s of some type τ is then translated to a function application of a locals function:

var s : τ := init ⇝ locals(init,fun(){ ... })
...

and lexically bound occurrences of s are translated to either gets or sets operations

s := expr ⇝ sets(expr)
s ⇝ gets()

where we define:

implicit control gets() : τ
implicit control sets(x : τ) : ()

fun locals( init : τ, action : () → ⟨gets,sets|e⟩ a ) : e a {
val f = { with control gets() { (fun(st) { resume(st)(st) }) }

with control sets(x) { (fun(st) { resume(())(x) }) }
val x = action()
(fun(st){ x })

}
f(init)

}

The main difference with the translation in Kammar and Pretnar (2017) is that we use two separate

implicit control functionswhile they group themunder a single handler. Otherwise, both translations

express the mutable state as a state monad returning a function that gets the current state as input.
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This as also essentially the way Kiselyov et al. (2006) express dynamic binding in terms of delimited

control where the occurrence of a binding s is shifted as (Kiselyov et al., 2006,Figure 3):

shift s as f in λy. f y y

where f is our resume and y our st parameter, corresponding to the definition of gets.

The translation is a macro translation (Felleisen, 1991) in the sense that it is defined homomor-

phically over the syntax of the language without collecting global information. It keeps the core of

the language unchanged – only translating local variables.

Of course, this translation using a state monad is useful from a semantic perspective, but in a

practical implementation we can use more efficient mechanisms where we just need to ensure the

state is properly captured and restored on a resume. In our implementation in Koka we use direct

mutation of variables that are (handler) stack allocated.

2.4.1. Safety. Viewing scoped, local mutable variables in terms of implicit control has the added

advantage that it can be used by the type checker to ensure that such variables do not escape from

their lexical scope. Consider for example:

fun escape() {
var s := 0
(fun() { s := s + 1; s })

}

where the result of escape() is a function that captured the (supposedly) local mutable state s. If we

apply the translation to implicit control though

fun escape() {
locals(0,fun(){

(fun() { sets(gets() + 1; gets() })
})

}

it becomes clear that the type of the result function becomes () → ⟨gets,sets⟩ int, i.e. it will be

impossible to use this function as it depends on two (unique and hidden) implicits that cannot be

bound by the user. The type checker can easily check for such types at top-level and issue an error

at the definition site.

3. FORMALIZATION
To formalize the basic calculus of implicit values we are using the calculus of dynamic binding, λdb,
by Moreau (1998) as shown in Figure 1, and the corresponding type system in Figure 2 as defined

by Kiselyov, Shan, and Sabry (2006). Except for formatting, the calculus and type rules are exactly

the same. The main cosmetic differences are:

• Dynamic binding, dlet p = V in E, is formatted as: with val p = v in e.
• Signatures, Σ, p : τ , are formatted as: Σ, p : val τ .
• Bound implicits (“parameters”), BP(E), are formatted as: bp(E).

There are two disjoint sets of variables: lexical variables denoted with x and y, and dynamic variables

(implicit names) denoted by p and q. Note that values v can contain references to dynamic bindings,

like λx .p but that dynamic binding names are not values by themselves. The evaluation contexts E
contains the clausewith val p = v in E, which shows that a context can capture a dynamic binding.

The set of bound variables in a context E is denoted as bp(E) (and defined in Figure 1).
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The operational semantics are given by the three rules for −→ where the 7−→ relation lets us

evaluate according to the evaluation context. The rule (dval) captures the semantics of implicit

values (dynamic binding) where the condition p ̸∈ bp(E) ensures that we always bind to the

innermost binding.

The evaluation can get stuck if a dynamic variable is not bound, and Kiselyov et al. (2006) define

such terms as bp-stuck:

Definition 1. (bp-stuck)
A term is bp-stuck if it has the form E[p] where p ̸∈ bp(E).

The type system for λdb is given in Figure 2. For simplicity it is given as a monomorphic type system

but there are no difficulties extending this to a polymorphic setting and adding type inference.

Unbound variables notwithstanding, the type system is sound and Kiselyov et al. (2006) prove

progress and preservation:

Theorem 1. (Preservation)
If Γ ⊢db e : τ and e 7−→ e′, then Γ ⊢db e′ : τ .

Theorem 2. (Progress)
If ∅⊢db e : τ and e is not a value and not bp-stuck, then e 7−→ e′ for some term e′.

3.1. Static Types for Implicit Values
Figure 3 defines more precise type rules for λdb that track the use of dynamic bindings by annotating

every function arrow with a implicit row π . A row is either empty ⟨⟩ or an extension with a implicit

name ⟨p |π⟩. We sometimes use the following shorthands:

⟨p1, . . ., pn |π⟩= ⟨p1 | . . . ⟨pn |π⟩ . . . ⟩
⟨p1, . . ., pn⟩ = ⟨p1 | . . . ⟨pn |⟨⟩⟩ . . . ⟩

Following Leijen (2005), these rows can contain multiple occurrences of a name and are considered

equal up to the order of the implicit names in the row. Leijen (2005) shows how the rows can be

naturally extended with polymorphism and allow full unification, making them well suited to

combine with Hindley-Milner style type inference. Allowing duplicates is important for typing

implicit bindings that refer themselves to the same implicit name. For example, consider typing

(λx . with val p = x in e)(p):

. . .

Γ ⊢imp (λx .with val p = x in e) : τ1 → ⟨p |π⟩ τ | ⟨p |π⟩
Σ(p) = val τ1

Γ ⊢imp p : τ1 | ⟨p |π⟩

Γ ⊢imp (λx .with val p = x in e)(p) : τ | ⟨p |π⟩
[app]

which means that the first premise is typed as:

Σ(p) = val τ1 Γ, x : τ1 ⊢imp x : τ1 | ⟨p |π⟩ Γ ⊢imp e : τ | ⟨p |⟨p |π⟩⟩

Γ, x : τ1 ⊢imp with val p = x in e : τ | ⟨p |π⟩
[wval]

which leads to typing e with two occurrences of p in the implicit row. Having such duplicates

keeps the system simple and avoids the need for special row constraints (Gaster and Jones, 1996;

Rémy, 1994; Hillerström and Lindley, 2016).

The use of the implicit rows in the type rules now ensures that well-typed terms can never be

bp-stuck:

11



Syntax:

Expressions e ::= v value

| e(e) application

| with b in e dynamic binding

| p implicit name

Values v ::= x variables

| λx . e lambda expressions

Dynamic Binding b ::= val p = v value binding

Evaluation Context E ::= □ | E(e) | v(E) | with b in E

Bound Implicits:

bp(□) = ∅

bp(E(e)) = bp(E)
bp(v(E)) = bp(E)
bp(with b = v in E)= bp(b) ∪ bp(E)

bp(val p = v) = {p}

Operational Semantics:

(β) (λx . e)(v) −→ e[x := v]
(dret) with b in v −→ v
(dval) with val p = v in E[p] −→ with val p = v in E[v] if p ̸∈ bp(E)

e −→ e′

E[e] 7−→ E[e′]
[eval]

Fig. 1. Language of dynamic binding, λdb

Theorem 3.
If Γ ⊢imp e : τ | ⟨⟩ then e is not bp-stuck.

To prove this, we first need the following Lemma:

Lemma 1. (Implicits are meaningful)
If Γ ⊢imp E[p] : τ | π and p ̸∈ bp(E), then p ∈ π .

This is an important lemma as it states that implicit types cannot be discarded except through

binding. It also means that if an expression has an empty implicit row, it will not use any dynamic

binding.

Proof. We proceed by induction over the structure of the evaluation contexts, where we assume

p ̸∈ bp(E) and that the induction hypothesis holds for some E′[p].
case E[p] = p: We can type Γ ⊢imp p : τ | ⟨p |π⟩ and thus p ∈ ⟨p |π⟩.

12



Syntax of Types:

Types τ ::= c constants (constructors)

| τ → τ functions

Constants c ::= . . .

Type Environment Γ ::= ∅ | Γ, x : τ
Implicit Signature Σ ::= ∅ | Σ, p : val τ

Type Rules:

Γ(x) = τ

Γ ⊢db x : τ
[var]

Σ(p) = val τ

Γ ⊢db p : τ
[dval]

Γ, x : τ1 ⊢db e : τ2

Γ ⊢db λx .e : τ1 → τ2
[lam]

Γ ⊢db e1 : τ1 → τ2 Γ ⊢db e2 : τ2

Γ ⊢db e1(e2) : τ2
[app]

Σ(p) = val τ1 Γ ⊢db v : τ1 Γ ⊢db e : τ2

Γ ⊢db with val p = v in e : τ2
[wval]

Fig. 2. Standard type rules for λdb

Syntax of Types:

Types τ ::= c type constructors

| τ → π τ functions

Implicit Row π ::= ⟨⟩ empty row

| ⟨p | π⟩ row extension

Constants c ::= p . . .

Type Environment Γ ::= ∅ | Γ, x : τ
Implicit Signature Σ ::= ∅ | Σ, p : val τ

Type Rules:

Γ(x) = τ

Γ ⊢val x : τ
[var]

Γ ⊢val v : τ

Γ ⊢imp v : τ | π
[val]

Σ(p) = val τ

Γ ⊢imp p : τ | ⟨p |π⟩
[dval]

Γ, x : τ1 ⊢imp e : τ2 | π

Γ ⊢val λx .e : τ1 → π τ2
[lam]

Γ ⊢imp e1 : τ1 → π τ2 | π Γ ⊢imp e2 : τ2 | π

Γ ⊢imp e1(e2) : τ2 | π
[app]

Σ(p) = val τ1 Γ ⊢val v : τ1 Γ ⊢imp e : τ2 | ⟨p |π⟩

Γ ⊢imp with val p = v in e : τ2 | π
[wval]

Fig. 3. Improved type rules for λdb. We add implicit rows to ensure all implicit values are bound in

the end. Implicit rows are considered equivalent up to the order of the names in the row.
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case E[p] = E′[p](v): Since Γ ⊢imp E[p] : τ | π , we can use app and thus Γ ⊢imp E′[p] : τ1 → π τ | π

(1) (and Γ ⊢imp v : τ1 | π ). By definition p ̸∈ bp(E) implies p ̸∈ bp(E′), and with (1) and the induction
hypothesis we have p ̸∈ π .
case E[p] = v(E′[p]): Similar to the previous case.

case E[p] = with val q = v in E′[p]: Since p ̸∈ bp(E), we have that p ̸∈ ({q} ∪ bp(E′)) and thus

p , q (2) and p ̸∈ bp(E′) (3). Applying rule wval, we have Γ ⊢imp with val q = v in E′[p] : τ | π
and thus Γ ⊢imp E′[p] : τ | ⟨q|π⟩ (4). We can apply the induction hypothesis to (4) with (3) to derive

p ̸∈ π , and with (2), p ̸∈ ⟨q|π⟩. □

Proof. (Of Theorem 3) With Lemma 1 we can now prove Theorem 3 by contradiction: suppose that

there is some e such that Γ ⊢imp e : τ | ⟨⟩ where e is bp-stuck. In that case, by the definition of

bp-stuck, e must be of the form E[p] where p ̸∈ bp(E). But in that case we can apply Lemma 1 and

derive that p ∈ ⟨⟩, dismissing our assumption. □

Our type system is also a conservative extension of the original type system. If we define a simple

erasure function ·̂ : τimp → τdb as:

ĉ = c�(τ1 → π τ2)= τ̂1 → τ̂2

and extend that naturally over type environments, we can then state the following lemma:

Lemma 2. (Conservative Extension)
If Γ ⊢imp e : τ | π then Γ̂ ⊢db e : τ̂ .

This is immediate by the erasure of the implicit rows from the derivation and removing identity

(val) derivations. We can now show progress as a corollary:

Theorem 4. (Progress)
If ∅⊢imp e : τ | ⟨⟩ and e is not a value, then e 7−→ e′ for some term e′.

Proof. From Lemma 2 we know ∅⊢db e : τ̂ and from Theorem 3 that e is not db-stuck. We can

now apply Theorem 2 to conclude e 7−→ e′. □

Theorem 5. (Preservation)
If Γ ⊢imp e : τ | π and e 7−→ e′ for some term e′, then Γ ⊢imp e′ : τ | π .

To show preservation, we need to redo the various lemmas from Kiselyov et al. (2006) but the

proofs carry over almost unchanged.

Lemma 3. (Value Substitution)
If Γ ⊢val v : τ ′, and Γ, x : τ ′⊢imp e : τ | π then Γ ⊢imp e[x:=v] : τ | π .

Lemma 4. (Context Substitution)
If Γ ⊢imp E[e] : τ | π , then there exist aτ ′ such that Γ ⊢imp e : τ ′ | π ′

and forall e′with Γ ⊢imp e′ : τ ′ | π ′

we also have Γ ⊢imp E[e′] : τ | π .

Proof. (Of Theorem 5) By case analysis over the evaluation rules:

case (λx .e)(v) −→ e[x:=v]: Assuming Γ ⊢imp (λx .e)(v) : τ | π , we have Γ ⊢imp λx .e : τ1 → π τ | π
(1) and Γ ⊢imp v : τ1 | π (2). (1) must be derived through rule lam and thus Γ, x : τ1 ⊢imp e : τ | π .
We can now use lemma 3 with (2) to conclude Γ ⊢imp e[x:=v] : τ | π .
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Extended Syntax:

Expressions e ::= . . .

| p(v) dynamic application

Binding b ::= . . .

| fun p(x) = e function binding

| control p(x) r = e control binding

Extended Bound Implicits:

bp(fun p(x) = e) = {p}
bp(control p(x) r = e)= {p}

Extended Semantics:

(dfun) with fun p(x) = e in E[p(v)]
−→ (λy. with fun p(x) = e in E[y])(e[x:=v]) if p ̸∈ bp(E)

(dctl) with control p(x) r = e in E[p(v)]
−→ e[x:=v, r :=λy. with control p(x) r = e in E[y]] if p ̸∈ bp(E)

with fresh y
Extended Type Rules:

Implicit Signature Σ ::= ∅ | Σ, p : val τ | Σ, p : fun τ1 → τ2

Σ(p) = fun τ1 → τ2 Γ ⊢val v : τ1

Γ ⊢imp p(v) : τ2 | ⟨p |π⟩
[dfun]

Σ(p) = fun τ1 → τ2 Γ, x : τ1 ⊢imp e1 : τ2 | π Γ ⊢imp e2 : τ | ⟨p |π⟩

Γ ⊢imp with fun p(x) = e1 in e2 : τ | π
[wfun]

Σ(p) = fun τ1 → τ2 Γ, x : τ1, r : τ2 → π τ ⊢imp e1 : τ | π Γ ⊢imp e2 : τ | ⟨p |π⟩

Γ ⊢imp with control p(x) r = e1 in e2 : τ | π
[wctl]

Fig. 4. The language λdb+ extends λdb with dynamic functions and dynamic control

case with val p = v ′ in v −→ v: Assuming Γ ⊢imp with val p = v in v : τ | π (1) we conclude

from rule wval that Γ ⊢imp v : τ | ⟨p |π⟩. Since it is a value, it must be derived through rule val

and thus Γ ⊢val v : τ . We can now use val again to derive Γ ⊢imp v : τ | π .

case with val p = v in E[p] −→ with val p = v in E[v] with p ̸∈ bp(E): Assuming the premise

Γ ⊢imp with val p = v in E[p] : τ | π (1) we conclude from rule wval that Γ ⊢val v : τ1 (2) and
from rule dval that Γ ⊢imp p : τ1 | ⟨p |π ′⟩ (3). Using the type rule val we can derive with (2) that

Γ ⊢imp v : τ1 | ⟨p |π ′⟩. We can now use the context substitution lemma 4 with (1) and (3) to finally

derive Γ ⊢imp with val p = v in E[v] : τ | π . □
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3.2. Extending λdb with Implicit Functions and Control
Figure 4 extends the base language λdb with implicit functions and implicit control. We call the

extension λdb+, the calculus of implicit values, functions, and control. For simplicity we restrict

the implicit functions and control to a single argument. Also, instead of using an implicit resume

binding, we pass the resumption function explicitly as r in the control bindings.

The evaluation rule (dfun) for implicit functions clearly shows how we evaluate the function,

(λx . e)(v), outside the calling context E and in the context of the binding itself. After evaluation,

we resume the original context with the result y as with fun p(x) = e in E[y]. The rule for control
(dctl) is similar except that the resumption function is passed explicitly and bound to r .
The implicit signatures Σ are extended with one new form fun τ1 → τ2. For simplicity we use

this for both function and control declarations. In a concrete language design though, one might

want to reject control bindings for implicits declared as an implicit function.

We also extend the type rules with implicit rows with two new rules for checking implicit

functions and control. The rules are similar to the wval rule in Figure 3 where the implicit name

p is discharged from the implicit row. The type of the resumption function r in the type rule for

control is interesting: it gets an argument of type τ2, the result type of the implicit function p; and
returns a value of τ , the result type of the body e2. Since the resumption is evaluated itself under a

with binding (see (dctl)), the implicit row is just π without p. Extending the proofs of progress and

preservation (Theorem 4 and 5) present no further difficulties and is similar to the case for wval.

The extension of the monomorphic type system to polymorphism is also possible without

difficulties. In particular, we have a full implementation of implicits in Koka with (higher-rank)

polymorphic type inference, including extensible implicit row types.

4. TRANSLATING TO ALGEBRAIC EFFECT HANDLERS
To gain confidence in the given semantics, we define a translation of implicits to a calculus of

algebraic effects and handlers (Plotkin and Power, 2003; Plotkin and Pretnar, 2013). The strong

theoretical foundation and expressiveness of algebraic effects make this an excellent target – and

not without precedent, as Kammar and Pretnar (2017) already show how to translate mutable

dynamic binding to algebraic effects.

We use the effect calculus defined by Leijen (2017b) since that expression language corresponds

most closely to λdb calculus of Moreau (1998). Figure 5 defines the syntax and semantics of λaeh.
We make a small change to the original calculus by Leijen (2017b) where instead of using special

Hop contexts, we use regular E contexts together with a side-condition op ̸∈ bop(E) where bop are

the bound operations in the context E. We can show that these constraints are equivalent.

Lemma 5.
If op ̸∈ bop(E) then E = Hop, where we use the original definition of Hop (Leijen, 2017b):

Hop ::= □ | Hop(e) | v(Hop)

| handleh(Hop) if op ̸∈ h

Proof. We can show this by induction over the structure of the evaluation context. The interest-

ing case is for the handle expression. Assuming inductively that the lemma holds for E, we have
E′ = handleh(E)with op ̸∈ bop(E′). By the definition of bop, we have op ̸∈ {op

1
, . . ., opn} ∪ bop(E),

and thus op ̸∈ h (1) and op ̸∈ bop(E) (2). From (2) and the induction hypothesis we have that

E = Hop, and together with (1) we can derive that E′ = H′
op = handleh(Hop).
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Syntax:

Expressions e ::= v values

| e(e) application

| handleh(e) handler

| op(v) operation invocation

Values v ::= x variables

| λx . e lambda expressions

Clauses h ::= return x → e return clause

| op(x) r → e; h operation clause

Evaluation Context E ::= □ | E(e) | v(E) | handleh(E)

Bound Operations:

bop(□) = ∅

bop(E(e)) = bop(E)
bop(v(E)) = bop(E)
bop(handle{op

1
(x1) r1 → e1; . . .; opn(xn) rn → en; return(x) → er }(E))

= {op
1
, . . ., opn} ∪ bop(E)

Operational Semantics:

(β) (λx . e)(v) −→ e[x:=v]
(ret) handleh(v) −→ e[x:=v] if (return x → e) ∈ h
(hndl) handleh(E[op(v)]) −→ e[x:=v, r :=λy.handleh(E[y])] if (op(x) r →e) ∈ h and op ̸∈ bop(E)

e −→ e′

E[e] 7−→ E[e′]
[eval]

Fig. 5. The language of algebraic effect handlers, λaeh

Figure 6 defines the type rules for λaeh. These are essentially the same as the rules defined by Lei-

jen (2017b) except simplified to only use monomorphic types and ground constructors since that

suffices for our purposes. As such, all proofs carry over mostly unchanged. In particular, Lei-

jen (2017b) shows the following useful properties:

Theorem 6. (Semantic Soundness)
If ∅⊢aeh e : τ | ϵ then either e diverges, or evaluates to a value e 7−→∗ v where ∅⊢val v : τ .

Lemma 6. (Effects are meaningful)
If Γ ⊢aeh E[op(v)] : τ | ϵ with op ̸∈ bop(E) and Σ(l) = { . . . op : τ ′ . . .}, then l ∈ ϵ .

This lemma basically states that effect types cannot be discarded except through handlers. It also

implies that effects are meaningful, i.e. if a function does not have an exception effect, it will never

throw an exception.
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Syntax of Types:

Types τ ::= c constants (constructors)

| τ → ϵ τ functions

Effect Row ϵ ::= ⟨⟩ empty row

| ⟨l | ϵ⟩ row extension

Constants c ::= unit | bool | . . . set of builtin types

Effect Labels l ::= exn | . . . set of effect constants

Type Environment Γ ::= ∅ | Γ, x : τ
Effect Signatures Σ ::= ∅ | Σ, l : {op

1
: τ1 → τ ′

1
, . . ., opn : τn → τ ′n}

Type rules:

Γ(x) = τ

Γ ⊢val x : τ
[var]

Γ ⊢val v : τ

Γ ⊢aeh v : τ | ϵ
[val]

Γ, x : τ1 ⊢aeh e : τ2 | ϵ

Γ ⊢val λx .e : τ1 → ϵ τ2
[lam]

Γ ⊢aeh e1 : τ1 → ϵ τ2 | ϵ Γ ⊢aeh e2 : τ2 | ϵ

Γ ⊢aeh e1(e2) : τ2 | ϵ
[app]

Γ ⊢aeh e : τ | ⟨l |ϵ⟩ Σ(l) = {op
1
: τ1 → τ ′

1
, . . ., opn : τn → τ ′n} Γ, x : τ ⊢ er : τr | ϵ

Γ, x : τ1, r1 : τ ′1 → ϵ τr ⊢aeh e1 : τr | ϵ . . . Γ, x : τn, rn : τ ′n → ϵ τr ⊢aeh en : τr | ϵ

Γ ⊢aeh handle{op
1
(x1) r1 → e1; . . .; opn(xn) rn → en; return x → er }(e) : τr | ϵ

[handle]

Fig. 6. Type rules for algebraic effect handlers, λaeh

4.1. Translation
Figure 7 defines a translation function ⌈·⌉ from λdb+ to λaeh, translating values, expressions, evalua-

tion contexts, and signatures. Since we translate every implicit name binding p to a single handler

with one operation, we make labels l and operation names op coincide with implicit names p, and
effect rows ϵ with implicit rows π – which means we do not need to translate types at all.

The translation is type preserving:

Theorem 7. (Type Preservation)
If Γ ⊢imp e : τ | ϵ , then Γ ⊢aeh ⌈e⌉ : τ | ϵ .

Proof. Straightforward induction over the type rules of λdb+. For example, for the case of rule wfun

we type Γ ⊢imp with fun p(x) = e1 in e2 : τ | π . By induction, we can assume ⌈Σ⌉(p) = { p : τ1 → τ2 }
(1), Γ, x : τ1 ⊢val ⌈e1⌉ : τ2 | π (2) and Γ ⊢aeh e2 : τ | ⟨p |π⟩ (3). We need to verify now that we can

check Γ ⊢aeh ⌈with fun p(x) = e1 in e2⌉ : τ | π which equals Γ ⊢aeh handle{p(x) r = r(⌈e1⌉)}(⌈e2⌉)
(with r ̸∈ fv(e1)). Using rule handle we can satisfy two of its premises using (1) (using p = op) and
(3) (using l = p and ϵ = π ). That leaves us to derive Γ, x : τ1, r : τ ′1→ϵ τr ⊢aeh r(⌈e1⌉) : τr | ϵ where
τ ′
1
= τ2 and due to the absence of a return clause, τr = τ . We can use rule appaeh now and check

Γ, x : τ1, r : τ2→ϵ τr ⊢aeh ⌈e1⌉ : τ2 | ϵ . Since r ̸∈ fv(e1), it suffices to show Γ, x : τ1 ⊢aeh ⌈e1⌉ : τ2 | ϵ
which holds by (2).

This brings us to the main theorem that our translation preserves semantics too:
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⌈·⌉: λdb+→ λaeh, Σdb+→ Σaeh, Edb+→ Eaeh, b → h

⌈x⌉ = x
⌈λx .e⌉= λx .⌈e⌉

⌈e(e′)⌉ = ⌈e⌉(⌈e′⌉)
⌈p⌉ = p(unit)
⌈p(v)⌉ = p(⌈v⌉)
⌈with b in e⌉= handle{ ⌈b⌉ }(⌈e⌉)

⌈val p = v⌉ = p(x) r → r(⌈v⌉) with x, r ̸∈ fv(v)
⌈fun p(x) = e⌉ = p(x) r → r(⌈e⌉) with r ̸∈ fv(e)
⌈control p(x) r = e⌉= p(x) r → ⌈e⌉

⌈∅⌉ = ∅

⌈Σ, p : val τ ⌉ = ⌈Σ⌉, p : {p : unit → τ }

⌈Σ, p : fun τ → τ ′⌉= ⌈Σ⌉, p : {p : τ → τ ′ }

⌈□⌉ = □
⌈E(e)⌉ = ⌈E⌉(⌈e⌉)
⌈v(E)⌉ = ⌈v⌉(⌈E⌉)
⌈with b in E⌉= handle{ ⌈b⌉ }(⌈E⌉)

Fig. 7. Translating the language of implicit values, functions, and control λdb+ to algebraic effect

handlers λaeh

Theorem 8. (Semantic Soundness)
If e 7−→ e′ then ⌈e⌉ 7−→∗ ⌈e′⌉

To prove this, we need the following lemmas about the the translation:

Lemma 7. (Translation preserves free variables)
fv(e) = fv(⌈e⌉)

Lemma 8. (Translation preserves bound implicits)
bp(E) = bop(⌈E⌉)

Lemma 9. (Translation preserves contexts)
⌈E[e]⌉ = ⌈E⌉[⌈e⌉]

Lemma 10. (Translation is substitution safe)
⌈e[x:=v]⌉ = ⌈e⌉[x:=⌈v⌉]

Proof. (Of Theorem 8) The proof proceeds with induction over the reduction rules of λdb+. Here
we show the case for implicit functions (dfun), where with fun p(x) = e in E[p(v)] reduces to
(λy. with fun p(x) = e in E[y])(e[x:=v]) with p ̸∈ bp(E) (1), and by Lemma 8, p ̸∈ bop(⌈E⌉) (2).
Using the translated handler, we can now derive
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⌈with fun p(x) = e in E[p(v)]⌉
= {with r ̸∈ fv(e) (3) }

handle{ p(x) r → r(⌈e⌉)}(⌈E[p(v)]⌉) }
= { Lemma 9}

handle{ p(x) r → r(⌈e⌉)}(⌈E⌉[p(⌈v⌉)])
−→ { (2) }

(r(⌈e⌉)[x:=⌈v⌉, r :=λy.handle{ p(x) r → r(⌈e⌉)}(⌈E⌉[y])]
= { substitute }

(λy.handle{ p(x) r → r(⌈e⌉)}(⌈E⌉[y])])(⌈e⌉[x:=⌈v⌉, r :=λy.handle{ p(x) r → r(⌈e⌉)}(⌈E⌉[y])])
= { (3) and Lemma 7 }

(λy.handle{ p(x) r → r(⌈e⌉)}(⌈E⌉[y])])(⌈e⌉[x:=⌈v⌉])
= { Lemma 10}

(λy.handle{ p(x) r → r(⌈e⌉)}(⌈E⌉[y])])(⌈e[x:=v]⌉)
= { (3) and ⌈.⌉ definition }

⌈(λy. with fun p(x) = e in E[y])(e[x:=v])⌉

□

5. RELATEDWORK
Implicit values are perhaps most closely related to implicit parameters as described by Lewis,

Launchbury, Meijer, and Shields (2000). In particular, implicit parameters are immutable, named,

and statically typed. In contrast to our approach, implicit parameters do not need to be declared

and can be used and bound at any type. This is flexible, but can lead to large types (as shown in

Section 2.2.2) and delays possible type errors to the binding site. Lewis et al. (2000) show how implicit

parameters can be elegantly implemented using regular parameter passing similar to the dictionary

passing translation of type classes (Wadler and Blott, 1989; Jones, 1992). Such translation could

certainly be applied to implicit values as well, turning every member p in an implicit row into an

evidence parameter. For implicit functions and control, which manipulate the stack, this may work

in combination with a corresponding stack prompt to delimit the dynamic scope. This technique

of combining explicit parameter passing with prompts is used for example by the Scala Effekt

library (Brachthäuser, 2019; Brachthäuser and Schuster, 2017) to efficiently implement algebraic

effect handlers on the JVM.

In an untyped setting, dynamic binding first appeared inMcCarthy Lisp (as a bug) (McCarthy, 1960).

Modern dialects have lexical scoping but still provide dynamic binding: in Common Lisp one can use

the special declaration (Steele Jr., 1990), and MIT Scheme has fluid-let bindings (Hanson, 1991). The

semantics of dynamic binding was formalized by Moreau (1998). Kiselyov, Shan, and Sabry (2006)

extend upon that work by giving a translation into delimited control operations, giving a unified

framework for continuations, side-effects, and dynamic binding. Later, Kammar and Pretnar (2017)

do a similar translation where they show how (mutable) dynamic variables can be expressed in

terms of algebraic effect handlers – and our translation of local mutable variables in Section 2.4 is

based on this. Forster, Kammar, Lindley, and Pretnar (2017) also show that in a untyped setting,

algebraic effect handlers, delimited control, and monads, can all express each other through a local

macro-translation (Felleisen, 1991) and thus all can express dynamic binding.

Instead of binding implicit values explicitly, there are many designs that resolve implicit bindings

implicitly based on their type. The most commonly used are implicit parameters in Scala (Oliveira

and Gibbons, 2010; Odersky, 2010; Odersky et al., 2017) where implicit parameters are declared on
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a method signature but provided automatically at the call-site based on their type. Siek and Lums-

daine (2005) introduce system FG which uses type based resolution for an implicit parameter mech-

anism used for concept-based generic programming. Haskell type classes (Wadler and Blott, 1989;

Jones, 1992; Kiselyov and Shan, 2004) are another instance where dictionaries are passed implicitly

and resolved based on their type. Oliveira, Schrijvers, Choi, Lee, and Yi (2012) describe the implicit
calculus as a core formalization of implicit parameters that are resolved by their type and they

discuss how the previous instances can be expressed in the implicit calculus. The implicit calculus is

interesting as the implicit values are not only resolved by their type, but also referred to by their type

and no explicit names are used – for example, implicit 1 in implicit True in (even(?int) && ?bool)

evaluates to False where ? is used for implicit type-based binding.

Algebraic effects (Plotkin and Power, 2003) and handlers (Plotkin and Pretnar, 2013) provide a

categorical foundation to reason about (side) effects in programming languages, and are a powerful

abstraction to describe all kinds of control structures. Various languages (Bauer and Pretnar, 2015;

Lindley et al., 2017; Hillerström and Lindley, 2016; Dolan et al., 2015; Leijen, 2017b) and libraries (Wu

et al., 2014; Brachthäuser et al., 2018; Brachthäuser, 2019; Leijen, 2017a) support algebraic effects

nowadays. Leijen (2018b) (Section 5) describes a particular optimization for tail-resumptive effect

handlers using “skip” frames to avoid capturing a continuation and directly evaluate such clause in

the existing stack. This optimization applies naturally to the implementation of implicit functions

as well and we use this in the current implementation in Koka to make implicit function calls very

efficient.

6. CONCLUSION
We introduced two new language features based on implicit values in this article: implicit func-

tions and implicit control. In particular, implicit functions are a small extension that creates new

opportunities for abstraction while avoiding the need for full continuations in the implementation.

We hope to see more languages that will support this feature.
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A. FURTHER PROOFS

Proof. (Of Lemma 7) We show free variables are preserved by the translation by induction over

the structure of expressions. We use fv in the proof for fvaeh.
case fvdb+(x): This is {x} which is equal to fv(x) which equals fv(⌈x⌉) by the definition of ⌈·⌉.

case fvdb+(λx .e): This is fvdb+(e) − {x}, and by induction fv(⌈e⌉) − {x} = fv(λx .⌈e⌉) = fv(⌈λx .e⌉).
case fvdb+(e1(e2)): This is fvdb+(e1) ∪ fvdb+(e2) and by induction fv(⌈e1⌉) ∪ fv(⌈e2⌉) = fv(⌈e1⌉(⌈e2⌉))
= fv(⌈e1(e2)⌉).
case fvdb+(with fun p(x) = e1 in e2): This is (fvdb+(e1) − {x}) ∪ fvdb+(e2), and by induction we

have (fv(⌈e1⌉) − {x}) ∪ fv(⌈e2⌉) = (fv(⌈e1⌉) − {x, r}) ∪ fv(⌈e2⌉) for a fresh r ̸∈ fv(⌈e1⌉), and thus
fv(handle{ op(x) r → ⌈e1⌉ }(⌈e2⌉)) = fv(⌈with fun p(x) = e1 in e2⌉).
case fvdb+(with control p(x) r = e1 in e2): Similar to the previous case.

case fvdb+(with val p = v in e2): Similar to the previous cases. □

Proof. (Of Lemma 8) We show how bound parameters are preserved, where bp(E) = bop(⌈E⌉).
We use induction over the structure of the evaluation context.

case bp(□) = ∅ = bop(□) = bop(⌈□⌉).
case bp(E(e)) = bp(E), and by induction, = bop(⌈E⌉) = bop(⌈E⌉(⌈e⌉)) = bop(⌈E(e)⌉).
case bp(v(E)) = bp(E), and by induction, = bop(⌈E⌉) = bop(⌈v⌉(⌈E⌉) = bop(⌈v(E)⌉).
case bp(with b in E) = bp(b) ∪ bp(E), and by induction, bp(b) ∪ bop(⌈E⌉). We now need to do a case

analysis on b to show bp(b) = bop(⌈b⌉). We show the case for fun here: bp(fun p(x) → e′) = {p}
= bop(op(x) r → ⌈e′⌉) = bop(⌈b⌉). We can now derive bop(⌈b⌉) ∪ bop(⌈E⌉) = bop(⌈with b in E⌉).

□

Proof. (Of Lemma 9) We show that the translation preserves contexts where ⌈E[e]⌉ = ⌈E⌉[⌈e⌉].
We proceed by induction over the structure of the evaluation context:

case ⌈□[e]⌉ = ⌈e⌉ = □[⌈e⌉] = ⌈□⌉[⌈e⌉].
case E′ = E(e′): then ⌈(E[e])(e′)⌉ = ⌈E[e]⌉(⌈e′⌉), and by induction = ⌈E⌉[⌈e⌉](⌈e′⌉) = ⌈E′⌉[⌈e⌉].
case E′ = v(E): then ⌈v(E[e])⌉ = ⌈v⌉(⌈E[e]⌉), and by induction = ⌈v⌉(⌈E⌉[⌈e⌉]) = ⌈E′⌉[⌈e⌉].
case E′ = with b in E: then ⌈with b in E[e]⌉ = handle{⌈b⌉}(⌈E[e]⌉), and by induction we have, =

handle{⌈b⌉}(⌈E⌉[⌈e⌉]) = ⌈with b in E⌉[⌈e⌉] = ⌈E′⌉[⌈e⌉].

Proof. (Of Lemma 10) We show that the translation preserves substitution where ⌈e[x:=v]⌉ equals
⌈e⌉[x:=⌈v⌉]. We do this by induction over the size of the expressions. We only show the most

interesting cases:

case ⌈x[x:=v]⌉ = ⌈v⌉ = x[x:=⌈v⌉] = ⌈x⌉[x:=⌈v⌉].
case ⌈y[x:=v]⌉ where x , y, then this equals ⌈y⌉ = y = y[x:=⌈v⌉] = ⌈y⌉[x:=⌈v⌉].
case ⌈(with b in e)[x:=v]⌉ = ⌈with b[x:=v] in e[x:=v]⌉ = handle{⌈b[x:=v]⌉}(⌈e[x:=v]⌉), and by

induction handle{⌈b[x:=v]⌉}(⌈e⌉[x:=⌈v⌉]). Assuming ⌈b[x:=v]⌉ = ⌈b⌉[x:=⌈v⌉] (1), we can derive

that handle{⌈b⌉[x:=⌈v⌉]}(⌈e⌉[x:=⌈v⌉]) = handle{⌈b⌉}(⌈e⌉)[x:=⌈v⌉]) = ⌈with b in e⌉[x:=⌈v⌉]. So, it
remains to show (1).We do case analysis on b, and show the case for b = control p(x) r → e′, where
we can α-rename to ensure x , y and x , r , we have ⌈b[x:=v]⌉ = ⌈(control p(x) r → e′)[x:=v]⌉ =
⌈control p(x) r → e′[x:=v]⌉ = op(x) r → ⌈e′[x:=v]⌉, and by induction, op(x) r → ⌈e′⌉[x:=⌈v⌉] =
(op(x) r → ⌈e′⌉)[x:=⌈v⌉] = ⌈control p(x) r → e′⌉[x:=⌈v⌉] ⌈b⌉[x:=⌈v⌉]. □
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B. ALGEBRAIC EFFECT HANDLERS AS IMPLICIT CONTROL
After seeing how algebraic effect handlers can express implicit values, functions, and control, you

may wonder if the opposite is possible where implicits can express any algebraic effect handler?

We believe this is the case.

A translation is not directly obvious though since the effect handler calculus is much richer

with return clauses and grouping of effect operations. We therefore take a layered approach where

we first translate λaeh to λkr which does not contain any return clauses. From there we show a

translation to λk1 where every handler contains just one operation clause. Finally, we can then

show how λk1 translates to the implicit calculus.

B.1. Removing Return.
One may first suppose that we can easily translate return clauses away by pushing the clause into

the handler body, e.g.

⌊handle{ . . .; return x → er }(e) ⌋ = handle{ . . . }((λx . ⌊er⌋)(⌊e⌋)) (wrong)

but that is not correct: if er contains a reference to an operation op in the handler itself it would

now be handled by the same handler instead of an outer one! Leijen (2018a) (Section 3.2) shows

how to translate this correctly by assuming an extra “return” operation opret for every effect l that
handles non-trivial return clauses:

⌊handle{ . . .; return x → er }(e)⌋ = handle{ ⌊. . .⌋; opret(x) r → ⌊er⌋ }(opret(⌊e⌋)) with r ̸∈ fv(er )

We can show that this preserves the original return semantics; Starting from the return reduction,

we have:

⌊handle{. . .; return x → er }(v)⌋
= {with r ̸∈ fv(er ) (1) }
handle{⌊. . .⌋; opret(x) r → ⌊er⌋}(opret(⌊v⌋))
−→

⌊er⌋[x:=⌊v⌋, r :=⌊. . .⌋]
= { (1) }

⌊er⌋[x:=⌊v⌋]
=

⌊er [x:=v]⌋

which is equivalent to the original rule.

B.2. Single Operation Handlers.
Translating a group of operation clauses to a group of handlers with each just one operation suffers

from the same problem as the naive return translation as clauses would start to handle operations

from each other. Consider the following obvious but wrong translation:
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⌊handle{op
1
(x1) r1 → e1; . . .; opn(xn) rn → en; opret(xr ) rr → er }(e)⌋

=

handle{ op
1
(x1) r1 → ⌊e1⌋ }(

. . .
handle{ opn(xn) rn → ⌊en⌋ }(
handle{ opret(xr ) rr → ⌊er⌋ }(⌊e⌋)) . . . )

If now er invokes op1(v) it is handled by the op
1
clause in the current handler instead of an outer

one as in the original semantics. To work around this problem one possible approach is to encode

the operations in a data type under a single operation opl where every operation opi becomes

a constructor. This is troublesome from a typing perspective though as the type of the resume

binding differs for each operation (and we need GADT’s or some other form of dependent typing).

Another solution exist though that needs no extensions to our calculus where we use “shadow”

operations. For every operation op, we introduce a shadow operation op′, and translate every

handler with multiple operations into singleton handlers for both an operation and its shadow:

⌊handle{op
1
(x1) r1 → e1; . . .; opn(xn) rn → en; opret(xr ) rr → er }(e)⌋

=

handle{ op′
1
(x1) r1 → ⌊e1⌋ }(

. . .
handle{ op′n(xn) rn → ⌊en⌋ }(
handle{ op′ret(xr ) rr → ⌊er⌋ }(
handle{ op

1
(x1) r1 → r1(op′1(x1)) }(

. . .
handle{ opn(xn) rn → rn(op′n(xn)) }(
handle{ opret(xr ) rr → rr (op′ret(xr )) }(
(⌊e⌋))) . . . ))) . . . )

In the new translation, every operation op immediately forwards to its shadow operation op′. By
construction, every expression clause ei contains no reference to a shadow operation so they do

not handle each other. Since every shadow operation is immediately discharged these operations

never show in the types, or anywhere else in the program. Typing is otherwise preserved, except

that every effect l is now broken up in its individual operations:

⌊l⌋ = op
1
|. . .|opn where Σ(l) = {op

1
: τ1 → τ ′

1
, . . ., opn : τn → τ ′n}

⌊∅⌋ = ∅

⌊Σ, l : {op
1
: τ1 → τ ′

1
, . . ., opn : τn → τ ′n}⌋

= ⌊Σ⌋, op
1
: {op

1
: τ1 → τ ′

1
}, op′

1
: {op′

1
: τ1 → τ ′

1
}, . . ., opn : {opn : τn → τ ′n}, op

′
n : {op

′
n : τn → τ ′n}

B.3. Translating Back
Now that we can translate λaeh to λk1, we only need to consider single operation handlers without

return clauses where every effect l contains just one operation op where we assume every effect is

named after its operation, i.e. l = op. The translation is straightforward now:

⌊x⌋ = x
⌊λx .e⌋= λx .⌊e⌋
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⌊e(e′)⌋ = ⌊e⌋(⌊e′⌋)
⌊op(v)⌋ = op(⌊v⌋)
⌊handle{ p(x) r → r(e1) }(e2)⌋= with fun op(x) = ⌊e1⌋ in ⌊e2⌋ if r ̸∈ fv(e1)
⌊handle{ p(x) r → e1 }(e2)⌋ = with control op(x) r = ⌊e1⌋ in ⌊e2⌋

⌊∅⌋ = ∅

⌊Σ, op : {op : τ1 → τ2 }⌋= Σ, op : fun τ1 → τ2

We can show that the translation preserves both types and semantics.

Theorem 9. (Type Preservation)
If Γ ⊢aeh e : τ | ϵ then also Γ ⊢imp ⌊e⌋ : τ | ϵ .

Theorem 10. (Semantic Soundness)
If e 7−→aeh e′ then also ⌊e⌋ 7−→∗

imp ⌊e′⌋.

Created with Madoko.net.
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