
1

Attack and Defense of Dynamic Analysis-Based,
Adversarial Neural Malware Detection Models

Jack W. Stokes†*, De Wang?*, Mady Marinescu‡, Marc Marino‡, and Brian Bussone‡
†Microsoft Research, One Microsoft Way, Redmond, WA 98052 USA

?University of Texas at Arlington, Arlington, TX 76019 USA
‡Microsoft Corp., One Microsoft Way, Redmond, WA 98052 USA

Abstract—Recently researchers have proposed using deep
learning-based systems for malware detection. Unfortunately, all
deep learning classification systems are vulnerable to adversarial
learning-based attacks, or adversarial attacks, where miscreants
can avoid detection by the classification algorithm with very few
perturbations of the input data. Previous work has studied ad-
versarial attacks against static analysis-based malware classifiers
which only classify the content of the unknown file without exe-
cution. However, since the majority of malware is either packed
or encrypted, malware classification based on static analysis often
fails to detect these types of files. To overcome this limitation,
anti-malware companies typically perform dynamic analysis by
emulating each file in the anti-malware engine or performing in-
depth scanning in a virtual machine. These strategies allow the
analysis of the malware after unpacking or decryption. In this
work, we study different strategies of crafting adversarial samples
for dynamic analysis. These strategies operate on sparse, binary
inputs in contrast to continuous inputs such as pixels in images.
We then study the effects of two, previously proposed defensive
mechanisms against crafted adversarial samples including the
distillation and ensemble defenses. We also propose and evaluate
the weight decay defense. Experiments show that with these
three defenses, the number of successfully crafted adversarial
samples is reduced compared to an unprotected baseline system.
In particular, the ensemble defense is the most resilient to ad-
versarial attacks. Importantly, none of the defenses significantly
reduce the classification accuracy for detecting malware. Finally,
we show that while adding additional hidden layers to neural
models does not significantly improve the malware classification
accuracy, it does significantly increase the classifier’s robustness
to adversarial attacks.

Index Terms—Adversarial Learning, Dynamic Malware Clas-
sification

I. INTRODUCTION

As commercial and open source software authors improve
the security of their applications, and organizations deploy
advanced threat detection systems to harden their defenses,
attackers will be forced to employ more sophisticated attacks
in order to infect a computer or penetrate an organization’s
network. One of the primary computer security defenses
continues to be commercial anti-malware products. A number
of researchers [1], [2], [3], [4], [5], [6] have proposed the use
of deep learning for malware classification as a key component
of next generation anti-malware systems.

Recently, researchers have also started to study the attacks
and defenses of machine learning-based classification systems,

* Jack Stokes and De Wang made equal contributions to this work.

and this area is commonly known as adversarial learning. In
the remainder of the paper, we refer to the adversarial learning-
based attacks as adversarial attacks. In an adversarial attack,
miscreants intentionally craft malicious samples which are
designed to confuse (i.e., fool) a deployed machine learning
model. An adversarial sample is one whose input data is
altered in such a way that the perturbation does not change
its ground truth label, but the altered sample is misclassified
by a trained machine learning model. In some cases such as
images [7], the goal is to alter these samples in such a way that
they are not perceived by humans to be intentionally corrupted.
To be more specific, by perturbing a tiny fraction of the raw
input vector features (e.g., pixels) or adding noise with a very
small magnitude compared to the original input vector [8],
the crafted sample will be misclassified as belonging to a
different class. In some cases, the attacker decides to target the
mispredicted class to be any desired class. It is a phenomenon
that has appeared in some of the deep learning literature [8],
[9], but it also exists in shallow linear models [10].

While many authors have focused on adversarial attacks,
only a few defenses have been proposed. Goodfellow, et al., [8]
proposed training with adversarial samples. In 2015, Papernot,
et al., [11] proposed the distillation defense for adversarial
learning. More recently, several authors have proposed an
ensemble defense [12], [13], [14], [15] for adversarial samples.
Xu, et al., [16] proposed a feature squeezing system to detect
potential adversarial samples by measuring the difference be-
tween the original model and a new model where unnecessary
input features have been removed.

Most of the previous research in adversarial learning has
typically focused on non-adversarial datasets such as images
[7], [8]. Malware classification, on the other hand, is arguably
one of the most adversarial environments. To date, relatively
few studies have investigated adversarial learning in the field
of malware classification. Several papers have focused on
the attack side. Hu, et al., [10] study adversarial learning
in the context of linear classifiers which are designed to
detect malicious PDF (i.e., Adobe Portable Document Format)
documents. In [17], Tong, et al., study the effects of iteratively
altering malicious PDFs to avoid detection. Hu and Tan [18]
propose a generative adversarial network (GAN) for crafting
adversarial, malicious Android executable files.

Others have investigated defenses against adversarial attacks
for static analysis using the Drebin dataset [19], but no results
have been published for dynamic analysis-based malware clas-



2

sification. Grosse, et al., [20] analyze the distillation defense
for a static analysis-based, deep malware classification system
which only classifies the raw content of the file without
execution. Pei, et al., [21] include static analysis of the Drebin
dataset when evaluating their whitebox testing system for
testing deep learning systems. In [22], Grosse, et al., propose
a statistical test for detecting adversarial malware examples.

In this paper, we implement and study several adversarial
attacks and defenses for dynamic analysis-based, deep learn-
ing malware classification systems. All classification models
employ deep neural networks (DNNs). We study six different
strategies of crafting adversarial malware samples based on
the removal of malicious features and the addition of benign
features. We evaluate three different defenses for these attacks
including the distillation defense and the ensemble defense.
We also propose and analyze a new weight decay defense.
Results show that the ensemble defense outperforms the other
two defenses by a significant margin. Most models yield
a similar classification accuracy compared to their baseline
systems, which satisfies a key goal of defensive adversarial
learning that the defense does not negatively affect the overall
detection capability. Finally, while adding additional hidden
layers to a neural model only improves the accuracy in a few
scenarios, we show that a deep neural network offers much
better resilience to adversarial samples compared to its shal-
low baseline model counterpart. Furthermore, the resilience
continues to increase as the number of hidden layers in the
DNN increases. A summary of the main contributions of this
work includes:
• We are the first to study the efficacy of the distillation

defense for dynamic analysis-based, deep malware clas-
sification.

• We propose the weight decay defense and analyze its
performance in the context of malware classification.

• We demonstrate that the ensemble defense is superior in
the context of deep malware classification and are the first
to study this defense for either static or dynamic analysis.

• We show that adding additional hidden layers signifi-
cantly increases the resilience to adversarial attacks.

Fig. 1: Overview of the adversarial attack and defense of a
dynamic analysis-based malware classification system.

II. DATA, SYSTEM OVERVIEW AND THREAT MODEL

In this section, we first describe the data that was analyzed
in this study. Next we provide a high-level overview of the
defender’s training and evaluation systems.

Data: The original data for this study was provided to us by
the Microsoft’s anti-malware team and has been used to train

production anti-malware classification systems in the past.
The raw data was generated by scanning a large collection
of Windows portable executable (PE) files with a production
version of the company’s anti-malware engine in a virtual
machine (VM). The malicious files were collected by the
company from security vendor sample exchange programs,
product support interactions with customers and anti-virus
customers who willing “opt-in” to upload an unknown file
encountered on their computer. The benign files were collected
from trusted sources such as downloading Adobe Acrobat
Reader from the web and copies of commercially available
applications. The malware files have the highest confidence
level that they are malicious which generally means that they
were manually analyzed by one of the company’s security
analysts.

System Overview: The system overview is depicted in
Figure 1. Before an unknown file is executed on the actual
operating system, the anti-malware engine first analyzes the
file with its lightweight emulator which induces the dynamic
behavior of the file. The production engine does not allow
network access during emulation to prevent the infection of
other computers. The anti-malware engine, that was used to
create the raw data for the training, validation and test datasets,
generates two sets of logs for each file including unpacked file
strings and system API (application protocol interface) calls
including their parameters. The first log file that is generated
during emulation is a set of unpacked file strings. Typically,
a malware file is packed, or encrypted, to make it difficult
to reverse engineer by malware analysts. During emulation,
text strings, which are included in the PE files, are unpacked
and written to the system memory. The emulator’s system
memory is next scanned to recover null terminated objects
which include the original text strings. In addition, the engine
also logs the sequence of API calls and their parameters
which are generated during execution. The API sequence logs
provide an indication of the dynamic behavior of unknown
files.

From these two log files, we generate three sets of sparse
binary features in the “Feature Selection Training” block to
train our deep learning models. We consider each distinct,
unpacked file string as a potential feature. Two sets of features
are derived from the system call data. First, we generate a
potential feature for each distinct value of an API call and
input parameter value for a specific input position. Second,
we generate all possible combinations of API trigrams (i.e., (k)
API call, (k+1) API call, (k+2) API call) as possible features
which represent the local behavior of the files.

There are tens of millions of potential features which are
generated from the three sets of raw features. Since the neural
network cannot process this extremely large set of data, we
utilize feature selection using mutual information [23] in order
to reduce the final feature set to 50,000 features. Mutual
information ranks all of the potential features in terms of
which are the most important for classifying whether the file is
malicious or benign. If any of these final features are generated
during emulation, the corresponding feature will be set to 1 in
the sparse, binary input feature for that file. This set of feature
vectors is then used to train the deep learning model which has



3

been enhanced to defend against adversarial attacks. Similar
steps are used to evaluate an unknown file, which may have
been generated by the attacker, to produce the final prediction
score.

III. BASELINE DNN MALWARE CLASSIFIER

Before discussing the strategies for crafting and defending
against adversarial samples, we first review the baseline deep
neural network malware classifier used in this study which is
illustrated in Figure 2. These parameter settings were chosen
by hyperparameter tuning [4]. Even though we have used
feature selection to reduce the number of input features to
50,000, this number is still too large to directly input and
efficiently train the deep neural network. Therefore we use a
sparse random projection matrix [1], [24] to further reduce
the input feature dimension from 50,000 to 4,000 for the
DNN’s input layer. We also tried to reduce the input feature
space using principal component analysis, but were not able
to generate 4,000 basis vectors. The sparse random projection
matrix R is initialized with 1 and -1 as Pr(Ri, j = 1) =
Pr(Ri, j = −1) = 1/(2

√
d), where d is the size of the original

input feature vector. All hidden layers have a dimension of
2000. We use the rectified linear unit (ReLU) as the activation
function, and dropout [25] is utilized with the dropout rate set
to 25% [4]. The maximum number of training epochs is 200,
and the minibatch size is set to 250. We use stochastic gradient
descent optimization with a momentum term set to 0.9. The
initial step size is set to 0.3, but this value is automatically
divided in half when the validation loss does not decrease from
the previous epoch. All inputs to the DNN are normalized to
have zero mean and unit variance. The output layer employs
the sigmoid function to generate probabilities for the output
predictions.

Fig. 2: Model of the baseline deep neural network malware
classifier.

IV. CRAFTING ADVERSARIAL SAMPLES

In this section, we describe six iterative methods for crafting
adversarial samples. Essentially, the attacker’s strategy is to
first discover features that have the most influence on the

classification output, and then alter their malware to control
these features. The Jacobian, which is the forward derivative of
the output with respect to the original input, has been proposed
in the Jacobian-based saliency map algorithm (JSMA) [11],
[26] as a good criterion to help determine these features.
For a malware classifier, the prediction output indicates that
an unknown file is either malicious or benign. Thus, the
attacker’s goal is to alter (i.e., perturb) the important features
such that the malware classification model incorrectly predicts
that a malicious file is benign. To compromise the malware
classifier, the attacker can modify their malware to decrease
the number of features that are important for a malware
prediction, increase the number of features that lead to a
benign prediction, or both.

For each iterative attack strategy that simulates an attacker
modifying their malware, we alter one feature in the feature
vector during each iteration and then re-evaluate the Jacobian
with respect to the perturbed sample. We analyze six strategies
to craft adversarial samples. The first three methods use the
Jacobian information [11], [26] to identify which features to
alter:

(1) dec_pos, i.e., disabling the features that would lead the
classifier to predict that an unknown file is malware based on
the Jacobian of the classification output with respect to the
original input features. We define a feature to be a positive
feature if the Jacobian with respect to the feature is positive.
We call these features positive features since they are the key
indicators of malware behavior.

(2) inc_neg, i.e., enabling the features that would lead a
classifier to predict that an unknown file is benign. These fea-
tures are called negative features with respect to the malware
class. A negative feature has a positive Jacobian with respect
to the benign class.

(3) dec_pos + inc_neg, i.e., alternatively disabling one pos-
itive feature for one iteration and then enabling one negative
feature in the next iteration. This strategy investigates whether
there is any synergy between removing malicious content and
adding benign features in a round robin fashion.

In contrast to the above methods that use the Jacobian in-
formation, we also include three, similar “randomized” strate-
gies that do not use the Jacobian for comparison. For these
additional algorithms, we randomly select positive features to
disable or negative features to enable instead of selecting them
using the rank of the Jacobian’s forward derivatives. Thus,
the additional strategies include: (4) randomized dec_pos, (5)
randomized inc_neg_random, and (6) randomized dec_pos +
inc_neg.

V. DEFENSIVE METHODS

In this section, we review three methods for defending
against adversarial attacks including the distillation, ensemble,
and weight decay defenses. Although the distillation and
ensemble defenses have been previously proposed, the weight
decay defense is new. Only the distillation defense has been
previously explored to defend against adversarial attacks in
malware detection applications, and that work was done in
the context of static malware classification [20].



4

Distillation Defense: The first defense we study is the
distillation defense [11], [20] where the model is trained using
knowledge distillation. Knowledge distillation is typically used
to distill the knowledge learned from a large model into a
smaller network making the smaller model more efficient in
terms of its memory, energy, or processing time for deploy-
ment. However, in adversarial learning, the goal is to make
the distilled model more robust to adversarial perturbations,
instead of focusing on compressing the network size.

The motivation of using model distillation as a defense
mechanism is that with a higher temperature during the
distillation process, the error surface of the learned model can
be smoothed. We denote the function learned by the neural
network model as F. During the inference stage, the feature
vector is input into the trained network and transformed into
logit scores z ∈ Rc×1. Then a softmax function is used to
convert those scores into probabilities with respect to each
class. Mathematically, the Jacobian’s forward derivative of
the output with respect to the input can be calculated as
follows [11], [26], [27]. For notational clarity, we denote the

denominator of the softmax function as h(x) =
c∑

k=1
(exp(zk)/T),

where T is the temperature used during distillation. Thus, we
have:

∂Fi

∂xj
=
∂

∂xj
(
ezi/T

h(x)
) =

1
T

ezi/T

h2(x)
(

c∑
k=1
(
∂zi
∂xj
−
∂zk
∂xj
)ezk /T ). (1)

From (1), we see that as the derivative becomes smaller with
higher temperature, the model is less sensitive to adversarial
perturbations.

Ensemble Defense: The ensemble defense for extraction
attacks and evasion attacks has been recently proposed by
several authors [12], [13], [15] for tree ensemble classifiers.
In this work, we study the ensemble defense with neural
networks. The idea behind the ensemble defense is intuitive.
It may be easy for an attacker to craft adversarial samples
to compromise an individual detection model, but it is much
more difficult for them to create samples which fool a set of
models in an ensemble with different properties. We employ a
“majority vote” ensemble defense in this work. We first train
an ensemble with E classifiers where E is an odd number.
During prediction, an unknown file is predicted to be malware
if the majority (i.e., > E/2) of the classifiers predict that the
file is malicious.

Weight Decay Defense: The third defense we propose and
study is the weight decay defense. Weight decay is typically
used to prevent overfitting of machine learning models. The
`2 norm of a weight matrix is defined as the square sum of all
the elements. By adding an `2 penalty of the model weights
in the objective function during optimization, the model is
encouraged to prefer smaller magnitude weights since large
values are penalized by the objective function.

With a smaller magnitude of weights, the function param-
eterized by the neural network is smoother, and therefore,
changes in the input space lead to smaller changes in the
output of a deep learning model. We conjecture that weight
decay could help alleviate the vulnerability of a deep learning
system against adversarial attacks.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the adversarial defenses against
the different attack strategies described in the previous sec-
tions.

Data Preparation and Setup: In some cases, multiple
files can share the same input feature vector. Therefore, we
only include the first instance of a file with a unique input
feature vector and discard any remaining duplicates. After de-
duplicating the data from 4.5 million unique files, we have
input data and labels from 2,373,671 files including 43.8%
malware and 56.2% benign. A file is assigned the label of 1 if
it is malware and 0 if it is benign. We then randomly split the
original dataset into a training set, validation set, and test set
including 1,523,978, 268,937, and 580,756 files, respectively.

In our training, we implement all models using the Mi-
crosoft Cognitive Toolkit (CNTK) [28]. All models are derived
from the baseline model described in Section III. We use the
Adam optimizer [29] for training where the initial step size is
set to 0.1. Training proceeds for each step size until no further
improvement is observed in the validation error. At that point,
CNTK halves the step size for subsequent epochs. We train
for a maximum of 200 epochs, but CNTK implements early
stopping when no additional improvement in the validation
error is observed for a minimum step size of 1e-4.

Baseline Classifier: Before investigating the various de-
fenses, we first analyze the performance of the baseline
malware classifier by measuring the test error rates in Table I
for a range of DNN hidden layers, H, varying from 1 to 4.
This table reports both the test error rates for all files with
distinct cyptographic hash values and files with distinct (i.e.,
deduplicated) feature vectors, which are described above. We
note that the test error rates increase by a factor close to
three for all values of H for the dataset with distinct feature
vectors. Next, we provide the receiver operating characteristic
(ROC) curves in Figure 3 for the baseline classifier trained
and tested with the distinct dataset. If we had measured these
results using the standard method of individual files based on
a cryptographic hash, the ROC curves would appear to be even
more effective.

Malware classifiers need to operate at very low false positive
rates to avoid false positive detections which may result in the
removal of critical operating system and legitimate application
files. Thus, our desired operating point is a false positive rate
(FPR) of 0.01%. While the DNNs with multiple hidden layers
offer equivalent performance at higher false positive rates
compared to a shallow neural network with one hidden layer,
the figure indicates that the DNNs offer improved performance
at very low false positive rates. In particular, the false positive
rate of the shallow neural model immediately jumps to over
0.015% which is above our desired operating point.

Distillation Defense: We next analyze the performance of
the distillation defense system for all malware and benign
files. The ROC curves of the DNN systems employing the
distillation defense are presented in Figure 4 for T = 10 for
a range of hidden layers. We make several observations from
this figure. All models provide multiple operating points below
FPR = 0.01% which allows better fine-tuning. Also, we obtain



5

Number Test Error Rate (%) Test Error Rate (%)
Hidden for All Files for Files with
Layers Distinct Feature Vectors

1 0.43455 1.1378272
2 0.4368 1.2053255
3 0.4603 1.1762255
4 0.4824 1.1619338

TABLE I: Test error rates of the baseline malware classifier
for different numbers of hidden layers.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

False Positive Rate (%)

0

10

20

30

40

50

60

70

80

90

100

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
%

)

1 Layer

2 Layer

3 Layer

4 Layer

Fig. 3: ROC curves of the
baseline malware classifier
for different numbers of hid-
den layers.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

False Positive Rate (%)

0

10

20

30

40

50

60

70

80

90

100

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
%

)

1 Layer

2 Layer

3 Layer

4 Layer

Fig. 4: ROC curves of the
malware classifiers with the
distillation defense with T =
10 for different numbers of
hidden layers.

a small lift in the performance for the DNN with 4 hidden
layers for T = 10. All models offers similar performance
above an FPR = 0.02% compared to the baseline classifiers in
Figure 3.

In Figure 5, we next investigate the effectiveness of the six
adversarial sample crafting strategies for the baseline classifiier
and distillation defense, with temperatures T ∈ {2, 10}, for
model depths H ∈ {1, 2, 3, 4}. In each iteration, a single
feature is modified, and the generated sample is evaluated by
the trained model to test whether the sample is misclassified.
From Figure 5, we make several observations. Generally, the
distilled models follow a similar trend with regard to the six
strategies for crafting adversarial samples, where dec_pos and
dec_pos+inc_neg are the two most effective strategies for the
attacker. With a higher distillation temperature, it becomes
much harder to craft adversarial samples for the distilled
model. If the same number of features is perturbed, the success
rate for crafting adversarial samples is reduced significantly
for models distilled with a higher temperature. This result is
because the error surface of the distilled model is smoothed
for higher temperatures, such that the output is less sensitive
with respect to the input.

We summarize the success of the different iterative strate-
gies for crafting adversarial samples after iteration 20 in
Figures 6 for the baseline classifier and Figure 7 for T = 10.
The figures indicate that shallow networks with H = 1 hidden
layers are the most susceptible to successfully crafted adver-
sarial samples. We see that using the Jacobian information can
help to craft more adversarial samples with the same number
of perturbed features than its randomized counterparts. From
the attacker’s perspective, the dec_pos strategy (switching off
positive malware features) is the most effective approach for
crafting adversarial samples for the full defense with T = 10.

Likewise, dec_pos + inc_neg (alternatively switching off a
positive feature and switching on a negative feature) is more
effective than inc_neg (switching on negative features). This is
fortunate from the defender’s perspective because it requires
the attacker to potentially spend more effort implementing
alternative strategies for removing malicious features.

Weight Decay Defense: We next present an analysis of
the proposed weight decay defense. We trained the malware
classification models using different strengths of weight decay
regularization, D ∈ {0.0001, 0.0005, 0.001, 0.01}, and plot
the ROC curves for D ∈ {0.0001, 0.0005} in Figures 8-
9, respectively. In general, the true positive rates drop with
increasing values of D. For D ∈ {0.001, 0.01}, the models’
ROC curves were not acceptable.

We summarize all combinations of the weight decay
strength and hidden layer depth in terms of defense to adver-
sarial attacks in Figures 10 and 11 for D ∈ {0.0001, 0.0005},
respectively. The best overall resilience of this model defense
to the six adversarial sample crafting strategies for iteration 20
also employs D = 0.0001 and is summarized in Figure 10. For
comparison, we also summarize the defensive capabilities for
D = 0.0005 in Figure 11. Figure 10 shows that the resilience
to adversarial sample crafting strategies also increases as the
hidden layer depth increases.

Ensemble Defense: Finally, we present the results for the
ensemble defense on our dataset. In Figure 13, we show the
ROC curves for an ensemble with E = 5 classifiers. Ensembles
with other numbers of base classifiers (e.g., 3, 7) offer similar
results.

The summary results after 20 iterations for E = 3 and E = 5
classifiers are shown in Figure 14 and Figure 15, respectively.
The figures indicate that increasing the number of classifiers
in the ensemble increases the difficulty of successfully craft-
ing adversarial examples. Furthermore, the ensemble defense
greatly reduces the percentage of successfully crafted samples
compared to the results for the baseline classifier in Figure 6,
the distillation defense with T = 10 in Figure 7, and the weight
decay defense in Figures 10 and 11.

VII. RELATED WORK

Adversarial Attacks: Goodfellow, et al., [8] demonstrated
that deep learning models can be fooled by crafting adversarial
samples from the original input data by adding a perturbation
on the direction of the sign of the model’s cost function
gradient. This method is known as the Fast Gradient Sign
method. Papernot, et al., [7] proposed the Jacobian-based
Saliency Map Algorithm (JSMA) method, based on model
distillation, to craft adversarial attack samples on black box
models which we investigate in this paper. The authors in [7]
found that adversarial samples are transferable among models,
i.e., the adversarial samples crafted for one model can also
mislead the classification of other models.

The distillation defense that is studied in the paper is
proposed by Papernot, et al. in [11]. Carlini and Wagner [30]
developed a new type of adversarial attack based on the L2
regularization of an optimization function and showed that
distillation is not effective against this attack for images.



6

0 2 4 6 8 10 12 14 16 18 20

Iteration

0

5

10

15

20

25

30

S
u
c
c
e
s
s
fu

lly
 C

ra
ft
e
d
 A

d
v
e
rs

a
ri
a
l 
S

a
m

p
le

s
 (

%
) dec_pos

inc_neg

dec_pos + inc_neg

randomized dec_pos

randomized inc_neg

randomized dec_pos + inc_neg

(a) H = 1, Baseline

0 2 4 6 8 10 12 14 16 18 20

Iteration

0

5

10

15

20

25

S
u
c
c
e
s
s
fu

lly
 C

ra
ft
e
d
 A

d
v
e
rs

a
ri
a
l 
S

a
m

p
le

s
 (

%
) dec_pos

inc_neg

dec_pos + inc_neg

randomized dec_pos

randomized inc_neg

randomized dec_pos + inc_neg

(b) H = 1, T = 2

0 2 4 6 8 10 12 14 16 18 20

Iteration

0

5

10

15

S
u
c
c
e
s
s
fu

lly
 C

ra
ft
e
d
 A

d
v
e
rs

a
ri
a
l 
S

a
m

p
le

s
 (

%
) dec_pos

inc_neg

dec_pos + inc_neg

randomized dec_pos

randomized inc_neg

randomized dec_pos + inc_neg

(c) H = 1, T = 10

0 2 4 6 8 10 12 14 16 18 20

Iteration

0

2

4

6

8

10

12

14

16

18

S
u
c
c
e
s
s
fu

lly
 C

ra
ft
e
d
 A

d
v
e
rs

a
ri
a
l 
S

a
m

p
le

s
 (

%
) dec_pos

inc_neg

dec_pos + inc_neg

randomized dec_pos

randomized inc_neg

randomized dec_pos + inc_neg

(d) H = 2, Baseline

0 2 4 6 8 10 12 14 16 18 20

Iteration

0

5

10

15

S
u
c
c
e
s
s
fu

lly
 C

ra
ft
e
d
 A

d
v
e
rs

a
ri
a
l 
S

a
m

p
le

s
 (

%
) dec_pos

inc_neg

dec_pos + inc_neg

randomized dec_pos

randomized inc_neg

randomized dec_pos + inc_neg

(e) H = 2, T = 2

0 2 4 6 8 10 12 14 16 18 20

Iteration

0

2

4

6

8

10

12

S
u
c
c
e
s
s
fu

lly
 C

ra
ft
e
d
 A

d
v
e
rs

a
ri
a
l 
S

a
m

p
le

s
 (

%
) dec_pos

inc_neg

dec_pos + inc_neg

randomized dec_pos

randomized inc_neg

randomized dec_pos + inc_neg

(f) H = 2, T = 10

0 2 4 6 8 10 12 14 16 18 20

Iteration

0

2

4

6

8

10

12

S
u
c
c
e
s
s
fu

lly
 C

ra
ft
e
d
 A

d
v
e
rs

a
ri
a
l 
S

a
m

p
le

s
 (

%
) dec_pos

inc_neg

dec_pos + inc_neg

randomized dec_pos

randomized inc_neg

randomized dec_pos + inc_neg

(g) H = 3, Baseline

0 2 4 6 8 10 12 14 16 18 20

Iteration

0

1

2

3

4

5

6

7

8

9

10

S
u
c
c
e
s
s
fu

lly
 C

ra
ft
e
d
 A

d
v
e
rs

a
ri
a
l 
S

a
m

p
le

s
 (

%
) dec_pos

inc_neg

dec_pos + inc_neg

randomized dec_pos

randomized inc_neg

randomized dec_pos + inc_neg

(h) H = 3, T = 2

0 2 4 6 8 10 12 14 16 18 20

Iteration

0

2

4

6

8

10

12

14

S
u
c
c
e
s
s
fu

lly
 C

ra
ft
e
d
 A

d
v
e
rs

a
ri
a
l 
S

a
m

p
le

s
 (

%
) dec_pos

inc_neg

dec_pos + inc_neg

randomized dec_pos

randomized inc_neg

randomized dec_pos + inc_neg

(i) H = 3, T = 10

0 2 4 6 8 10 12 14 16 18 20

Iteration

0

2

4

6

8

10

12

S
u
c
c
e
s
s
fu

lly
 C

ra
ft
e
d
 A

d
v
e
rs

a
ri
a
l 
S

a
m

p
le

s
 (

%
) dec_pos

inc_neg

dec_pos + inc_neg

randomized dec_pos

randomized inc_neg

randomized dec_pos + inc_neg

(j) H = 4, Baseline

0 2 4 6 8 10 12 14 16 18 20

Iteration

0

2

4

6

8

10

12

S
u
c
c
e
s
s
fu

lly
 C

ra
ft
e
d
 A

d
v
e
rs

a
ri
a
l 
S

a
m

p
le

s
 (

%
) dec_pos

inc_neg

dec_pos + inc_neg

randomized dec_pos

randomized inc_neg

randomized dec_pos + inc_neg

(k) H = 4, T = 2

0 2 4 6 8 10 12 14 16 18 20

Iteration

0

2

4

6

8

10

12

14

S
u
c
c
e
s
s
fu

lly
 C

ra
ft
e
d
 A

d
v
e
rs

a
ri
a
l 
S

a
m

p
le

s
 (

%
) dec_pos

inc_neg

dec_pos + inc_neg

randomized dec_pos

randomized inc_neg

randomized dec_pos + inc_neg

(l) H = 4, T = 10

Fig. 5: Success rates of adversarial samples against the baseline classier and classifiers using the defensive distillation with
temperatures, T ∈ 2, 10. Each subfigure shows the results of a DNN with a different number of hidden layers, H.

dec_pos
inc_neg

dec_pos + inc_neg

rand dec_pos

rand inc_neg

rand dec_pos + inc_neg

Attack Strategy

0

5

10

15

20

25

30

S
u

c
c
e

s
s
fu

lly
 C

ra
ft

e
d

 A
d

v
e

rs
a

ri
a

l 
S

a
m

p
le

s
 (

%
)

Layers = 1

Layers = 2

Layers = 3

Layers = 4

Fig. 6: Percentage of suc-
cessfully crafted adversarial
samples for different sam-
ple crafting strategies for the
baseline model with no de-
fense.

dec_pos
inc_neg

dec_pos + inc_neg

rand dec_pos

rand inc_neg

rand dec_pos + inc_neg

Attack Strategy

0

5

10

15

20

S
u

c
c
e

s
s
fu

lly
 C

ra
ft

e
d

 A
d

v
e

rs
a

ri
a

l 
S

a
m

p
le

s
 (

%
)

Layers = 1

Layers = 2

Layers = 3

Layers = 4

Fig. 7: Percentage of suc-
cessfully crafted adversarial
samples for different sample
crafting strategies with the
distillation defense and T =
10.

Several authors [12], [13], [14], [15] have proposed using
an ensemble of models to avoid different type of adversarial

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

False Positive Rate (%)

0

10

20

30

40

50

60

70

80

90

100

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
%

)

1 Layer

2 Layer

3 Layer

4 Layer

Fig. 8: ROC curves of the
malware classifiers for the
weight decay defense with
D = 0.0001 for different
numbers of hidden layers.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

False Positive Rate (%)

0

10

20

30

40

50

60

70

80

90

100

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
%

)

1 Layer

2 Layer

3 Layer

4 Layer

Fig. 9: ROC curves of the
malware classifiers for the
weight decay defense with
D = 0.0005 for different
numbers of hidden layers.

attacks. For example, the authors in [13] proposed using an
ensemble of models to improve the privacy of deployed models
since attackers will only be able to obtain an approximation



7

dec_pos
inc_neg

dec_pos + inc_neg

rand dec_pos

rand inc_neg

rand dec_pos + inc_neg

Attack Strategy

0

5

10

15

20

25

30

S
u

c
c
e

s
s
fu

lly
 C

ra
ft

e
d

 A
d

v
e

rs
a

ri
a

l 
S

a
m

p
le

s
 (

%
)

Layers = 1

Layers = 2

Layers = 3

Layers = 4

Fig. 10: Percentage of suc-
cessfully crafted adversarial
samples after iteration 20
for different sample crafting
strategies with the weight de-
cay defense and D = 0.0001.

dec_pos
inc_neg

dec_pos + inc_neg

rand dec_pos

rand inc_neg

rand dec_pos + inc_neg

Attack Strategy

0

5

10

15

20

25

30

35

40

S
u

c
c
e

s
s
fu

lly
 C

ra
ft

e
d

 A
d

v
e

rs
a

ri
a

l 
S

a
m

p
le

s
 (

%
)

Layers = 1

Layers = 2

Layers = 3

Layers = 4

Fig. 11: Percentage of suc-
cessfully crafted adversarial
samples after iteration 20
for different sample crafting
strategies with the weight de-
cay defense and D = 0.0005.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

False Positive Rate (%)

0

10

20

30

40

50

60

70

80

90

100

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
%

)

1 Layer

2 Layer

3 Layer

4 Layer

Fig. 12: ROC curves of the
ensemble malware classifier
with E = 3 classifiers for
different numbers of hidden
layers.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

False Positive Rate (%)

0

10

20

30

40

50

60

70

80

90

100

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
%

)

1 Layer

2 Layer

3 Layer

4 Layer

Fig. 13: ROC curves of the
ensemble malware classifier
with E = 5 classifiers for
different numbers of hidden
layers.

of the target prediction function. Kantchelian, et al., [12]
proposed two algorithms for evasion attacks on tree ensemble
classifiers, like gradient boosted trees and random forests.
However, each tree classifier is very weak compared with a
full-fledged neural network.

Malware Classification: Several deep learning malware
classifiers are proposed in [1], [2], [3], [4], [5], [6]. The first
study of deep learning for a DNN malware classifier was
presented in [1]. Similar to our results, the authors found that
a shallow neural network slightly outperformed a DNN on
dynamic analysis-based malware classification. Saxe, et al.,
studied DNNs in the context of static malware classification
in [2]. Huang and Stokes proposed a deep, multi-task approach
for dynamic analysis which simultaneously tries to optimize
predicting a) if a file is malicious or benign and b) the
file’s family if it is malware or returning a benign label in
the case it is clean. In [3], the authors propose a two-stage
approach where the first stage employs a language-model,
using a recurrent neural network (RNN) or an echo state
network (ESN), to first learn an embedding of the behavior
of the file based on its system call events. This embedding
then serves as the features for a DNN in the second stage.
Athiwaratkun, et al., [5] explored similar architectures for
deep malware classification using long short-term memory
(LSTM) or a gated recurrent units (GRU) for the language
model, as well as a separate architecture using a character-
level convoluation neural network (CNN). In [6], Kolosnjaji,

dec_pos
inc_neg

dec_pos + inc_neg

rand dec_pos

rand inc_neg

rand dec_pos + inc_neg

Attack Strategy

0

2

4

6

8

10

12

S
u

c
c
e

s
s
fu

lly
 C

ra
ft

e
d

 A
d

v
e

rs
a

ri
a

l 
S

a
m

p
le

s
 (

%
)

Layers = 1

Layers = 2

Layers = 3

Layers = 4

Fig. 14: Percentage of suc-
cessfully crafted adversarial
samples after iteration 20
for different sample crafting
strategies with the E = 3
ensemble defense.

dec_pos
inc_neg

dec_pos + inc_neg

rand dec_pos

rand inc_neg

rand dec_pos + inc_neg

Attack Strategy

0

2

4

6

8

10

S
u

c
c
e

s
s
fu

lly
 C

ra
ft

e
d

 A
d

v
e

rs
a

ri
a

l 
S

a
m

p
le

s
 (

%
)

Layers = 1

Layers = 2

Layers = 3

Layers = 4

Fig. 15: Percentage of suc-
cessfully crafted adversarial
samples after iteration 20
for different sample crafting
strategies with the E = 5
ensemble defense.

et al., propose an alternative model also employing a CNN
and an LSTM.

Several authors have proposed methods for creating adver-
sarial malware samples. In [10], Xu, et al., propose a system
which uses a genetic algorithm to generate adversarial samples
which can be mispredicted by a classifier. The system assumes
access to the classifier’s output score. The authors demonstrate
that their system can automatically create 500 malicious PDF
files that are classified as benign by the PDFrate [31] and
Hidost [32] systems.

Hu and Tan [18] propose a generative adversarial network
(GAN) to create adversarial malware samples. In their work,
the authors assume that the attackers know the features which
are employed by the malware classifier, but they do not know
the classification model or its parameters. They use static
analysis where the features are API calls and a sparse binary
feature is constructed to indicate which APIs were called
by the program. Furthermore, the authors assume that the
prediction score from the model is reported from the malware
classification model.

Grosse, et al., [20] study the distillation defense for static
analysis-based malware classification. Similar to this paper,
the authors assume that the attacker has access to all of the
deep learning malware classifier’s model parameter. In our
work, we also consider the distillation defense for dynamic
analysis-based malware classification. In addition, we evaluate
the ensemble defense for a dynamic malware classifier. In [21],
the authors also evaluate adversarial learning-based attacks on
the Drebin malware database. In another recent paper, Grosse,
et al., [22] add a separate class for adversarial samples and
propose a statistical hypothesis test to identify adversarial
samples.

VIII. CONCLUSION

In this paper, we investigated six different adversarial learn-
ing attack strategies against a dynamic analysis-based, deep
learning malware classification system. We analyzed the effec-
tiveness of two previously proposed defensive methods includ-
ing the distillation defense and ensemble defense. Although
Grosse, et al., [20] have investigated the distillation defense
for static analysis, it is important to evaluate this method



8

for dynamic analysis datasets. While distillation helped with
static analysis, it was not that effective for our dynamic
analysis dataset, which is more representative of how malware
classification is done in practice. Furthermore, this is the first
work to analyze the effectiveness of the ensemble defense for
malware classification in general for either static or dynamic
analysis. We also proposed and analyzed the weight decay
defense.

All three defenses offer comparable classification accuracies
compared to a standard deep learning baseline system. Thus,
they achieve a key goal in adversarial learning of not signif-
icantly reducing the accuracy compared to a system without
any adversarial learning defenses. In addition, deep learning
models offer better resilience to adversarial attacks than the
shallow baseline models in all cases.

Results show that the ensemble classifier provides signif-
icantly better resilience against adversarial attacks for this
dataset when compared to the other defenses, but requires
more computational resources for both training and inference.
The distillation defense offers the second best resistance.
It helps to reduce the effectiveness of removing important
malicious features, but its effectiveness is limited.

Most importantly, none of these defenses are completely ef-
fective in preventing adversarial attacks for dynamic analysis-
based malware classification systems. While reasonably effec-
tive in the case of perturbing randomly selected features, even
the ensemble defense only makes it more time consuming for
an attacker who uses the Jacobian-based attack strategy to craft
adversarial malware samples. Researchers keep creating better
attacks, but we really need the research community to propose
better defenses to protect our computer systems.

REFERENCES

[1] G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu, “Large-scale malware
classification using random projections and neural networks,” in Pro-
ceedings of the IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2013, pp. 3422–3426.

[2] J. Saxe and K. Berlin, “Deep neural network based malware detection
using two-dimensional binary program features,” Malware Conference
(MALCON), 2015.

[3] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and A. Thomas,
“Malware classification with recurrent networks,” in Proceedings of
the IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2015, pp. 1916–1920.

[4] W. Huang and J. W. Stokes, “Mtnet: A multi-task neural network
for dynamic malware classfication,” in Proceedings of Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA), 2016,
pp. 399–418.

[5] B. Athiwaratkun and J. W. Stokes, “Malware classification with lstm
and gru language models and a character-level cnn,” in 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), March 2017, pp. 2482–2486.

[6] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, “Deep learning for
classification of malware system call sequences,” in Australasian Joint
Conference on Artificial Intelligence. Springer International Publishing,
2016, pp. 137–149.

[7] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against deep learning systems
using adversarial examples,” Proceedings of the ACM Asia Conference
on Computer and Communications Security, 2017.

[8] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” Proceedings of the International Conference on
Learning Representations (ICML), 2015.

[9] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are
easily fooled: High confidence predictions for unrecognizable images,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015, pp. 427–436.

[10] W. Xu, Y. Qi, and D. Evans, “Automatically evading classifiers,”
Proceedings of the Network and Distributed System Security Symposium
(NDSS), 2016.

[11] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural networks,”
Proceedings of the IEEE Symposium on Security and Privacy, 2015.

[12] A. Kantchelian, J.D.Tygar, and A. D.Joseph, “Evasion and hardening of
tree ensemble classifiers,” Proceedings of the International Conference
on Machine Learning (ICML), 2016.

[13] F. Tramer, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Steal-
ing machine learning models via prediction apis,” Proceedings of the
USENIX Security Symposium, 2016.

[14] J. Feng, T. Zahavy, B. Kang, H. Xu, and S. Mannor, “Ensemble robust-
ness of deep learning algorithms,” arXiv preprint arXiv:1602.02389v3,
2016.

[15] F. Tramer, A. Kurakin, N. Papernot, D. Boneh, and P. McDaniel,
“Ensemble adversarial training: Attacks and defenses,” Proceedings of
the International Conference on Learning Representations (ICLR), 2018.

[16] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial
examples in deep neural networks,” Proceedings of the Network and
Distributed Systems Security Symposium (NDSS), 2018.

[17] L. Tong, B. Li, C. Hajaj, C. Xiao, and Y. Vorobeychik, “A framework
for validating models of evasion attacks on machine learning, with ap-
plication to pdf malware detection,” arXiv preprint arXiv:1708.08327v3,
2017.

[18] W. Hu and Y. Tan, “Generating adversarial malware examples for black-
box attacks based on gan,” arXiv preprint 1702.05983, 2017.

[19] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck,
“Drebin: Effective and explainable detection of android malware in your
pocket,” in Proceedings of the Network and Distributed System Security
Symposium (NDSS), 2014.

[20] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
“Adversarial perturbations against deep neural networks for malware
classification,” in Proceedings of the European Symposium on Research
in Computer Security (ESORICS), 2017.

[21] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in Symposium on Operating Systems
Principles (SOSP), October 2017, pp. 1–18.

[22] K. Grosse, P. Manoharan, N. Papernot, M. Backes, and P. McDaniel,
“On the (statistical) detection of adversarial examples,” in arXiv preprint
arXiv:1702.06280v2, 2017.

[23] C. D. Manning, P. Raghavan, and H. Schutze, An Introduction to
Information Retrieval. Cambridge University Press, 2009.

[24] P. Li, T. J. Hastie, and K. W. Church, “Very sparse random projections,”
in Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (ICDM), 2006, pp. 287–296.

[25] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” J. Mach. Learn. Res., vol. 15,
no. 1, pp. 1929–1958, Jan. 2014. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2627435.2670313

[26] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
Proceedings of the 1st IEEE European Symposium on Security and
Privacy, 2015.

[27] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” Neural Information Processing Systems (NIPS) Deep
Learning Workshop, 2014.

[28] F. Seide and A. Agarwal, “Cntk: Microsoft’s open-source deep-learning
toolkit,” in Proceedings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. ACM, 2016, pp.
2135–2135.

[29] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
Proceedings of the International Conference for Learning Representa-
tions (ICLR), 2015.

[30] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 IEEE Symposium on Security and Privacy (SP), May
2017, pp. 39–57.

[31] C. Smutz and A. Stavrou, “Malicious pdf detection using metadata and
structural features,” Technical report, 2012.

[32] N. Srndic and P. Laskov, “Detection of malicious pdf files based on
hierarchical document structure,” in Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2013.


